Spatiotemporal Trends of Aerosols over Urban Regions in Pakistan and Their Possible Links to Meteorological Parameters
Abstract
:1. Introduction
2. Study Area and Meteorology
2.1. Regions Description
3. Materials and Methods
3.1. Data
3.2. Methods
4. Results and Discussion
4.1. AOD Climatology and Atmospheric Dynamics over the Study Domain
4.2. Trends in Aerosol Optical Depths
4.3. AOD Trends in Comparison to AERONET Data
4.4. Mutation of Annual and Seasonal Mean AOD over Selected Regions
4.5. Association between Trends in AOD and Meteorological Parameters
4.6. Association between AOD and Mid-Tropospheric Circulation
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Kaufman, Y.J.; Boucher, O.; Tanre, D.; Chin, M.; Remer, L.A.; Takemura, T. Aerosol anthropogenic component estimated from satellite data. Geophys. Res. Lett. 2005, 32, 1–4. [Google Scholar] [CrossRef]
- Cazorla, A.; Bahadur, R.; Suski, K.J.; Cahill, J.F.; Chand, D.; Schmid, B.; Ramanathan, V.; Prather, K.A. Relating aerosol absorption due to soot, organic carbon, and dust to emission sources determined from in-situ chemical measurements mixing state of the particles. Atmos. Chem. Phys. 2013, 13, 9337–9350. [Google Scholar] [CrossRef] [Green Version]
- Salah, Z.; Shalaby, A.; Steiner, A.L.; Zakey, A.S.; Gautam, R.; Wahab, M.M.A. Study of Aerosol Direct and Indirect E ff ects and Auto-conversion Processes over the West African Monsoon Region Using a Regional Climate Model. Adv. Atmos. Sci. 2018, 35, 182–194. [Google Scholar] [CrossRef]
- An, W.J.; Pathak, R.K.; Lee, B.H.; Pandis, S.N. Aerosol volatility measurement using an improved thermodenuder: Application to secondary organic aerosol. J. Aerosol Sci. 2007, 38, 305–314. [Google Scholar] [CrossRef]
- Tai, A.P.K.; Mickley, L.J.; Jacob, D.J. Correlations between fine particulate matter (PM2.5) and meteorological variables in the United States: Implications for the sensitivity of PM2.5 to climate change. Atmos. Environ. 2010, 44, 3976–3984. [Google Scholar] [CrossRef]
- Pan, L.; Che, H.; Geng, F.; Xia, X.; Wang, Y.; Zhu, C.; Chen, M.; Gao, W.; Guo, J. Aerosol optical properties based on ground measurements over the Chinese Yangtze Delta Region. Atmos. Environ. 2010, 44, 2587–2596. [Google Scholar] [CrossRef]
- Niu, F.; Li, Z. Systematic variations of cloud top temperature and precipitation rate with aerosols over the global tropics. Atmos. Chem. Phys. 2012, 12, 8491–8498. [Google Scholar] [CrossRef] [Green Version]
- Ramanathan, V.; Crutzen, P.J.; Kiehl, J.T.; Rosenfeld, D. Atmosphere: Aerosols, climate, and the hydrological cycle. Science (80) 2001, 294, 2119–2124. [Google Scholar] [CrossRef] [Green Version]
- Boiyo, R.; Kumar, K.R.; Zhao, T. Statistical intercomparison and validation of multisensory aerosol optical depth retrievals over three AERONET sites in Kenya, East Africa. Atmos. Res. 2017, 197, 277–288. [Google Scholar] [CrossRef]
- Kumar, K.R.; Yin, Y.; Sivakumar, V.; Kang, N.; Yu, X.; Diao, Y.; Adesina, A.J.; Reddy, R.R. Aerosol climatology and discrimination of aerosol types retrieved from MODIS, MISR and OMI over Durban (29.88° S, 31.02° E), South Africa. Atmos. Environ. 2015, 117, 9–18. [Google Scholar] [CrossRef]
- Otto, S.; De Reus, M.; Trautmann, T.; Thomas, A.; Wendisch, M.; Borrmann, S. Atmospheric radiative effects of an in situ measured Saharan dust plume and the role of large particles. Atmos. Chem. Phys. 2007, 7, 4887–4903. [Google Scholar] [CrossRef] [Green Version]
- Haywood, J.M.; Johnson, B.T.; Osborne, S.R.; Baran, A.J.; Brooks, M.; Milton, S.F.; Mulcahy, J.; Walters, D.; Allan, R.P.; Klaver, A.; et al. Motivation, rationale and key results from the GERBILS Saharan dust measurement campaign. Q. J. R. Meteorol. Soc. 2011, 137, 1106–1116. [Google Scholar] [CrossRef]
- Torres, O.; Bhartia, P.K.; Herman, J.R.; Sinyuk, A.; Ginoux, P.; Holben, B. A Long-Term Record of Aerosol Optical Depth from TOMS Observations and Comparison to AERONET Measurements. J. Atmos. Sci. 2002, 59, 398–413. [Google Scholar] [CrossRef] [Green Version]
- Smart, J.C.R.; Hicks, K.; Morrissey, T.; Heinemeyer, A.; Sutton, M.A.; Ashmore, M. Applying the ecosystem service concept to air quality management in the UK: A case study for ammonia. Environmetrics 2011, 22, 649–661. [Google Scholar] [CrossRef]
- Fan, X.; Xia, X.; Chen, H. Can MODIS detect trends in aerosol optical depth over land? Adv. Atmos. Sci. 2018, 35, 135–145. [Google Scholar] [CrossRef]
- Kumar, M.; Tiwari, S.; Murari, V.; Singh, A.K.; Banerjee, T. Wintertime characteristics of aerosols at middle Indo-Gangetic Plain: Impacts of regional meteorology and long range transport. Atmos. Environ. 2015, 104, 162–175. [Google Scholar] [CrossRef]
