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Abstract: Estimation of atmospheric visibility (VR) using ground and satellite sensors is ineffective
under Hong Kong’s complex atmosphere and climate. Therefore, the relationship between columnar
Aerosol Optical Depth (AOD) from four space-borne sensors (OMI, MODIS, MISR and CALIOP) and
Bext from two visibility-recording stations was evaluated, to recommend an effective satellite-based
method and spatial resolution, for estimation of VR over Hong Kong. Since most column-integrated
aerosol particle extinction occurs within a mixing layer height (MLH) of 1–3 km, column-based AOD
from satellites is expected to give a good indication of surface-level conditions, especially when
MLH is a known input. The AOD from both MODIS and MISR showed high correlations with Bext;
therefore, both were subjected to rigorous statistical analysis along with climatic data to simulate
visibility. The best estimate of ground visibility was obtained from MODIS AOD combined with
surface-level climatic data, and this explained 84% of the variance in VR, with a low distance error
of 0.27 km. Results suggest that the water vapor mixing ratio (Q) alone can explain the combined
effect of Atmospheric Pressure (P), Temperature (T) and Relative Humidity (RH) on VR, and that
the advection term (VT) alone is sufficient to explain the effects of T, WS and WD on dispersion of
aerosols, and hence on VR.
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1. Introduction

Hong Kong’s famed skyline and mountainous horizons are frequently obscured due to
poor near-surface visibility, or visual range, which has declined drastically over recent decades.
Low visibility is defined specifically as Visual Range (VR) <8 km (Hong Kong Observatory—HKO; [1]).
This usually occurs under conditions of high loading of particulate matter (PM), with mean annual
aerosol optical depth (AOD) values exceeding 0.60 at 550 nm [2]. Several studies have discussed
Hong Kong’s limited visibility in the context of local and regional air pollution [3], and whether
low visibility is due primarily to transport of regional pollutants under prevailing meteorological
conditions [4], local sources [5] or a combination of both [6] is a continuing debate in Hong Kong.
Furthermore, there remains uncertainty as to the prevailing optical and physical characteristics of
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aerosol experienced under each set of conditions [7,8]. Hong Kong serves as an example of other
rapidly urbanizing regions in Asia where industrial and urban development threaten the quality of life,
including risks to shipping and air transport due declining visibility. There are many different methods
for measuring atmospheric VR, such as transmissometers [9], nephelometers [10], teleradiometers [11],
projections based on in situ measurements of aerosol particle mass extinction efficiencies [12] and
digital cameras [13]. VR estimates are typically communicated and applied with the presumption
of lateral homogeneity relative to the segment of the aerosol layer sampled. However, in reality it
is common to find significantly different concentrations of aerosol particle mass in adjoining areas,
particularly in urban areas, where lateral covariance will readily perturb in the vicinity of significant
source regions [14–16]. Therefore, a method for estimating visibility over a relatively large urban
region is necessary to diagnose a regionally representative VR without integrating a singularly focused
or in situ result.

Based on advances in satellite-based aerosol remote sensing technologies, many studies have
been reported which estimate VR from satellites. Some relevant examples are: (1) the use of
satellite-based solar albedo for deriving geometric and optical thickness of fog from the Advanced
Very High-Resolution Radiometer (AVHRR) [17]; (2) SOnic Detection And Ranging (SODAR),
including a radiative transfer model for calculating the extinction coefficient [18]; (3) the use of
luminance and contrast in spatial and frequency domains derived from radiative transfer models from
satellite images [19]; (4) atmospheric transmittance derived from satellite AOD measurements [20,21],
and (5) the use of statistical regressions with different combinations of band radiances to estimate
VR [22]. However, most attempts to derive visibility from satellite data focus only on stratified layers
of fog, and all lack rigorous validation, especially for very clear or highly polluted (i.e., high AOD)
cases [23–26]. Traditionally, VR values are estimated using Koschmieder’s equation (Equation (1); [27])
where, C is the contrast threshold of the human eye (0.02–0.05) based on the health of the eye,
and Bext (km−1) is the coefficient of extinction for light coming from the object to the eye.

VR =
ln C
Bext

(1)

Most previous studies have either used columnar AOD (Equation (2); [12]) or PM proxies
(Equation (3); [23,28]) for estimating Bext.

AOD =

z∫
0

Bext (RH(z)) dz (2)

AOD =

 z∫
0

Bext (RH(z))
Bext (RH(z0))

dz

 3
4

PM(z0)
f (RH(z0))

ρ

Qdry

re f f
(3)

Here, RH(z0) and RH(z) are the relative humidity at and above surface height, Qdry is the
extinction efficiency under dry conditions, reff is the effective radius and ρ is the aerosol mass
density [28]. It is important to note that the AOD-PM relationship (Equation (3)) involves many
complicated factors, whereas a relatively simple AOD-VR relationship can be derived by comparing
Equations (1) and (2) (Equation (4)), where Z is the scaling height based on the shape of aerosol
extinction profile.

AOD =
ln c
VR

Z (4)

Due to the robustness of satellite-derived AOD algorithms, AOD has been used in environmental
monitoring for the retrieval of ground level fine particulates (PM2.5), although the relationship
between AOD and PM2.5 is often complex [29]. However, estimating VR from satellite-based aerosol
observations is potentially simpler than PM2.5 due to the simplicity of the AOD-VR relationship
(Equation (4)) [23,28]. Despite this, more investigation is needed to parameterize the relationship
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between AOD and VR effectively for an atmospherically complex region such as Hong Kong.
Uncertainties may arise in the AOD-VR relationship due to cloud contamination, inappropriate
selection of the aerosol model in a complex region, and heterogeneous surface reflectance [30,31].
In addition, the column-integrated values of AOD may not adequately represent the near surface
aerosols responsible for visibility reduction [32]. Therefore, although the AOD_VR relationship is
simple, the retrieval of AOD to represent VR at a certain level is more complex, and requires additional
parameters. For these reasons, the above-mentioned studies have shown large bias on very clear or
highly polluted days. Therefore, currently there is no method for bridging the data gaps in Hong Kong
and globally, which are due to the coarse deployment of ground instruments [19,23].

