Improvement of Fog Simulation by the Nudging of Meteorological Tower Data in the WRF and PAFOG Coupled Model
Abstract
:1. Introduction
2. Observations and Methods
3. Model and Numerical Experiments
3.1. WRF Simulation
3.2. PAFOG Simulation
3.3. Model Evaluation
4. Results and Discussion
4.1. Impact of the Observation Data on Fog Predictability
4.2. Impact of Precipitation and Soil Moisture
4.3. Case Study: Radiation Fog Generation Mechanism
5. Discussions and Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Bartok, J.; Bott, A.; Gera, M. Fog prediction for road traffic safety in a coastal desert region. Bound. Layer Meteorol. 2012, 145, 485–506. [Google Scholar] [CrossRef]
- Klemm, O.; Lin, N. What causes observed fog trends: Air quality or climate change. Aerosol Air Qual. Res. 2016, 16, 1131–1142. [Google Scholar] [CrossRef]
- Fu, G.; Li, P.; Crompton, J.G.; Guo, J.; Gao, S.; Zhang, S. An observational and modeling study of a sea fog event over the Yellow Sea on 1 August 2003. Meteorol. Atmos. Phys. 2010, 107, 149–159. [Google Scholar] [CrossRef]
- Duynkerke, P.G. Radiation Fog: A comparison of model simulation with detailed observations. Mon. Wea. Rev. 1991, 119, 324–341. [Google Scholar] [CrossRef] [Green Version]
- Fuzzi, S.; Facchini, M.C. The Po valley fog experiment 1989. Tellus 1992, 44, 448–468. [Google Scholar] [CrossRef] [Green Version]
- Wobrock, W.; Facchini, M.C. Meteorological characteristics of the Po valley fog. Tellus 1992, 44, 469–488. [Google Scholar] [CrossRef]
- Nakanishi, J. Large-eddy simulation of radiation fog. Bound. Layer Meteorol. 2000, 94, 461–493. [Google Scholar] [CrossRef]
- Gultepe, I.; Tardif, R.; Michaelides, S.C.; Cermak, J.; Bott, A.; Bendix, J.; Muller, M.D.; Pagowski, M.; Hansen, B.; Ellrod, G.W.; et al. Fog Research: A Review of Past Achievements and Future Perspectives. Pure Appl. Geophys. 2007, 164, 1420–9136. [Google Scholar] [CrossRef]
- Fu, G.; Guo, J.T.; Xie, S.P.; Duane, Y.H.; Zhang, M.G. Analysis and high-resolution modeling of a dense sea fog event over the Yellow Sea. Atmos. Res. 2006, 81, 293–303. [Google Scholar] [CrossRef]
- Shi, C.; Wang, L.; Zhang, H.; Zhang, S.; Deng, X.; Li, Y.; Qiu, M. Fog simulations based on multi-model system:a feasibility study. Pure Appl. Geophys. 2011. [Google Scholar] [CrossRef]
- Pu, Z.; Chachere, C.; Hoch, S.; Pardyjak, E.; Gultepe, I. Numerical prediction of cold season fog events over complex terrain: The performance of the WRF model during MATERHORN-Fog and early evaluation. Pure Appl. Geophys. 2016, 173, 3165–3186. [Google Scholar] [CrossRef]
- Lin, C.Y.; Zhang, Z.F.; Pu, Z.X.; Wang, F. Numerical simulations of an advection fog event over Shanghai Pudong International Airport with the WRF model. J. Meteorol. Res. 2017, 31, 874–889. [Google Scholar] [CrossRef]
- Steeneveld, G.Y.; De Bode, M. Unravelling the relative roles of physical processes in modelling the life cycle of a warm radiation fog. Q. J. R. Meteorol. Soc. 2018, 144, 1539–1554. [Google Scholar] [CrossRef]
- Sujitjorn, S.; Sookjaras, P.; Wainikorn, W. An expert system to forecast visibility in Don-Muang Air Force Base. In 1994 IEEE International Conference on Humans, Information and Technology, Systems Man and Cybernetics; IEEE: Piscataway, NJ, USA, 1994; Volume 3, pp. 2528–2531. [Google Scholar]
- Murtha, J. Applications of fuzzy logic in operational meteorology. Can. Forces Weather Serv. 1995, 42–54. [Google Scholar]