- Sen, A.; Abdelmaksoud, A.S.S.; Nazeer Ahammed, Y.; Alghamdi, M.A.; Banerjee, T.; Bhat, M.A.; Chatterjee, A.; Choudhuri, A.K.; Das, T.; Dhir, A.; et al. Variations in particulate matter over Indo-Gangetic Plains and Indo-Himalayan Range during four field campaigns in winter monsoon and summer monsoon: Role of pollution pathways. Atmos. Environ. 2017, 154, 200–224. [Google Scholar] [CrossRef]
- Bibi, H.; Alam, K.; Bibi, S. In-depth discrimination of aerosol types using multiple clustering techniques over four locations in Indo-Gangetic plains. Atmos. Res. 2016, 181, 106–114. [Google Scholar] [CrossRef]
- Singh, N.; Mhawish, A.; Deboudt, K.; Singh, R.S.S.; Banerjee, T. Organic aerosols over Indo-Gangetic Plain: Sources, distributions and climatic implications. Atmos. Environ. 2017, 157, 69–74. [Google Scholar] [CrossRef]
- Singh, N.; Murari, V.; Kumar, M.; Barman, S.C.C.; Banerjee, T. Fine particulates over South Asia: Review and meta-analysis of PM2.5source apportionment through receptor model. Environ. Pollut. 2017, 223, 121–136. [Google Scholar] [CrossRef]
- Singh, N.; Banerjee, T.; Raju, M.P.; Deboudt, K.; Sorek-hamer, M.; Singh, R.S. Aerosol chemistry, transport, and climatic implications during extreme biomass burning emissions over the Indo-Gangetic Plain. Atmos. Chem. Phys. 2018, 18, 14197–14215. [Google Scholar] [CrossRef] [Green Version]
- Gautam, R.; Hsu, N.C.; Kafatos, M.; Tsay, S. Influences of winter haze on fog/low cloud over the Indo-Gangetic plains. J. Geophys. Res. Atmos. 2007, 112, 1–11. [Google Scholar] [CrossRef] [Green Version]
- Ul-Haq, Z.; Tariq, S.; Ali, M. Spatiotemporal patterns of correlation between atmospheric nitrogen dioxide and aerosols over South Asia. Meteorol. Atmos. Phys. 2017, 129, 507–527. [Google Scholar] [CrossRef]
- Kumar, M.; Parmar, K.S.; Kumar, D.B.; Mhawish, A.; Broday, D.M.; Mall, R.K.; Banerjee, T. Long-term aerosol climatology over Indo-Gangetic Plain: Trend, prediction and potential source fields. Atmos. Environ. 2018, 180, 37–50. [Google Scholar] [CrossRef]
- Gupta, P.; Khan, M.N.; da Silva, A.; Patadia, F. MODIS aerosol optical depth observations over urban areas in Pakistan: Quantity and quality of the data for air quality monitoring. Atmos. Pollut. Res. 2013, 4, 43–52. [Google Scholar] [CrossRef] [Green Version]
- Alam, K.; Qureshi, S.; Blaschke, T. Monitoring spatio-temporal aerosol patterns over Pakistan based on MODIS, TOMS and MISR satellite data and a HYSPLIT model. Atmos. Environ. 2011, 45, 4641–4651. [Google Scholar] [CrossRef]
- Alam, K.; Iqbal, M.J.; Blaschke, T.; Qureshi, S.; Khan, G. Monitoring spatio-temporal variations in aerosols and aerosol-cloud interactions over Pakistan using MODIS data. Adv. Space Res. 2010, 46, 1162–1176. [Google Scholar] [CrossRef]
- Holben, B.N.; Eck, T.F.; Slutsker, I.; Tanré, D.; Buis, J.P.; Setzer, A.; Vermote, E.; Reagan, J.A.; Kaufman, Y.J.; Nakajima, T.; et al. AERONET—A Federated Instrument Network and Data Archive for Aerosol Characterization. Remote. Sens. Environ. 1998, 66, 1–16. [Google Scholar] [CrossRef]
- Kim, D.; Sohn, B.; Nakajima, T.; Takamura, T.; Takemura, T.; Choi, B.; Yoon, S. Aerosol optical properties over east Asia determined from ground-based sky radiation measurements. J. Geophys. Res. Atmos. 2004, 109, 1–18. [Google Scholar] [CrossRef] [Green Version]
- Amiridis, V.; Balis, D.S.; Kazadzis, S.; Bais, A.; Giannakaki, E.; Papayannis, A.; Zerefos, C. Four-year aerosol observations with a Raman lidar at Thessaloniki, Greece, in the framework of European Aerosol Research Lidar Network (EARLINET). J. Geophys. Res. Atmos. 2005, 110, 1–12. [Google Scholar] [CrossRef] [Green Version]
- Che, H.; Zhang, X.; Chen, H.; Damiri, B.; Goloub, P.; Li, Z.; Zhang, X.; Wei, Y.; Zhou, H.; Dong, F.; et al. Instrument calibration and aerosol optical depth validation of the China aerosol remote sensing network. J. Geophys. Res. Atmos. 2009, 114, 1–12. [Google Scholar] [CrossRef]
- Kahn, R.A.; Gaitley, B.J.; Martonchik, J.V.; Diner, D.J.; Crean, K.A.; Holben, B. Multiangle Imaging Spectroradiometer (MISR) global aerosol optical depth validation based on 2 years of coincident Aerosol Robotic Network (AERONET) observations. J. Geophys. Res. D Atmos. 2005, 110, 1–16. [Google Scholar] [CrossRef] [Green Version]
- Torres, O.; Tanskanen, A.; Veihelmann, B.; Ahn, C.; Braak, R.; Bhartia, P.K.; Veefkind, P.; Levelt, P. Aerosols and surface UV products form Ozone Monitoring Instrument observations: An overview. J. Geophys. Res. 2007, 112, 1–14. [Google Scholar] [CrossRef] [Green Version]
- Hsu, N.C.; Jeong, M.J.; Bettenhausen, C.; Sayer, A.M.; Hansell, R.; Seftor, C.S.; Huang, J.; Tsay, S.C. Enhanced Deep Blue aerosol retrieval algorithm: The second generation. J. Geophys. Res. Atmos. 2013, 118, 9296–9315. [Google Scholar] [CrossRef]