Therefore, to investigate the potential for using satellite AOD products to estimate VR, we evaluate
AOD products from different sensors for those AOD pixels corresponding with VR monitoring stations
in and around Hong Kong. The objectives of this study then, are to: (1) evaluate the potential of
space-borne optical sensors for remote sensing of VR at surface level; (2) identify the most suitable
spatial resolution for monitoring VR; (3) identify the climatic parameters required for estimating VR
from satellites by examining the relationship between surface-level VR, columnar AOD and climatic
data. The ultimate objective is to provide a numerical model, based on real-time AOD values and
corresponding climate data, for providing more accessible and routine visibility information to defense
and civil authorities.

2. Study Area, Materials and Methods

2.1. Study Area

Hong Kong occupies a land area of 1100 km2, of which only approximately 30% is urban. It is in
a sub-tropical region, surrounded by the South China Sea to the east, south and west, and bordering
Shenzhen, China to the north (Figure 1). The local VR is, perhaps surprisingly, highest during the hot
humid summer, with southerly winds from the South China Sea, and lowest in the winter and spring,
with dry northerly winds from continental China [33]. These winds in the winter dry season negatively
affect the VR in Hong Kong due to massive urban and industrial development in the adjacent Chinese
mainland, accompanied by growth in polluting factory outputs, construction site and power plant
operations, all of which increase the aerosol particle loading.

Figure 1. Study area and locations of the visibility monitoring stations.
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2.2. Materials

2.2.1. Satellite-Based Aerosol Observations

We consider Level 2 satellite AOD products from four sensors (Table 1), namely: (1) the Collection
5 AOD data from of NASA’s MODerate Resolution Imaging Spectroradiometer (MODIS) aerosol
products (MOD04 and MYD04) at 550 nm with 10 km2 resolution, between 2000 and 2009 [34]; (2) the
Multi-angle Imaging SpectroRadiometer (MISR) AOD products at 558 nm with 17.6 km2 resolution
between 2005 and 2009 [35]; (3) the OMAERO aerosol product at 483 nm with 27.8 km2 resolution
derived from the Ozone Monitoring Instrument (OMI) from 2004 to 2009 [36]; and (4) the Cloud-Aerosol
LiDAR with Orthogonal Polarization (CALIOP) 5 km AOD L2-APro product at 532 nm from 2006 to
2009 [37]. We did not use vertical profile data from CALIOP, to remain consistent in our approach
for comparing different aerosol products, because other AOD products do not have vertical profiles.
These AOD products in the green or near-green regions of the visible spectrum are compared with
hourly observer estimates of VR from the two ground stations, the Hong Kong Observatory (HKO)
and the Hong Kong International Airport (HKIA), as described in next sections.

Table 1. Spatial and temporal resolution of satellite AOD products used in the study.

Source Spatial Resolution Wavelength (nm) Temporal Resolution

MODIS 10 km 550 Daily
MISR 17.6 km 558 7–9 days

CALIOP 5 km 532 16 Day
OMAERO 27.8 km 342 Daily

The use of satellite-based AOD products for global air quality monitoring is now well established.
Accordingly, studies have reported errors for AOD products for MODIS (±0.05 ± 20% * AOD [30]),
OMI (20%; [38]), MISR (20%; [39]), and CALIOP (±0.05 ± 40% * AOD [37,40]). Localized uncertainties,
particularly surrounding a humid coastal city such as Hong Kong, are exacerbated by heterogeneous
surface reflectance, mixed aerosol optical characteristics, and strong shallow water and ocean
color gradients [29,41]. Hong Kong frequently experiences several aerosol types within any given
sampling location, as reported by many studies [29,41,42]. Therefore, the South China Sea region,
including Hong Kong, is recognized as an area where relatively large derived-AOD errors occur [30].
Therefore, this study proposes a numerical model to resolve the effect of these inherent errors in
estimation of VR using climatic data in addition to operational AOD products.

2.2.2. Visual Range and Climate Data

In addition to AOD, we consider multiple thermodynamic and physical parameters measured at
the surface for a better understanding of the AOD-VR relationship, since meteorological conditions
affect particle mass concentrations, and thus the optical and physical properties of pollutants that
influence VR [43]. Certain meteorological conditions depending on prevailing temperature (T),
pressure (P), relative humidity (RH), wind speed (WS) and direction (WD) can bring in and/or
sweep out aerosols in a region. On the other hand, optical and chemical properties of the aerosols
can also be drastically altered in a stagnant atmosphere. Therefore, we used T, P, RH, WS and WD,
vector components of wind towards East (U) and North (V), Mixed-Layer Height (MLH), water vapor
mixing ratio (Q), and temporal changes in T and P (∆T and ∆P). The available datasets were collected
by HKO from 2005 to 2008.

RH affects particle size distribution through deliquescence, which is seen most significantly
in smaller, fine-mode particles (<1 µm). This effect further influences scattering cross-sections
inherent to a given aerosol particle layer [44]. Preliminary analysis for this study (not shown here)
indicated that correlation between AOD and VR decreases with an increase in RH until RH = 90%,
because the given fine-mode particles grow enough to scatter or absorb more light under increasing
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RH. This finding is consistent with other studies [45]. Therefore, data corresponding to RH greater
than 90%, and particularly those associated with measurable rainfall, were excluded from the analysis.