- Marzban, C.; Leyton, S.M.; Colman, B. Ceiling and visibility forecasts via neural networks. Weather Forecast. 2007, 22, 466–479. [Google Scholar] [CrossRef] [Green Version]
- Petty, K.; Carmichael, B.; Wiener, G.; Petty, M.; Limber, M. A fuzzy logic system for the analysis and prediction of cloud ceiling and visibility. Preprints Ninth Conference on Aviation, Range, and Aerospace Meteorology, Orlando, F1. Am. Meteor. Soc. 2000, 331–333. [Google Scholar]
- Ballard, S.P.; Golding, B.W.; Smith, R.N.B. Mesoscale model experimental forecasts of the haar of northeast Scotland. Mon. Weather Rev. 1991, 119, 2107–2123. [Google Scholar] [CrossRef] [Green Version]
- Koracin, D.; Businger, J.; Dorman, C.; Lewis, J. Formation, evolution, and dissipation of coastal sea fog. Bound. Layer Meteorol. 2005, 117, 447–478. [Google Scholar] [CrossRef]
- Van der Velde, I.R.; Steeneveld, G.J.; Wichers Schreur, B.G.J.; Holtslag, A.A.M. Modeling and forecasting the onset and duration of severe radiation fog under frost conditions. Mon. Weather Rev. 2010, 138, 4237–4253. [Google Scholar] [CrossRef]
- Tang, Y.M.; Capon, R.; Forbes, R.; Clark, P. Fog prediction using a very high resolution numerical weather prediction model forced with a single profile. Meteorol. Appl. 2009, 16, 129–141. [Google Scholar] [CrossRef]
- Lim, Y.; Hong, J.; Lee, J.T.-Y. Spin-up behavior of soil moisture in a land surface model for East Asia. Meteorol. Atmos. Phys. 2012, 118, 151–161. [Google Scholar] [CrossRef]
- Kim, C.K.; Yum, S.S.; Kim, H.Y.; Kang, Y.H. A WRF modeling study on the effects of land use changes on fog off the west coast of the korea peninsula. Pure Appl. Geophys. 2019. [Google Scholar] [CrossRef]
- Bergot, T.; Guedalia, D. Numerical forecasting of radiation fog. Part I: Numerical model and sensitivity tests. Mon. Weather Rev. 1994, 122, 1218–1230. [Google Scholar] [CrossRef] [Green Version]
- Vosper, S. Development and testing of a high resolution mountainwave forecasting system. Meteorol. Appl. 2003, 10, 75–86. [Google Scholar] [CrossRef] [Green Version]
- Kim, C.K.; Yum, S.S. A numerical study of sea fog formation over cold sea surface using a one-dimensional turbulence model coupled with the Weather Research and Forecasting Model. Bound. Layer Meteorol. 2012, 143, 481–505. [Google Scholar] [CrossRef]
- Bergot, T.; Carrer, D.; Noilhan, J.; Bougeault, P. Improved site-specific numerical prediction of fog and low clouds: A feasibility study. Weather Forecast. 2005, 20, 627–646. [Google Scholar] [CrossRef] [Green Version]
- Roquelaure, S.; Bergot, T. Seasonal sensitivity on COBEL-ISBA local forecast system for fog and low clouds. Pure Appl. Geophys. 2007, 164, 1283–1301. [Google Scholar] [CrossRef]
- Bari, D. A Preliminary Impact Study of Wind on Assimilation and Forecast Systems into the One-Dimensional Fog Forecasting Model COBEL-ISBA over Morocco. Atmosphere 2019, 10, 615. [Google Scholar] [CrossRef] [Green Version]
- Kim, H.; Hong, J.-W.; Lim, Y.; Hong, J.; Shin, S.; Kim, Y. Evaluation of JULES land surface model based on in-situ data of NIMS flux sites. Atmosphere 2019, 29, 355–365. (In Korean) [Google Scholar]
- Hong, J.-W.; Hong, J.; Chun, J.; Lee, Y.; Chang, L.; Lee, J.; Yi, K.; Park, Y.; Byun, Y.; Joo, S. Comparative assessment of net CO2 exchange across an urbanization gradient in Korea based on in situ observation. Carbon Balance Manag. 2019. [Google Scholar] [CrossRef] [Green Version]