- Hsu, N.C.; Lee, J.; Sayer, A.M.; Kim, W.; Bettenhausen, C.; Tsay, S.-C. VIIRS Deep Blue Aerosol Products over Land: Extending the EOS Long—Term Aerosol Data Records. J. Geophys. Res. Atmos. 2019, 124, 4026–4053. [Google Scholar] [CrossRef]
- Giles, D.M.; Sinyuk, A.; Sorokin, M.G.; Schafer, J.S.; Smirnov, A.; Slutsker, I.; Eck, T.F.; Holben, B.N.; Lewis, J.R.; Campbell, J.R.; et al. Advancements in the Aerosol Robotic Network (AERONET) Version 3 database–automated near-real-time quality control algorithm with improved cloud screening for Sun photometer aerosol optical depth (AOD) measurements. Atmos. Meas. Tech. 2019, 12, 169–209. [Google Scholar] [CrossRef] [Green Version]
- Hsu, N.C.; Tsay, S.; King, M.D.; Member, S.; Herman, J.R. Aerosol Properties over Bright-Reflecting Source Regions. IEEE Trans. Geosci. Remote. Sens. 2004, 42, 557–569. [Google Scholar] [CrossRef]
- Remer, L.A.; Kleidman, R.G.; Levy, R.C.; Kaufman, Y.J.; Tanré, D.; Mattoo, S.; Martins, J.V.; Ichoku, C.; Koren, I.; Yu, H.; et al. Global aerosol climatology from the MODIS satellite sensors. J. Geophys. Res. Atmos. 2008, 113, 1–18. [Google Scholar] [CrossRef] [Green Version]
- Shahzad, M.I.; Nichol, J.E.; Campbell, J.R.; Wong, M.S. Assessment of MODIS, OMI, MISR and CALIOP aerosol products for estimating surface visual range: A mathematical model for Hong Kong. Remote. Sens. 2018, 10, 1333. [Google Scholar] [CrossRef] [Green Version]
- Penner, J.E.; Zhang, S.Y.; Chuang, C.C. Soot and smoke aerosol may not warm climate. J. Geophys. Res. Atmos. 2003, 108, 1–9. [Google Scholar] [CrossRef] [Green Version]
- Tripathi, S.N.; Pattnaik, A.; Dey, S. Aerosol indirect effect over Indo-Gangetic plain. Atmos. Environ. 2007, 41, 7037–7047. [Google Scholar] [CrossRef]
- Seinfeld, J.H.; Bretherton, C.; Carslaw, K.S.; Coe, H.; DeMott, P.J.; Dunlea, E.J.; Feingold, G.; Ghan, S.; Guenther, A.B.; Kahn, R.; et al. Improving our fundamental understanding of the role of aerosol−cloud interactions in the climate system. Proc. Natl. Acad. Sci. USA 2016, 113, 5781–5790. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kosmopoulos, P.G.; Kaskaoutis, D.G.; Nastos, P.T.; Kambezidis, H.D. Seasonal variation of columnar aerosol optical properties over Athens, Greece, based on MODIS data. Remote. Sens. Environ. 2008, 112, 2354–2366. [Google Scholar] [CrossRef]
- Farr, T.G.; Rosen, P.A.; Caro, E.; Crippen, R.; Duren, R.; Hensley, S.; Kobrick, M.; Paller, M.; Rodriguez, E.; Roth, L.; et al. The Shuttle Radar Topography Mission. Rev. Geophys. 2007, 45, 1–33. [Google Scholar] [CrossRef] [Green Version]
- MODIS Land Cover Type data. Available online: https://lpdaac.usgs.gov/products/mcd12q1v006/ (accessed on 11 December 2018).
- Pakistan Bureau of Statistics. Available online: www.pbs.gov.pk (accessed on 25 February 2020).
- Ali, G.; Bao, Y.; Boiyo, R.; Tang, W.; Lu, Q.; Min, J. Evaluating MODIS and MISR aerosol optical depth retrievals over environmentally distinct sites in Pakistan. J. Atmos. Solar-Terr. Phys. 2019, 183, 19–35. [Google Scholar] [CrossRef]
- Ullah, W.; Wang, G.; Ali, G.; Tawia Hagan, D.; Bhatti, A.; Lou, D. Comparing Multiple Precipitation Products against In-Situ Observations over Different Climate Regions of Pakistan. Remote. Sens. 2019, 11, 628. [Google Scholar] [CrossRef] [Green Version]
- Hanif, M.; Khan, A.H.; Adnan, S. Latitudinal precipitation characteristics and trends in Pakistan. J. Hydrol. 2013, 492, 266–272. [Google Scholar] [CrossRef]
- Tariq, M.A.U.R.; Van de Giesen, N. Floods and flood management in Pakistan. Phys. Chem. Earth 2012, 47–48, 11–20. [Google Scholar] [CrossRef]
- Iqbal, M.F.; Athar, H. Validation of satellite based precipitation over diverse topography of Pakistan. Atmos. Res. 2018, 201, 247–260. [Google Scholar] [CrossRef]
- Tiwari, S.; Srivastava, A.K.; Singh, A.K.; Singh, S. Identification of aerosol types over Indo-Gangetic Basin: Implications to optical properties and associated radiative forcing. Environ. Sci. Pollut. Res. 2015, 22, 12246–12260. [Google Scholar] [CrossRef]
- Das, S.K.; Jayaraman, A.; Misra, A. Fog-induced variations in aerosol optical and physical properties over the Indo-Gangetic Basin and impact to aerosol radiative forcing. Ann. Geophys. 2008, 26, 1345–1354. [Google Scholar] [CrossRef] [Green Version]
- Devara, P.C.S.; Raj, P.E.; Pandithurai, G.; Dani, K.K.; Maheskumar, R.S. Relationship between lidar-based observations of aerosol content and monsoon precipitation over a tropical station, Pune, India. Meteorol. Appl. 2003, 262, 253–262. [Google Scholar] [CrossRef] [Green Version]
- ERA-Interim Reanalysis Data. Available online: https://www.ecmwf.int/ (accessed on 10 June 2019).