It is well known that seasonal variation in air quality near Hong Kong is due to corresponding
regional shifts in cyclonic and anticyclonic synoptic circulation, alternately advecting fresh and
polluted air to the region, respectively [46,47]. To quantify the effect of wind, Wu et al. [48] used
‘wind flux’ derived from MLH, and the vector U and V wind components measured by a wind
profiler. This enabled them to study the combined effect of MLH and WS at different heights to better
understand the vertical dispersion of aerosol particles nearby. We adopt a similar analysis here.

Relatively high surface temperatures correlate with processes that induce aerosol particle
dispersion, primarily through thermal turbulence and convection, thus increasing VR [33,43].
Change in temperature, wind speed and direction result in atmospheric instability and play an
important role in dispersion or advection of aerosols at regional level. Therefore, advection terms,
UT and VT (products of T with U and V), temporal change terms, ∆T and ∆P, along with Q, which itself
is a function of P, T and RH, can also be reasonable indicators for convection, expansion of the MLH
and thus dispersion of aerosol particles relative to the surface. Therefore, UT, VT, ∆T, ∆P and Q become
primary parameters for characterizing conditions responsible for VR at any given site and time, locally.

The MLH serves as a scaling height, since most column-integrated aerosol scattering occurs within
an MLH of 1 to 3 km, regionally [49]. MLH in Hong Kong is estimated twice daily (0800 HKT and
2000 HKT) by radiosonde at King’s Park (22◦18′43”, 114◦10′22”; 65 m above mean sea level—MSL).
Since there is a two to three-hour difference in the time of sounding and the daylight satellite overpass
(1030 local time), during which MLH can change significantly, MLH data from radiosonde are not
included in this study. Instead, MLH data corresponding to the satellite pass time are estimated from
NCEP FNL Operational Model Global Tropospheric Analyses datasets, which we consider accurate to
within 500 m, and thus reasonable for our purpose.

Surface VR is measured operationally at six locations in Hong Kong, by qualified weather
observers, as well as by forward-scattering radiometers and transmissometers (Figure 1; Table 1).
Although these monitoring sites have contributed to some characterization of regional VR, they are still
considered insufficient for depicting VR conditions over all of Hong Kong. VR observations conducted
by trained observers from HKO and HKIA are used here to evaluate the AOD-VR relationship for each
sensor and later to validate the proposed numerical model.

2.3. Methods

This study is conducted in two parts after converting VR values from HKO and HKIA to Bext

using Equation (1). Firstly, the simple AOD-Bext relationship is analysed to evaluate the potential of
satellite-based estimates of VR, and to identify the most appropriate satellite-estimated AOD product
currently available for estimating VR. The relationship is analyzed in terms of correlation coefficient
(R), root mean square error (RMSE) and mean absolute deviation (MAD). Secondly, numerical models
based on the combination of meteorological data and satellite-based AOD are tested to simulate VR.

2.3.1. Evaluation of Satellite Sensors

The OMI, MODIS, MISR, and CALIOP AOD products are compared with Bext observations at
HKO and HKIA within a period of ±30 min of the overpass time [50]. The VR can vary significantly
over time and space. For example, at any given time, VR may be greater or smaller than the standard
spatial resolution of an AOD product. Such variation can affect the underlying relationship of VR with
the AOD product at any given spatial resolution. Therefore, the AOD from each sensor is extracted at
HKO using kernels (K) of 1-by-1, 3-by-3, 5-by-5 pixels, and so on, until the kernel size is greater than
or equal to 50-by-50 km2. A maximum kernel size of 50-by-50 km2 is used, since surface observations
throughout the study period indicate that VR in Hong Kong does not exceed 50 km. In addition,
a kernel window greater than 50-by-50 km2 would be unable to decouple the AOD extracted at the
HKO and HKIA ground visibility measurement sites, since the two stations are approximately 35 km
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apart. The variable kernel size helps to select an optimal spatial window for a given satellite AOD
product, and to understand its relationship with surface-level VR.

2.3.2. Estimating Surface Visibility

After selecting the operational satellite AOD products exhibiting the best overall representation
of Bext, these are then tested for simulating VR using numerical modeling. The selected AOD
products are correlated with corresponding climate data for 2005 to 2008 within a period of ±30 min
of any given overpass time. Data for 2005 to 2007 are used to build an empirical model for
simulating VR or Bext using the satellite-based AOD product, and data for 2008 are then used to
evaluate the result. Evaluation of the model is done for both HKO and HKIA locations. Several
transformations are applied to VR and Bext, as well as the independent variables (AOD, T, P, RH,
∆T, ∆P, U, V, Q, MLH, WS, VT, UT and WD) to acquire normal distributions before statistically
evaluating the overall result. These transformations also attempt to contain non-linearity among
parameters, where applicable. These transformations include square root (sqrt), natural logarithm (ln),
square (sqr) and inverse (inv) transformations. This results in ten dependent and fifty-five independent
variables, where a variable with the lowest Anderson-Darling statistics (AD value) will show normal
distribution [51]. The independent and dependent variables with the highest significant correlation
coefficients (p-value < 0.1) and the lowest AD values are grouped together as potential candidates
for multiple linear regression, because correlation alone cannot completely imply a cause-and-effect
relationship. The variable with the minimum AD value is included in the regression, because its
distribution would be more normal than others. The condition of p-value less than 0.1 is imposed to
select enough independent variables to be analyzed with regression modeling.