- Bari, D.; Bergot, T.; Khlifi, M.E. Local meteorological and large scale weather characteristics of fog over the Grand Casablanca region, Morocco. J. Appl. Meteorol. Climatol. 2016, 55, 1731–1745. [Google Scholar] [CrossRef]
- Skamarock, W.C.; Klemp, J.B.; Dudhia, J.; Gill, D.O.; Barker, D.M.; Duda, M.G.; Huang, X.-Y.; Wang, W.; Powers, J.G. A Description of the Advanced Research WRF Version 3. NCAR Technical Note NCAR/TN-475+STR; National Center for Atmospheric Research: Boulder, CO, USA, 2008; 125p. [Google Scholar]
- Bott, A.; Trautmann, T. PAFOG-a new efficient forecast model of radiation fog and low-level stratiform clouds. Atmos. Res. 2002, 64, 191–203. [Google Scholar] [CrossRef]
- Zdunkowski, W.G.; Panhans, W.-G.; Welch, R.M.; Korb, J.G. A radiation scheme for circulation and climate models. Beitr. Phys. Atmos. 1982, 55, 215–238. [Google Scholar]
- Nickerson, E.C.; Richard, E.; Rosset, R.; Smith, R.D. The numerical simulation of clouds, rain, and airflow over the Vosges and Black Forest mountains: A meso-h model with parameterized microphysics. Mon. Weather Rev. 1986, 114, 398–414. [Google Scholar] [CrossRef] [Green Version]
- Chaumerliac, N.; Richard, E.; Pinty, J.P.; Nickerson, E.C. Sulfur scavenging in a mesoscale model with quasi-spectral microphysics: Two-dimensional results for continental and maritime clouds. J. Geophys. Res. 1987, 92, 3114–3126. [Google Scholar] [CrossRef]
- Siebert, J.; Sievers, U.; Zdunkowski, W. A one-dimensional simulation of the interaction between land surface processes and the atmosphere. Bound. Layer Meteorol. 1992, 59, 1–34. [Google Scholar] [CrossRef]
- Bott, A.; Sievers, U.; Zdunkowski, W. A radiation fog model with a detailed treatment of the interaction between radiative transfer and fog microphysics. J. Atmos. Sci. 1990, 47, 2153–2166. [Google Scholar] [CrossRef] [Green Version]
- Kim, W.; Kim, C.K.; Yum, S.S. Numerical Simulation of Sea Fog over the Yellow Sea: Comparison between UM+ PAFOG and WRF+ PAFOG Coupled Systems. Asia-Pac. J. Atmos. Sci. 2019. [Google Scholar] [CrossRef]
- Rémy, S.; Bergot, T. Assessing the impact of observations on a local numerical fog prediction system. Q. J. R. Meteorol. Soc. 2009, 135, 1248–1265. [Google Scholar]
- Wilks, D.S. Statistical Methods in the Atmospheric Sciences, 3rd ed.; Academic Press: Cambridge, UK, 2011. [Google Scholar]
- Boutle, I.; Finnenkoetter, A.; Lock, A.; Wells, H. The London model: Forecasting fog at 333 m resolution. Q. J. R. Meteorol. Soc. 2015. [Google Scholar] [CrossRef]
- Philip, A.; Bergot, T.; Bouteloup, Y.; Bouyssel, F. The impact of vertical resolution on fog forecasting in the kilometric-scale model AROME: A case study and statistics. Weather Forecast. 2016, 31, 1655–1671. [Google Scholar] [CrossRef]
- Kim, C.K.; Yum, S.S. A study on the transition mechanism of stratus cloud in fog over warm sea surface using a single column model coupled with WRF, Asia-Pac. J. Atmos. Sci. 2013, 49, 245–257. [Google Scholar]
No. | Date | Fog Type | No. | Date | Fog Type |
---|---|---|---|---|---|
1 | 09-10-2014 | Radiation fog case | 12 | 01-26-2015 | Case with prior precipitation |
2 | 14-10-2014 | Radiation fog case | 13 | 02-22-2015 | Case with prior precipitation |
3 | 10-20-2014 | Case with prior precipitation | 14 | 03-30-2015 | Radiation fog case |
4 | 10-25-2014 | Radiation fog case | 15 | 03-31-2015 | Case with prior precipitation |
5 | 10-26-2014 | Radiation fog case | 16 | 05-01-2015 | Radiation fog case |