- Khan, R.; Raghavendra, K.; Zhao, T. The climatology of aerosol optical thickness and radiative effects in Southeast Asia from 18-years of ground-based observations. Environ. Pollut. 2019, 254, 113025. [Google Scholar] [CrossRef] [PubMed]
- Tiwari, S.; Singh, A.K. Variability of Aerosol parameters derived from ground and satellite measurements over Varanasi located in the Indo-Gangetic Basin. Aerosol Air Qual. Res. 2013, 13, 627–638. [Google Scholar] [CrossRef]
- Tiwari, S.; Pandithurai, G.; Attri, S.D.; Srivastava, A.K.; Soni, V.K.; Bisht, D.S.; Anil Kumar, V.; Srivastava, M.K. Aerosol optical properties and their relationship with meteorological parameters during wintertime in Delhi, India. Atmos. Res. 2015, 153, 465–479. [Google Scholar] [CrossRef]
- Alam, K.; Khan, R.; Ali, S.; Ajmal, M.; Khan, G.; Muhammad, W.; Ali, M.A. Variability of aerosol optical depth over Swat in Northern Pakistan based on satellite data. Arab. J. Geosci. 2015, 8, 547–555. [Google Scholar] [CrossRef]
- Alvi, M.U.; Chishtie, F.; Shahid, I.; Mahmud, T. Traffic- and Industry-Related Air Pollution Exposure Assessment in an Asian Megacity. Clean 2018, 46, 1–20. [Google Scholar] [CrossRef]
- Alam, K.; Khan, R.; Blaschke, T.; Mukhtiar, A. Variability of aerosol optical depth and their impact on cloud properties in Pakistan. J. Atmos. Solar-Terr. Phys. 2014, 107, 104–112. [Google Scholar] [CrossRef]
- Ilyas Zafar, S.; Khattak, A.I.; Nasir, S.M.; Qurashi, T.; Durrani, R. Air pollution assessment in urban areas and its impact on human health in the city of Quetta, Pakistan. Clean Technol. Environ. Policy 2010, 12, 291–299. [Google Scholar] [CrossRef]
- Levy, R.C.; Remer, L.A.; Mattoo, S.; Vermote, E.F.; Kaufman, Y.J. Second-generation operational algorithm: Retrieval of aerosol properties over land from inversion of Moderate Resolution Imaging Spectroradiometer spectral reflectance. J. Geophys. Res. Atmos. 2007, 112, 1–21. [Google Scholar] [CrossRef] [Green Version]
- Tian, X.; Liu, Q.; Li, X.; Wei, J. Validation and Comparison of MODIS C6. 1 and C6 Aerosol Products over Beijing, China. Remote. Sens. 2018, 10, 2021. [Google Scholar] [CrossRef] [Green Version]
- Wang, Y.; Yuan, Q.; Li, T.; Shen, H.; Zheng, L. Evaluation and comparison of MODIS Collection 6. 1 aerosol optical depth against AERONET over regions in China with multifarious underlying surfaces. Atmos. Environ. 2019, 200, 280–301. [Google Scholar] [CrossRef] [Green Version]
- Sayer, A.M.; Hsu, N.C.; Dutcher, S.T.; Lee, J. Validation, Stability, and Consistency of MODIS Collection 6. 1 and VIIRS Version 1 Deep Blue Aerosol Data Over Land. J. Geophys. Res. Atmos. 2019, 124, 4658–4688. [Google Scholar] [CrossRef]
- Sayer, A.M.; Hsu, N.C.; Bettenhausen, C.; Jeong, M.J. Validation and uncertainty estimates for MODIS Collection 6 deep Blue aerosol data. J. Geophys. Res. Atmos. 2013, 118, 7864–7872. [Google Scholar] [CrossRef] [Green Version]
- Levy, R.C.; Mattoo, S.; Munchak, L.A.; Remer, L.A.; Sayer, A.M.; Patadia, F.; Hsu, N.C. The Collection 6 MODIS aerosol products over land and ocean. Atmos. Meas. Tech. 2013, 6, 2989–3034. [Google Scholar] [CrossRef] [Green Version]
- Sayer, A.M.; Munchak, L.A.; Hsu, N.C.; Levy, R.C.; Bettenhausen, C.; Jeong, M. MODIS Collection 6 aerosol products: Comparison between Aqua’s e-Deep Blue, Dark Target, and merged data sets, and usage recommendations. J. Geophys. Res. Atmos. 2014, 119, 13965–13989. [Google Scholar] [CrossRef]
- MODIS AOD Level 2 Data. Available online: https://ladsweb.modaps.eosdis.nasa.gov/ (accessed on 10 June 2019).