Each group of variables is subjected to multiple linear regression, and their p-value, T statistic,
F statistic, variance inflation factor (VIF), coefficient of determination (R2) and error in prediction
(PRESS) are analyzed. Independent variables with significantly larger p-values and VIFs, as well as
variables with smaller T and F statistics, are omitted one by one, and regression is repeated until all
variables correspond to p-value < 0.001. The basic assumptions of regression (variance of the error
population should be constant, and residuals are independent and normally distributed) are validated
by analyzing the standard residual plot and Durbin-Watson statistics (DWS), where the residual should
be randomly distributed without any pattern in their spread, and DWS should be near 2.0 [52].

Each statistical set satisfying the above criteria is further subjected to ‘stepwise’ [53] and ‘best
subset’ regression [54]. Stepwise regression adopts a single path through the independent variables,
whereas best subset regression explores all pathways to select the best combination of independent
variables. Therefore, a regression model with ‘n’ variables developed, using the ‘best subset’ approach,
is expected to perform better than one with the same number of variables developed using a stepwise
approach. As a result, the set of variables selected using stepwise regression is also analyzed with
‘best subset’ regression. A model is selected for application if the Cp-value is approximately equal to
the number of independent variables in it (Equation (5); [55]).

Cp =
SSE
MSE

− N + 2n (5)

where SSE is the sum of square errors of the model with ‘n’ parameters, including independent
variables and intercept; MSE is the mean square error of the model recommended by stepwise
regression; and N is the number of samples. The selected model is then tested using the validation
data from the year 2008.

3. Results

3.1. AOD-Bext Relationship

For kernel sizes of both 1-by-1 and 3-by-3 pixels, as well as at both VR stations, correlations
between OMI AOD and Bext are lower than for other sensors, with R = 0.30 and 0.24 at HKIA (Figure 2)
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and R = 0.42 and 0.39 at HKO (Figure 3), respectively. These relatively low correlations may be due
to the frequent overestimation of OMI AOD due to sub-pixel cirrus cloud contamination at the low
(28 km) OMI resolution [56], as reported by [28,43]. That is, the OMI pixel size of 27.8 km2 can easily be
mixed with thin-cloud cover, particularly in the vicinity the South China Sea region, where cirrus cloud
frequencies are relatively high [57], and thus an underestimate of single scattering albedo occurs [58].
Additionally, the OMI AOD is reported at 483 nm, which is expected to experience more extinction
than the human observation. This may also be the cause of high bias for OMI extinction.

Figure 2. Correlation of Bext at HKIA with OMI AOD (27.8 km product at 483 nm) for kernel window
of (a) 1 by 1 and (b) 3 by 3. Dashed line represents a 1:1 line, whereas solid line is the resultant
regression line.

Figure 3. Like Figure 2, but at HKO.

Low correlations are also observed between CALIOP AOD and Bext at both HKO (R = 0.47 and
0.17 for kernel windows of 9-by-9 and 11-by-11 pixels respectively; Figure 4a–c) and HKIA (R = 0.32,
0.39, 0.25, 0.30, 0.24 and 0.12 for kernel windows of 1-by-1 to 11-by-11 pixels, respectively; Figure 5a–f).
It is important to note that all correlations are reported after excluding the potential outliers due
to high AOD, which are highlighted in each figure as red asterisks. Furthermore, these outliers
likely reflect unscreened artifacts and mixed pixels. Therefore, they can be treated as erroneous
readings. These readings are not, however, excluded in designing the model for estimating visibility
in the later part of the methodology. Low correlations from CALIOP may be due to its limitations in
collecting data from near ground level during the day because of a lower signal-to-noise ratio in the
presence of high solar background [59]. To overcome this problem, the CALIOP team uses a nighttime
calibration constant to derive the daytime profiles. Even with this amendment, CALIOP is reported
to underestimate AOD by a factor of two compared with AOD from a ground-based AERONET
sunphotometer [60].
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Figure 4. Correlation of Extinction Coefficient at HKO with CALIOP AOD (5 km product at 532 nm)
for kernel windows of (a) 9 by 9 and (b) 11 by 11. There is no valid AOD retrieval for kernel windows
of 1 by 1 to 7 by 7. *—potential outlier in the data. Lines as described in Figure 2.

Figure 5. Like Figure 4, but at HKIA for kernel windows of (a) 1 by 1 (b) 3 by 3 (c) 5 by 5 (d) 7 by 7 (e)
9 by 9 and (f) 11 by 11.
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For MISR, the correlation between AOD and Bext for kernel windows of 1-by-1 and 3-by-3 pixels,
respectively, are 0.60 and 0.51 at HKIA (Figure 6a,b), and 0.26 and 0.63 at HKO (Figure 7a,b). The better
results for the urban HKO site, with higher correlation, lower MADs and RMSEs, than for the coastal
HKIA site agree with the findings reported by Liu et al. [61] and Jiang et al. [62] in China. The MISR
AOD exhibits higher correlation with Bext than OMI and CALIOP, which may be because the MISR
AOD retrieval algorithm incorporates a large number of aerosol models, with mixtures from different
aerosol parameters including shape, size and mass [63], thus the AOD product is more robust.

Figure 6. Correlation of Extinction Coefficient at HKIA with MISR AOD (17 km product at 558 nm)
for kernel windows of (a) 1 by 1 and (b) 3 by 3. *—potential outlier in the data. Lines as described in
Figure 2.

Figure 7. Like Figure 6, but at HKO, (a) 1 by 1 and (b) 3 by 3.

Like MISR, the MODIS AOD performs better at the urban HKO site than at the coastal HKIA
(Figure 8). The correlations between MODIS AOD and Bext at HKO are 0.38, 0.51 and 0.53 for kernel
windows (K) of 1-by-1, 3-by-3 and 5-by-5, respectively (Figure 8d–f), compared with 0.11, 0.35 and
0.26 (Figure 8a–c) at HKIA.
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Figure 8. Correlation of Extinction Coefficient with MODIS AOD (10 km product at 550 nm) for
HKIA (a–c) and HKO (d–f) for kernel windows of 1 by 1 (top row), 3 by 3 (middle row) and 5 by
5 (bottom row). *—potential outlier in the data. Lines as described in Figure 2.