6 | 11-05-2014 | Radiation fog case | 17 | 05-02-2015 | Radiation fog case |
7 | 11-22-2014 | Radiation fog case | 18 | 05-19-2015 | Radiation fog case |
8 | 11-27-2014 | Radiation fog case | 19 | 06-03-2015 | Case with prior precipitation |
9 | 12-08-2014 | Case with prior precipitation | 20 | 06-09-2015 | Radiation fog case |
10 | 12-20-2014 | Case with prior precipitation | 21 | 06-10-2015 | Radiation fog case |
11 | 01-21-2015 | Case with prior precipitation | 22 | 06-11-2015 | Case with prior precipitation |
Category | WRF V3.7 |
---|---|
Horizontal Resolution | 18, 6, 2 km |
Vertical Layers | 65 (top~20 km) 20 (below 1 km) |
Initial field | NCEP (National Center for Environmental Prediction) GDAS (Global Data Assimilation System) data |
Radiation Process | RRTMg (Rapid Radiative Transfer model) scheme (both SW & LW) |
PBL Process | MYNN(Mellor-Yamada Nakanish Niino) scheme |
Surface physics | Unified Noah land-surface model |
Microphysics | Morrison |
Abbreviation | Number of Simulations | Description |
---|---|---|
WRF | 22 | Single WRF simulations with the experimental design in Table 1 |
WP | 22 | The coupled model (WRF + PAFOG) simulation |
WPI | 22 | Same as WP except that the tower observed meteorological data is utilized for initial conditions |
WPN | 22 | Same as WP except that the tower observed meteorological data are utilized as initial conditions and periodically nudged into the coupled model |
WPS | 22 | Same as WPI except that observed soil moisture content information is utilized as initial condition |
WPNS | 22 | Same as WPN except that observed soil moisture content information is also utilized as initial condition |
WPN_R | 13 | WPN but only for the radiation fog events |
WPN_P | 9 | WPN but only for the fog events with prior precipitation |
WPNS_P | 9 | WPNS except that during the time of prior precipitation soil moisture content value is replaced by the value from KMA data assimilation |
Numerical Simulation Setting | HR | CSI | FAR |
---|---|---|---|
WRF | 0.15 ± 0.12 | 0.11 ± 0.23 | 0.05 ± 0.04 |
WP | 0.27 ± 0.30 | 0.14 ± 0.18 | 0.21 ± 0.22 |
WPI | 0.60 ± 0.48 | 0.23 ± 0.18 | 0.49 ± 0.41 |
WPN | 0.81 ± 0.21 | 0.45 ± 0.22 | 0.39 ± 0.22 |
WPS | 0.53 ± 0.35 | 0.27 ± 0.19 | 0.33 ± 0.28 |
WPNS | 0.89 ± 0.07 | 0.64 ± 0.13 | 0.25 ± 0.10 |
WPN_R | 0.93 ± 0.16 | 0.65 ± 0.24 | 0.28 ± 0.25 |
WPN_P | 0.68 ± 0.24 | 0.26 ± 0.13 | 0.52 ± 0.18 |
WPNS_P | 0.82 ± 0.48 | 0.50 ± 0.08 | 0.34 ± 0.44 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kim, W.; Yum, S.S.; Hong, J.; Song, J.I. Improvement of Fog Simulation by the Nudging of Meteorological Tower Data in the WRF and PAFOG Coupled Model. Atmosphere 2020, 11, 311. https://doi.org/10.3390/atmos11030311
Kim W, Yum SS, Hong J, Song JI. Improvement of Fog Simulation by the Nudging of Meteorological Tower Data in the WRF and PAFOG Coupled Model. Atmosphere. 2020; 11(3):311. https://doi.org/10.3390/atmos11030311
Chicago/Turabian StyleKim, Wonheung, Seong Soo Yum, Jinkyu Hong, and Jae In Song. 2020. "Improvement of Fog Simulation by the Nudging of Meteorological Tower Data in the WRF and PAFOG Coupled Model" Atmosphere 11, no. 3: 311. https://doi.org/10.3390/atmos11030311
APA StyleKim, W., Yum, S. S., Hong, J., & Song, J. I. (2020). Improvement of Fog Simulation by the Nudging of Meteorological Tower Data in the WRF and PAFOG Coupled Model. Atmosphere, 11(3), 311. https://doi.org/10.3390/atmos11030311