- Wei, J.; Li, Z.; Peng, Y.; Sun, L. MODIS Collection 6.1 aerosol optical depth products over land and ocean: Validation and comparison. Atmos. Environ. 2019, 201, 428–440. [Google Scholar] [CrossRef]
- Srivastava, A.; Saran, S. Comprehensive study on AOD trends over the Indian subcontinent: A statistical approach. Int. J. Remote. Sens. 2017, 38, 5127–5149. [Google Scholar] [CrossRef]
- Ångstrom, A. Techniques of Determinig the Turbidity of the Atmosphere. Tellus A 1961, 13, 214–223. [Google Scholar] [CrossRef]
- Khokhar, M.F.; Yasmin, N.; Chishtie, F.; Shahid, I. Temporal variability and characterization of aerosols across the Pakistan region during the winter fog periods. Atmosphere 2016, 7, 1–18. [Google Scholar] [CrossRef] [Green Version]
- Nabeel, A.; Athar, H. Classification of precipitation regimes in Pakistan using wet and dry spells. Int. J. Climatol. 2018, 38, 2462–2477. [Google Scholar] [CrossRef]
- Naheed, G.; Kazmi, D.H.; Rasul, G. Seasonal Variation of Rainy Days in Pakistan. Pak. J. Meteorol. 2013, 9, 9–13. [Google Scholar]
- Kazmi, D.H.; Li, J.; Ruan, C.; Zhao, S.; Li, Y. A statistical downscaling model for summer rainfall over Pakistan. Clim. Dyn. 2016, 47, 2653–2666. [Google Scholar] [CrossRef]
- Mann, H.B. Nonparametric Tests against Trend. Econometrica 1945, 13, 245–259. [Google Scholar] [CrossRef]
- Kendall, M.G. Rank Correlation Methods, 4th ed.; Griffin, C., Ed.; Griffin: London, UK, 1975. [Google Scholar]
- Hamed, K.H.; Ramachandra, R. A modified Mann-Kendall trend test for autocorrelated data. J. Hydrol. 1998, 204, 182–196. [Google Scholar] [CrossRef]
- Bari, S.H.; Rahman, M.T.U.; Hoque, M.A.; Hussain, M.M. Analysis of seasonal and annual rainfall trends in the northern region of Bangladesh. Atmos. Res. 2016, 176–177, 148–158. [Google Scholar] [CrossRef]
- Sen, P.K. Estimates of the Regression Coefficient Based on Kendall’s Tau. J. Am. Stat. Assoc. 1968, 63, 1379–1389. [Google Scholar] [CrossRef]
- Li, J.; Carlson, B.E.; Dubovik, O.; Lacis, A.A. Recent trends in aerosol optical properties derived from AERONET measurements. Atmos. Chem. Phys. 2014, 14, 12271–12289. [Google Scholar] [CrossRef] [Green Version]
- Zhao, B.; Jiang, J.H.; Gu, Y.; Diner, D.; Worden, J.; Liou, K.-N.; Su, H.; Xing, J.; Garay, M.; Huang, L. Decadal-scale trends in regional aerosol particle properties and their linkage to emission changes. Environ. Res. Lett. 2017, 12, 54021. [Google Scholar] [CrossRef]
- Maghrabi, A.H.; Alotaibi, R.N. Long-term variations of AOD from an AERONET station in the central Arabian Peninsula. Theor. Appl. Climatol. 2018, 134, 1015–1026. [Google Scholar] [CrossRef]
- Latif, M.; Hannachi, A.; Syed, F.S. Analysis of rainfall trends over Indo-Pakistan summer monsoon and related dynamics based on CMIP5 climate. Int. J. Climatol. 2018, 38, e577–e595. [Google Scholar] [CrossRef]
- Latif, M.; Syed, F.S.; Hannachi, A. Rainfall trends in the South Asian summer monsoon and its related large-scale dynamics with focus over Pakistan. Clim. Dyn. 2017, 48, 3565–3581. [Google Scholar] [CrossRef]
- Yue, S.; Pilon, P.; Phinney, B.; Cavadias, G. The influence of autocorrelation on the ability to detect trend in hydrological series. Hydrol. Process. 2002, 16, 1807–1829. [Google Scholar] [CrossRef]
- Zamani, R.; Mirabbasi, R.; Abdollahi, S.; Jhajharia, D. Streamflow trend analysis by considering autocorrelation structure, long-term persistence, and Hurst coefficient in a semi-arid region of Iran. Theor. Appl. Climatol. 2017, 129, 33–45. [Google Scholar] [CrossRef]
- Shahid, S. Trends in extreme rainfall events of Bangladesh. Theor. Appl. Climatol. 2011, 104, 489–499. [Google Scholar] [CrossRef]
- Salman, S.A.; Shahid, S.; Ismail, T.; Chung, E.S.; Al-Abadi, A.M. Long-term trends in daily temperature extremes in Iraq. Atmos. Res. 2017, 198, 97–107. [Google Scholar] [CrossRef]
- Matyasovszky, I. Detecting abrupt climate changes on different time scales. Theor. Appl. Clim. 2011, 105, 445–454. [Google Scholar] [CrossRef]
- Chatterjee, S.; Bisai, D.; Khan, A. Detection of Approximate Potential Trend Turning Points in Temperature Time Series (1941–2010) for Asansol Weather Observation Station, West Bengal, India. Atmos. Clim. Sci. 2014, 4, 64–69. [Google Scholar] [CrossRef] [Green Version]