3.2. Summary of Sensor Performance

Great differences are observed in the R, RMSE and MAD between coastal (HKIA) and urban
(HKO) areas (Figure 9). Figure 9 compares the R, RMSE and MAD at HKIA and HKO for increasing
spatial resolution in the four sensors. The highest correlation at HKIA is for MISR AOD for kernel
window of 1-by-1 (R = 0.60), followed by MISR AOD for kernel windows of 3-by-3 (R = 0.51) and
CALIOP for kernel window of 3-by-3 (R = 0.39) (Figure 9 top). However, the highest correlation at
HKO is for MISR AOD for kernel window of 3-by-3 (R = 0.63), followed by MODIS AOD with kernel
windows of 5-by-5 (R = 0.53) and 3-by-3 (R = 0.51), respectively (Figure 9 top).
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Figure 9. Variations in R (top), RMSE (middle) and MAD (bottom) at different spatial resolutions of
MISR, MODIS, OMI and CALIOP for HKIA, HKO, and their Average. Spatial resolution (km), names
of sensors and sizes of kernel window are labelled in the first, second and third x-axis, respectively.
The scales of R, RMSE and MAD are on the y-axis. Negative correlation values for CALIOP AOD are
not shown.

Hence, the MISR AOD exhibits the highest correlation with surface level extinction coefficient,
followed by MODIS. MISR also has a lower RMSE and MAD at both HKO and HKIA than other
sensors. Although the correlation, RMSE and MAD at both HKO and HKIA for MISR are slightly
higher than for MODIS, the high temporal resolution of MODIS (daily, compared with 7–9 days)
along with its comparable RMSE and MAD to MISR, makes it a more practical sensor for operational
estimation of surface visibility in Hong Kong. Indeed, only 70 measurements for MISR AOD were
available over the whole study period, and this would not be adequate for operational visibility
monitoring, which is one of the main objectives of this study. Therefore, further analyses used MODIS
AOD products for kernel windows of 5-by-5.



Remote Sens. 2018, 10, 1333 12 of 23

3.3. Estimation of Surface Visibility

MODIS AOD data for a kernel window of 5-by-5 and Bext at HKO are segregated into training
(years 2002 to 2006 and 2008) and validation sets (years 2007 and 2009) to estimate and validate the
retrieved MODIS Bext. Like Figure 8, the training data set also showed significant correlation between
MODIS AOD and Bext at HKO (Equation (6); Figure 10a), as

Bext = 0.36 (MODIS AOD) + 0.22 (6)

Figure 10. Correlation of Extinction Coefficient with MODIS AOD (10 km product at 550 nm) using
Model-1 for HKO: (a) linear regression of training data for the years 2002 to 2006 and 2008; (b) estimated
MODIS extinction coefficient using MODIS AOD from years 2007 and 2009. Black dashed line represents
a 1:1 line, whereas black solid line is the resultant regression line.

Consequently, Equation (6) is designated as Model-1 (M1) and tested against the validation data
set (Figure 10b). Most of the validation data points fell outside the 95% confidence interval, indicating
a weak estimation power for M1. Therefore, it was hypothesized that the estimation of Bext might
improve further by adding climatic data in a multiple linear regression model.

3.4. Time Series Analysis

For ease of analysis, the values of the climatic variables P, T, VT, Q, RH and AOD were smoothed
and standardized to between−1 and +1 (Figure 11). The relationships between P, T, RH, VT, AOD and Q
can explain the variations in visibility in terms of subsidence and uplift of the aerosols. The relationship
is shown to be seasonal, with highest visibility in summer and lowest in winter. Overall, VR increases
with decreasing P, RH and AOD. This is because low pressure generally makes the atmosphere unstable,
generating convective winds, which may shorten the aerosol residence time whereas low RH decreases
the aerosol’s scattering efficiencies by inhibiting the increase in aerosol size.

Also, VR further increases with increasing T, VT and Q, as low temperatures indicate the
prevalence of the winter continental northeast monsoon, bringing regional anthropogenic aerosols
to Hong Kong and reducing the VR. In contrast, high temperatures are associated with summer and
early autumn, bringing clean and fresh maritime winds from the southwest [33]. It is also noted
that the hours with reduced visibility in winter and summer are associated with “−VT” and “+VT”.
Indeed, a total 78% of the hours of reduced visibility during the study period are associated with
“−VT” due to advection of aerosols from the north and northeast. Hence, VT can explain the effect of
WS, WD and T.
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Figure 11. Line plot of smoothed and standardized VR, AOD, RH, VT, Q, P and T, where VT and
RH are overlapping throughout the study period. NB. The x-axis shows only dates with available
time-matched data, and thus is nonlinear.

Furthermore, it is also evident that VR increases with increasing Q. A high value of Q indicates
an unstable atmosphere, increasing the vertical and horizontal aerosol dispersion. Usually a high
value of Q suggests warmer weather conditions. Low values of Q are commonly associated with the
cold season and/or cold air masses that lower the MLH, bringing aerosols into the lower atmosphere.
This increases the air density and decreases the VR. Hence, Q helps to explain the combined effect of T,
P and RH on VR.

3.5. Parameterization of the AOD-VR Relationship

Correlation analysis is used to explore the relationship between Bext, VR and the climate
parameters described above. The correlation matrix for ten dependent and fifty-five independent
variables from the training data set (as discussed in methodology) is analyzed to select potential
parameters for constructing a regression model using climatic data and MODIS AOD at HKO. Part of
the correlation matrix containing potential parameters, is shown in Table 2 and the respective p-values
are italicized in the line following each variable.