- Chatterjee, S.; Khan, A.; Akbari, H.; Wang, Y. Monotonic trends in spatio-temporal distribution and concentration of monsoon precipitation (1901–2002), West Bengal, India. Atmos. Res. 2016, 182, 54–75. [Google Scholar] [CrossRef]
- Liu, Q.; Wan, S.; Gu, B. A Review of the Detection Methods for Climate Regime Shifts. Discret. Dyn. Nat. Soc. 2016, 2016, 10. [Google Scholar] [CrossRef] [Green Version]
- Adnan, S.; Ullah, K.; Shuanglin, L.; Gao, S. Comparison of various drought indices to monitor drought status in Pakistan. Clim. Dyn. 2018, 51, 1885–1899. [Google Scholar] [CrossRef]
- Ullah, S.; You, Q.; Ullah, W.; Ali, A. Observed changes in precipitation in China-Pakistan economic corridor during 1980–2016. Atmos. Res. 2018, 210, 1–14. [Google Scholar] [CrossRef]
- Mehta, M.; Singh, R.; Singh, A.; Singh, N. Anshumali Recent global aerosol optical depth variations and trends—A comparative study using MODIS and MISR level 3 datasets. Remote. Sens. Environ. 2016, 181, 137–150. [Google Scholar] [CrossRef]
- Syed, F.S.; Kornich, H.; Tjernstrom, M. On the fog variability over south Asia. Clim. Dyn. 2012, 39, 2993–3005. [Google Scholar] [CrossRef]
- Shrestha, P.; Barros, A.P.; Khlystov, A. CCN estimates from bulk hygroscopic growth factors of ambient aerosols during the pre-monsoon season over Central Nepal. Atmos. Environ. 2013, 67, 120–129. [Google Scholar] [CrossRef]
- Prasad, A.K.; Singh, R.P. Comparison of MISR-MODIS aerosol optical depth over the Indo-Gangetic basin during the winter and summer seasons (2000–2005). Remote. Sens. Environ. 2007, 107, 109–119. [Google Scholar] [CrossRef]
- Luo, Y.; Zheng, X.; Chen, J. A climatology of aerosol optical depth over China from recent 10 years of MODIS remote sensing data. Int. J. Climatol. 2014, 870, 863–870. [Google Scholar] [CrossRef]
- Ramachandran, S.; Kedia, S.; Srivastava, R. Aerosol optical depth trends over different regions of India. Atmos. Environ. 2012, 49, 338–347. [Google Scholar] [CrossRef]
- Ramachandran, S. Aerosol optical depth and fine mode fraction variations deduced from Moderate Resolution Imaging Spectroradiometer (MODIS) over four urban areas in India. J. Geophys. Res. Atmos. 2007, 112, 1–11. [Google Scholar] [CrossRef]
- Singh, R.P.; Dey, S.; Tripathi, S.N.; Tare, V.; Holben, B. Variability of aerosol parameters over Kanpur, northern India. J. Geophys. Res. D Atmos. 2004, 109, 1–14. [Google Scholar] [CrossRef]
- Banerjee, T.; Singh, S.B.; Srivastava, R.K. Development and performance evaluation of statistical models correlating air pollutants and meteorological variables at Pantnagar, India. Atmos. Res. 2011, 99, 505–517. [Google Scholar] [CrossRef]
- Banerjee, T.; Kumar, R. Evaluation of environmental impacts of Integrated Industrial Estate—Pantnagar through application of air and water quality indices. Environ. Monit. Assess. 2011, 172, 547–560. [Google Scholar] [CrossRef] [PubMed]
- Sharma, A.R.; Kharol, S.K.; Badarinath, K.V.S.; Singh, D. Impact of agriculture crop residue burning on atmospheric aerosol loading—A study over Punjab State, India. Ann. Geophys. 2010, 28, 367–379. [Google Scholar] [CrossRef] [Green Version]
- Masmoudi, M.; Chaabane, M.; Tanre, D.; Gouloup, P.; Blarel, L.; Elleuch, F. Spatial and temporal variability of aerosol: Size distribution and optical properties. Atmos. Res. 2003, 66, 1–19. [Google Scholar] [CrossRef]
- Ranjan, R.R.; Joshi, H.P.; Iyer, K.N. Spectral Variation of Total Column Aerosol Optical Depth over Rajkot: A Tropical Semi-Arid Indian Station. Aerosol Air Qual. Res. 2007, 7, 33–45. [Google Scholar] [CrossRef] [Green Version]
- Chen, S.; Li, W.B.; Du, Y.D.; Mao, C.Y.; Zhang, L. Urbanization effect on precipitation over the Pearl River Delta based on CMORPH data. Adv. Clim. Chang. Res. 2015, 6, 16–22. [Google Scholar] [CrossRef]
- Tan, F.; Lim, H.S.; Abdullah, K.; Yoon, T.L.; Holben, B. Monsoonal variations in aerosol optical properties and estimation of aerosol optical depth using ground-based meteorological and air quality data in Peninsular Malaysia. Atmos. Chem. Phys. 2015, 15, 3755–3771. [Google Scholar] [CrossRef] [Green Version]
- Floutsi, A.A.; Korras-Carraca, M.B.; Matsoukas, C.; Hatzianastassiou, N.; Biskos, G. Climatology and trends of aerosol optical depth over the Mediterranean basin during the last 12 years (2002–2014) based on Collection 006 MODIS-Aqua data. Sci. Total. Environ. 2016, 551–552, 292–303. [Google Scholar] [CrossRef]
- Kang, N.; Kumar, K.R.; Hu, K.; Yu, X.; Yin, Y. Long-term (2002–2014) evolution and trend in Collection 5.1 Level-2 aerosol products derived from the MODIS and MISR sensors over the Chinese Yangtze River Delta. Atmos. Res. 2016, 181, 29–43. [Google Scholar] [CrossRef]
- Boiyo, R.K.; Raghavendra, K.; Zhaoa, T. Spatial variations and trends in AOD climatology over East Africa during 2002–2016: A comparative study using three satellite data sets. Int. J. Climatol. 2018, 38, e1221–e1240. [Google Scholar] [CrossRef]
- Ahmad, I.; Tang, D.; Wang, T.; Wang, M.; Wagan, B. Precipitation Trends over Time Using Mann-Kendall and Spearman’s rho Tests in Swat River Basin, Pakistan. Adv. Meteorol. 2015, 2015. [Google Scholar] [CrossRef] [Green Version]
- Ullah, S.; You, Q.; Ali, A.; Ullah, W.; Ahmad, M.; Zhang, Y. Observed changes in maximum and minimum temperatures over China- Pakistan economic corridor during 1980–2016. Atmos. Res. 2019, 216, 37–51. [Google Scholar] [CrossRef]
- Ullah, S.; You, Q.; Ullah, W.; Ali, A.; Xie, W.; Xie, X. Observed changes in temperature extremes over China—Pakistan Economic Corridor during 1980–2016. Int. J. Climatol. 2019, 39, 1457–1475. [Google Scholar] [CrossRef]
- Ali, S.; Khalid, B.; Kiani, R.S.; Babar, R.; Nasir, S.; Rehman, N. Spatio-Temporal Variability of Summer Monsoon Onset over Pakistan. Asia-Pac. J. Atmos. Sci. 2019, 56, 147–172. [Google Scholar] [CrossRef] [Green Version]
- Jin, M.; Shepherd, J.M.; King, M.D. Urban aerosols and their variations with clouds and rainfall: A case study for New York and Houston. J. Geophys. Res. 2005, 110, 1–12. [Google Scholar] [CrossRef]
- Zhu, J.; Liao, H.; Li, J. Increases in aerosol concentrations over eastern China due to the decadal-scale weakening of the East Asian summer monsoon. Geophys. Res. Lett. 2012, 39, 1–6. [Google Scholar] [CrossRef] [Green Version]
- Chowdhury, S.; Dey, S.; Ghosh, S.; Saud, T. Satellite-based estimates of aerosol washout and recovery over India during monsoon. Aerosol Air Qual. Res. 2016, 16, 1302–1314. [Google Scholar] [CrossRef]
- Makokha, J.W.; Odhiambo, J.O.; Godfrey, J.S. Trend Analysis of Aerosol Optical Depth and Ångström Exponent Anomaly over East Africa. Atmos. Clim. Sci. 2017, 7, 588–603. [Google Scholar]
- Pandithurai, G.; Pinker, R.T.; Devara, P.C.S.; Takamura, T.; Dani, K.K. Seasonal asymmetry in diurnal variation of aerosol optical characteristics over Pune, western India. J. Geophys. Res. 2007, 112, 1–9. [Google Scholar] [CrossRef]
- Vijayakumar, K.; Devara, P.C.S. Optical exploration of biomass burning aerosols over a high-altitude station by combining ground-based and satellite data. J. Aerosol Sci. 2014, 72, 1–13. [Google Scholar] [CrossRef]
- Vijayakumar, K.; Safai, P.D.; Devara, P.C.S.; Bhaskara, S.V.; Jayasankar, C.K. Effects of agriculture crop residue burning on aerosol properties and long-range transport over northern India: A study using satellite data and model simulations. Atmos. Res. 2016, 178–179, 155–163. [Google Scholar] [CrossRef]
- Moorthy, K.K.; Suresh Babu, S.; Manoj, M.R.; Satheesh, S.K. Buildup of aerosols over the Indian Region. Geophys. Res. Lett. 2013, 40, 1011–1014. [Google Scholar] [CrossRef]
Stations | Lat (°) | Lon (°) | Alt (m) | Pop (million) | Mean AOD ± SD | ||
---|---|---|---|---|---|---|---|
Annual | Summer | Winter | |||||
Swat | 34.77 | 72.36 | 930 | 2.31 (30%) | 0.13 ± 0.07 | 0.16 ± 0.07 | 0.09 ± 0.03 |
Mardan | 34.20 | 72.05 | 313 | 2.37 (18%) | 0.42 ± 0.13 | 0.50 ± 0.16 | 0.34 ± 0.07 |
Peshawar | 34.02 | 71.53 | 328 | 4.27 (46%) | 0.33 ± 0.11 | 0.37 ± 0.14 | 0.25 ± 0.05 |
Zhob | 31.35 | 69.45 | 1405 | 0.31 (15%) | 0.08 ± 0.05 | 0.12 ± 0.06 | 0.06 ± 0.02 |
Quetta | 30.18 | 67.00 | 1690 | 2.28 (44%) | 0.20 ± 0.10 | 0.29 ± 0.11 | 0.15 ± 0.05 |