Some of the transformations were able to improve the correlations. For example, the correlation
between Bext and AOD improved from 0.78 to 0.79 when Bext and AOD were transformed into
ln(Bext) and ln(AOD). Similarly, correlation between VR and AOD improved from−0.74 to −0.80 when
VR and AOD were transformed into (VR)1/2 and ln(AOD). This is because Visibility and AOD are
non-linearly inversely proportional, and the transform converts the non-linearity effect to linearity.
A few parameters, such as MLH, did not show significant correlation with visibility. This may be
because the atmosphere of Hong Kong is not clean above the MLH, due to mountain lofting of local
pollution and the huge amount of vertical lofting from shipping emissions in both Hong Kong and
Shenzhen [47]. The parameters with the highest correlation and lowest p-value from each column were
selected for constructing a multiple linear regression model, followed by stepwise and best subset
regression models as described in the methodology. Because the regression models denoted with bold
variables in Table 2 performed far better than the rest, only those models are discussed hereafter.

As a first attempt, all the selected variables (bold variables in Table 2) were subjected to regression
analysis to propose an optimal model (Full model). The Full model gave a poor fit, where some of the
independent variables with significant correlation (Table 2) turned out to be insignificant (Table 3),
since the p values for UT, VT, U, V, (T)2 and (P)2 were not significant at 0.01, with the largest Variance
Inflation factor (VIF) of 68.52 being for T2. It is to be noted that a VIF close to zero shows no, or
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minimum, co-linearity among the regression variables. Hence, a regression variable, (T)2, was dropped
from the model and the regression was repeated for the remaining variables. The new model was
designated as Model A. This time (P)2 was omitted due to the reasons explained earlier, and the process
was repeated until a significant Model E was achieved. The regression statistics of each model are
shown in Table 3.

Table 2. Correlation matrix for independent and dependent variables.

VR (VR)−1 (VR)2 (VR)1/2 ln(VR) Bext ln(Bext) (Bext)1/2 (Bext)−1 (Bext)2

AOD −0.74 0.78 −0.66 −0.76 −0.78 0.78 0.78 0.78 −0.74 0.74
0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

T 0.12 −0.08 0.13 0.11 0.10 −0.08 −0.10 −0.09 0.12 −0.07
0.09 0.23 0.06 0.12 0.15 0.23 0.15 0.19 0.09 0.31

P −0.11 0.05 −0.13 −0.09 −0.08 0.05 0.08 0.07 −0.11 0.03
0.13 0.46 0.07 0.18 0.26 0.46 0.26 0.35 0.13 0.66

RH −0.08 0.16 −0.04 −0.10 −0.13 0.16 0.13 0.15 −0.08 0.19
0.25 0.02 0.57 0.14 0.07 0.02 0.07 0.04 0.25 0.01

MLH 0.01 −0.07 −0.02 0.03 0.04 −0.07 −0.04 −0.05 0.01 −0.08
0.88 0.35 0.81 0.72 0.57 0.35 0.57 0.44 0.88 0.26

UT −0.15 0.18 −0.13 −0.16 −0.17 0.18 0.17 0.18 −0.15 0.18
0.03 0.01 0.06 0.02 0.01 0.01 0.02 0.01 0.03 0.01

VT 0.21 −0.18 0.21 0.21 0.20 −0.18 −0.20 −0.19 0.22 −0.14
0.00 0.01 0.00 0.00 0.00 0.01 0.00 0.01 0.00 0.04

Q 0.11 −0.02 0.15 0.09 0.07 −0.03 −0.07 −0.05 0.11 0.01
0.11 0.73 0.03 0.20 0.33 0.73 0.33 0.52 0.11 0.91

U −0.17 0.20 −0.14 −0.18 −0.19 0.20 0.19 0.19 −0.17 0.20
0.02 0.00 0.05 0.01 0.01 0.00 0.01 0.01 0.02 0.00

V 0.18 −0.15 0.18 0.18 0.17 −0.15 −0.17 −0.16 0.18 −0.13
0.01 0.03 0.01 0.01 0.01 0.03 0.01 0.02 0.01 0.07

WD 0.02 0.03 0.05 0.01 0.00 0.03 0.00 0.02 0.02 0.05
0.73 0.66 0.49 0.88 0.96 0.66 0.96 0.80 0.73 0.44

WS 0.00 −0.06 −0.01 0.02 0.03 −0.06 −0.03 −0.05 0.00 −0.10
0.95 0.36 0.87 0.82 0.67 0.36 0.67 0.51 0.96 0.15

ln(AOD) −0.79 0.74 −0.76 −0.80 −0.79 0.74 0.79 0.77 −0.79 0.67
0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

ln(RH) −0.09 0.16 −0.05 −0.11 −0.13 0.16 0.13 0.15 −0.09 0.19
0.21 0.02 0.50 0.12 0.06 0.02 0.06 0.03 0.21 0.01

(T)2 0.14 −0.09 0.15 0.13 0.11 −0.09 −0.11 −0.10 0.14 −0.08
0.05 0.18 0.03 0.07 0.10 0.18 0.10 0.14 0.05 0.27

(P)2 −0.11 0.05 −0.13 −0.09 −0.08 0.05 0.08 0.07 −0.11 0.03
0.13 0.46 0.07 0.18 0.26 0.46 0.26 0.35 0.13 0.67

(Q)2 0.16 −0.06 0.20 0.14 0.11 −0.06 −0.11 −0.09 0.16 −0.02
0.02 0.39 0.00 0.05 0.11 0.39 0.11 0.22 0.02 0.79

Note: Italicized numbers are the p-values of correlation and bold letters are variables selected for construction of the
regression model.