Rawalpindi | 33.60 | 73.05 | 508 | 5.41 (53%) | 0.38 ± 0.13 | 0.45 ± 0.13 | 0.28 ± 0.08 |
Lahore | 31.48 | 74.26 | 214 | 11.1 (100%) | 0.64 ± 0.22 | 0.80 ± 0.23 | 0.49 ± 0.12 |
Faisalabad | 31.45 | 73.14 | 185 | 7.87 (48%) | 0.69 ± 0.26 | 0.93 ± 0.18 | 0.42 ± 0.10 |
Multan | 30.20 | 71.47 | 122 | 4.75 (44%) | 0.63 ± 0.23 | 0.80 ± 0.25 | 0.49 ± 0.11 |
DG-Khan | 30.03 | 70.64 | 124 | 2.87 (19%) | 0.47 ± 0.17 | 0.54 ± 0.18 | 0.39 ± 0.08 |
Rohri | 27.67 | 68.88 | 67 | 0.37 (23%) | 0.55 ± 0.22 | 0.75 ± 0.26 | 0.45 ± 0.10 |
Karachi | 24.95 | 67.14 | 50 | 16.1 (100%) | 0.38 ± 0.19 | 0.52 ± 0.22 | 0.25 ± 0.06 |
Stations | Annual | Summer | Winter |
---|---|---|---|
Swat | 0.0019 * ± 0.007 | 0.0028 ± 0.022 | 0.0010 ± 0.009 |
Mardan | 0.0034 * ± 0.018 | 0.0057 ± 0.037 | 0.0064 * ± 0.020 |
Peshawar | 0.0024 ± 0.015 | 0.0040 ± 0.033 | 0.0056 * ± 0.015 |
Zhob | −0.0031 * ± 0.010 | −0.0066 * ± 0.026 | −0.00001 ± 0.005 |
Quetta | −0.0025 ± 0.018 | −0.0091 * ± 0.042 | 0.0011 ± 0.012 |
Rawalpindi | 0.0047 ± 0.021 | 0.0043 ± 0.036 | 0.0097 * ± 0.030 |
Lahore | 0.0043 ± 0.032 | 0.0045 ± 0.062 | 0.0112 * ± 0.032 |
Faisalabad | 0.0002 ± 0.020 | −0.0055 ± 0.035 | 0.0101 * ± 0.028 |
Multan | −0.0003 ± 0.037 | −0.0009 ± 0.055 | 0.0084 * ± 0.035 |
DG-Khan | −0.0061 ± 0.035 | −0.0113 ± 0.070 | 0.0037 ± 0.023 |
Rohri | 0.0020 ± 0.037 | 0.0017 ± 0.086 | 0.0041 ± 0.031 |
Karachi | −0.0013 ± 0.036 | −0.0044 ± 0.084 | 0.0013 ± 0.024 |
Station | Data Source | Mean AOD ± SD | AOD Trends (per year) | ||||
---|---|---|---|---|---|---|---|
Annual | Summer | Winter | Annual | Summer | Winter | ||
Lahore (2010–2016) | MODIS | 0.65 ± 0.22 | 0.81 ± 0.24 | 0.54 ± 0.12 | 0.0103 ± 0.052 | 0.0135 ± 0.096 | 0.0065 ± 0.052 |
AERONET | 0.65 ± 0.20 | 0.76 ± 0.17 | 0.57 ± 0.14 | 0.0103 ± 0.061 | 0.0130 ± 0.153 | 0.0157 ± 0.094 | |
Karachi(2007–2012) | MODIS | 0.35 ± 0.19 | 0.53 ± 0.21 | 0.21 ± 0.03 | 0.0143 ± 0.041 | 0.0351 ± 0.066 | 0.0059 ± 0.007 |
AERONET | 0.47 ± 0.19 | 0.68 ± 0.18 | 0.31 ± 0.03 | 0.0163 ± 0.038 | 0.0404 ± 0.087 | 0.0058 ± 0.024 |
Station Name | Rainfall Trend (mm/year) | Temperature Trend (°C/year) | ||||
---|---|---|---|---|---|---|
Annual | Summer | Winter | Annual | Summer | Winter | |
Swat | −0.92 | −2.12 | −0.98 | 0.002 | 0.010 | 0.010 |
Mardan | 0.33 | 2.45 | −0.34 | 0.032 | 0.036 | 0.067 |
Peshawar | −1.32 | 0.13 | −3.60 * | −0.018 | −0.028 | 0.039 |
Zhob | −0.78 | −1.55 * | −0.76 | 0.038 | 0.019 | 0.103* |
Quetta | −0.64 | −0.17 | −2.22 | −0.078 * | −0.037 | −0.182 * |
Rawalpindi | 0.08 | −0.10 | −2.26 | 0.009 | 0.005 | 0.034 |
Lahore | 1.81 | 2.77 | 0.32 | 0.010 | −0.017 | 0.018 |
Faisalabad | −0.01 | 0.32 | −0.69 | −0.016 | −0.010 | −0.017 |
Multan | 0.59 | 0.87 | −0.59 | 0.155 | 0.202 * | 0.203 |
DG-Khan | 0.63 | 2.29 | −1.32 * | 0.035 | 0.013 | 0.064 |
Rohri | −0.01 | −0.19 | 0.00 | 0.039 | 0.076 * | 0.106 |
Karachi | −0.56 | −1.76 | −0.43 | −0.019 | 0.021 | −0.094 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ali, G.; Bao, Y.; Ullah, W.; Ullah, S.; Guan, Q.; Liu, X.; Li, L.; Lei, Y.; Li, G.; Ma, J. Spatiotemporal Trends of Aerosols over Urban Regions in Pakistan and Their Possible Links to Meteorological Parameters. Atmosphere 2020, 11, 306. https://doi.org/10.3390/atmos11030306
Ali G, Bao Y, Ullah W, Ullah S, Guan Q, Liu X, Li L, Lei Y, Li G, Ma J. Spatiotemporal Trends of Aerosols over Urban Regions in Pakistan and Their Possible Links to Meteorological Parameters. Atmosphere. 2020; 11(3):306. https://doi.org/10.3390/atmos11030306
Chicago/Turabian StyleAli, Gohar, Yansong Bao, Waheed Ullah, Safi Ullah, Qin Guan, Xulin Liu, Lin Li, Yuhong Lei, Guangwen Li, and Jun Ma. 2020. "Spatiotemporal Trends of Aerosols over Urban Regions in Pakistan and Their Possible Links to Meteorological Parameters" Atmosphere 11, no. 3: 306. https://doi.org/10.3390/atmos11030306
APA StyleAli, G., Bao, Y., Ullah, W., Ullah, S., Guan, Q., Liu, X., Li, L., Lei, Y., Li, G., & Ma, J. (2020). Spatiotemporal Trends of Aerosols over Urban Regions in Pakistan and Their Possible Links to Meteorological Parameters. Atmosphere, 11(3), 306. https://doi.org/10.3390/atmos11030306