All variables of Model E are significant, with p-values of zero and VIF between 1.0 and 1.62.
Moreover, the Prediction Errors (PRESS) for Model E are the smallest and the F statistics the highest
among all models. Therefore, Model E was further subjected to stepwise and best-subset regression
analyses to further examine the principal factors affecting VR, as explained in the methodology. The
regression statistics remain the same as in Model E, suggesting it to be the best regression model for
estimating VR. Therefore, Model E is designated henceforth as Model 2 (M2; Equation (7); Figure 12).

√
V = 6.43 + 0.00079 VT − 1.96 ln(AOD)− 2.30 ln(RH) + 0.017 Q2 (7)
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Table 3. Multiple linear regression models for predicting (VR)2. The final model selected for estimating (VR)2 is highlighted.

Model Const UT VT U V ln(AOD) ln(RH) (T)2 (P)2 (Q)2 S R2 R2
adj PRESS R2

pred SS F DWS Largest VIF Cp

Full ns ns ns ns ns **** **** ns ns *** 0.34 72.38 70.97 24.33 69.50 57.74 51.37 1.69 68.52 x
A ns ns ns * ns **** **** x ns **** 0.33 72.34 71.07 24.09 69.79 57.71 57.24 1.69 65.43 x
B **** * ns * ns **** **** x x **** 0.33 72.31 71.20 23.84 70.11 57.69 64.65 1.68 66.73 x
C **** ** *** ** **** **** x x **** 0.33 71.79 70.94 23.91 70.03 57.26 84.82 1.66 35.28 x
D **** x *** ns **** **** x x **** 0.33 71.21 70.49 24.20 69.64 56.81 99.40 1.66 1.62 x
E **** x **** x **** **** x x **** 0.33 71.10 70.53 24.07 69.83 56.71 124.20 1.67 1.62 x

Stepwise **** x **** x **** **** x x **** 0.33 71.10 70.53 24.01 69.83 x x x x 5
Best Subset **** x **** x **** **** x x **** 0.33 71.10 70.53 x x x x x x 5

Note: Significance levels are as follows: ****—p < 0.001; ***—p < 0.01; **—p < 0.05; *—p < 0.1; ns—not significant. X—N/A and variable excluded from regression, Const—Intercept
of regression model. “Full” refers to the multiple linear regression models involving all parameters, F: F-statistic, PRESS: Error in prediction, SS: Sum of Squares, MS: Mean Square,
R2

pred: Predicted coefficient of determination, DWS: Durban Watson Statistics, VIF: Variance Inflation Factor.
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Figure 12. Correlation between Square root of MODIS visibility at HKO (SQRT (MODIS Visibility))
and Square root of ground visibility at HKO (SQRT (HKO Visibility)) using M2 (a) linear multiple
regression of training data for the years 2005 to 2007; (b) simulated MODIS visibility using validation
of data (MODIS AOD and Climatic data) from years 2008. Blue dotted dashed lines show the upper
and lower limit of ±20% of the ground visibility at HKO, whereas black solid line is the resultant
regression line.

With the addition of climate parameters exhibiting a significant relationship with VR,
M2 (Equation (7)) actually performs better than M1, with significantly higher values of R = 84%,
R2 = 71.1%, a predicted-R2 of 69.8%, and a lower RMSE = 0.11 km (Figure 12a). It should be noted
that among the training data sets, the years 2002 and 2006 were much drier than average years,
2007 was wetter than normal, and 2006 was an El-Nino year, but model M2 was still able to capture the
considerable variability within the data (Figure 12a). Furthermore, M2 is also capable of simulating
real-time VR at HKO with high accuracy, as demonstrated by a low RMSE of 0.27 km (Figure 12b).

The new model is able to represent the synergism between the physical forces influencing VR in
terms of the dynamic interactions between air density, turbulence and advection. Respective signs
(+ and −) for the coefficients of M2 suggest that a unit increase in any one or combination of “VT” and
“Q” also increases the visibility, whereas a unit increase in ln(AOD) and/or “RH” decreases the visibility.
This is also in agreement with the physical forces explained in the section “Time Series Analysis”.

Although ln(RH) has the highest coefficient in Equation (7) as per the F-statistic, M2 is highly
sensitive to changes in ln(AOD), with an F-value of 401, followed by Q2, ln(RH) and VT, with F-values
of 41.10, 28.24 and 10.57, respectively. This may be because Q depends on P, T and RH, and therefore
acts as a compound variable whose interaction with VR can also explain the combined effect of P, T
and RH on VR. The performance of M2 also suggests that VT is sufficient to explain the effects of WS
and WD on the dispersion of aerosols, and hence on VR. The presence of VT, RH and Q in a model
can also increase the multicollinearity, although DWS values close to one for M2 (Table 2), suggest no
multicollinearity in M2. This explains why M2 is able to accurately estimate VR at HKO, as shown by
the summary statistics of real-time and simulated VR at HKO for the year 2008 (Table 4).

Eighty-one percent of the simulated cases for VR using M2 are found to also be within ±20% of
the HKO VR (Figures 12 and 13), which is consistent with Annex 3 of the International Civil Aviation
Organization (ICAO), which suggests that an uncertainty of ±20% in estimated VR is acceptable when
actual VR is above 1.5 km.
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Table 4. Summary statistics for the real-time (HKO VR) and simulated (MODIS VR) VR at HKO for the
year 2008.

Test HKO VR (km) MODIS VR (km)

Total observations 95 95
Mean 12.25 12.10

Standard Error 0.51 0.40
Median 12.00 12.18

Maximum 25.00 21.93
Minimum 3.20 4.64

Standard Deviation 0.33 0.49
First Quartile 9.00 9.08
Third Quartile 15.00 14.87

Figure 13. Time series of the real-time and simulated VR at HKO using Model 2 for the (a) Training
data set of 2005–2007; and (b) Validation data set of 2008. Black solid line and dotted red line show the
smoothed trend line for HKO and MODIS visibility, respectively.

To further consolidate the results of this study, we further validated the proposed model M2
(Equation (7)) at HKIA using MODIS AOD and climatic data over HKIA (Figure 14). Model M2
performed significantly well, reproducing the variations in the observed VR at HKIA with a high
correlation of 0.77 and a reasonable error of 3.57 km. We also tested another model using AOD of
MISR and climatic data over HKO; as reported in the previous section, the statistics were better than
for MODIS. However, this new model (Equation (8); Figure 15) for MISR did not perform better than
MODIS (M2; Equation (7); Figure 12), and showed R2 = 59.91%, a predicted-R2 of 39.89% and high
overestimation error (RMSE = 22.77 km) (Figure 15). The inferior result may be due to the reasons
explained in Section 3.2.

√
Bext = 17.35 + 0.312 AOD− 17249

P
+ 0.0002Q2 (8)
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Figure 14. Time series of real-time and simulated VR at HKIA from Model 2 for the validation data set
(MODIS AOD and climatic data) of 2008 over HKIA.

Figure 15. Correlation between Square root of MISR Bext and Square root of ground visibility at HKO
using Equation (7) for 2005 to 2008. Black solid line is the resultant regression line and N is the total
number of observations.

4. Discussion

The results of this study, with an R of 0.84, are considerably better than previous studies
on visibility estimation for Hong Kong and the Chinese mainland (Table 5). These have used
expensive and time-consuming methods combining mass pollutant concentrations, along with
available meteorological data. They have also used averaged daily data, which cannot serve real-time
operational purposes, which may explain the large bias, especially for clear or very polluted days.
The use of satellite-derived AOD along with time-matched hourly meteorological data giving wind
flux conditions at different heights in this study appears to be complementary, with the wind profiler
data compensating for the whole-column readings of the satellite AOD. Thus, this study has achieved
better matching with ground station visibility data.
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Table 5. Results of the previous studies on the same topic for Hong Kong and mainland China.

Dependent Variable Independent Variables R2

Lai and Sequeira [64] Bext NO2, RSP, RH 0.76
Du et al. [43] VR RH, WS, P, T, Prec. 0.39
Mui et al. [33] VR T, API 0.77
Lin et al. [53] VR PM10, NO2, RH 0.80

Wan et al. [65] VR SO2, NO2, PM10 0.51

Note: RSP—Respirable Suspended Particles; Prec.—Precipitation; API—Air Pollution Index.

As the correlations, RMSE and MAD for MISR AOD and Bext were good for both MODIS and
MISR, both sensors’ AOD products were used along with climatic data to develop numerical models.
However, the model from MODIS achieved better estimations when validated against ground station
visibility and, due to its higher temporal resolution of 1-day, shows greater potential for operational use.

It is notable that for all sensors except for OMI with kernel window of 1-by-1, or 28 km resolution,
the highest resolution for each sensor did not achieve the best result compared to ground-level VR.
The best results, obtained by the MODIS window size of 5-by-5 (50 km) and the MISR window size of
3-by-3 (52 km), suggest that a resolution of approximately 50 km is optimal for satellite-based remote
sensing of VR. This may be because the larger window sizes deal better with cloud contamination,
as cloud masking detects spatial variability within pixel blocks, which is more effective with larger
block sizes.

5. Conclusions

Point-based observations from ground instruments cannot be used to produce regional composites
in surface-level VR over urban industrial regions due to the inhomogeneity of aerosol loading
in these areas. Moreover, recently developed and current satellite-based models parameterized
with satellite-based AOD alone have proven ineffective at simulating surface-level VR. Additionally,
there has been no previous evaluation of the potential of AOD from different satellite sensors for
estimation of surface-level VR. This study was designed to develop an operational model for the
estimation of surface-level VR over a complex urban and industrial region using the most suitable
satellite-based AOD product.

Among AOD products from MODIS, MISR, OMI and CALIOP, the highest correlation of AOD
with Bext at HKIA was found for MISR with an observational kernel window of 1-by-1 (17.5 km)
(R = 0.60), followed by MISR AOD for kernel windows of 3-by-3 (52 km) (R = 0.51). The highest
correlation at HKO was for MISR AOD for a kernel window of 3-by-3 (52 km) (R = 0.63), followed by
MODIS AOD with a kernel window of 5-by-5 (50 km) (R = 0.53). Our proposed model, using MODIS
AOD with climatic data, estimated surface-level VR with high accuracy (i.e., R = 0.84, RMSE = 0.11 km
and slope = 1.0). The results of this study suggest that Q alone can explain the combined effect of P, T
and RH on VR. The results also suggest that VT alone is sufficient to explain the effects of T, WS and
WD on the dispersion of aerosols and, hence, on VR. The proposed model is the first to simulate
surface-level VR under variable aerosol loading and climate conditions using satellite-based AOD.

The results of this study demonstrate the potential for applying passive satellite depictions of
broad-scale aerosol optical properties to fill data gaps in Hong Kong that arise due to relatively
coarse deployment of ground instruments for visibility monitoring. The best results obtained with
50 km spatial resolution would be operational for regional visibility monitoring in the Hong Kong
and Pearl River Delta region, where regional airports and shipping require accurate visibility data.
However, within Hong Kong, ground stations may still be the best option until higher-resolution
sensors become available. The results of the study will help to understand the dynamics of
spatiotemporal changes in the optical properties and visibility of regional aerosols. They could
also help to study the impact of air pollution on health and weather on a regional scale.
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