Analysis of Air Pollution in Urban Areas with Airviro Dispersion Model—A Case Study in the City of Sheffield, United Kingdom
Abstract
:1. Introduction
2. Methodology
2.1. Dispersion Modelling System—Airviro
2.2. Emission and Meteorological Data
2.3. Model Assessment
3. Results and Discussion
3.1. NOx Maps
3.2. PM10 Maps
3.3. Comparison of Predicted and Observed Concentrations
3.3.1. Comparison of Seasonal and Annual Data
3.3.2. Comparison of Hourly Data
3.4. Population Exposure to Air Pollution
3.5. Further Discussion
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- DEFRA. Improving Air Quality in the UK Tackling Nitrogen Dioxide in Our Towns and Cities, UK Overview Document. December 2015. Available online: https://www.gov.uk/government/uploads/system/uploads/attachment_data/file/486636/aq-plan-2015-overview-document.pdf (accessed on 9 June 2019).
- WHO. Health Effects of Particulate Matter, Policy Implications for Countries in Eastern Europe, Caucasus and Central Asia; Publications of WHO Regional Office for Europe UN City; World Health Organization: Copenhagen, Denmark, 2013. [Google Scholar]
- Landrigan, P.J. Air pollution and health. Lancet Public Health 2016, 2, 4–5. [Google Scholar] [CrossRef] [Green Version]
- Daly, A.; Zannetti, P. Air Pollution Modeling—An Overview. Chapter 2 of Ambient Air Pollution; Zannetti, P., Al-Ajmi, D., Al-Rashied, S., Eds.; The Arab School for Science and Technology and The EnviroComp Institute: Half Moon Bay, CA, USA, 2007; Available online: http://home.iitk.ac.in/~anubha/Modeling.pdf (accessed on 18 August 2019).
- Aldrin, M.; Haff, I.H. Generalised additive modelling of air pollution, traffic volume and meteorology. Atmos. Environ. 2005, 39, 2145–2155. [Google Scholar] [CrossRef]
- Andersen, S.; Weatherhead, E.; Stevermer, A.; Austin, J.; Brühl, C.; Fleming, E.L.; De Grandpré, J.; Grewe, V.; Isaksen, I.; Pitari, G.; et al. Comparison of recent modeled and observed trends in total column ozone. J. Geophys. Res. Space Phys. 2006, 111, D02303. [Google Scholar] [CrossRef] [Green Version]
- Arnold, S.R.; Chipperfield, M.P.; Blitz, M.A. A three-dimensional model study of the effect of new temperature-dependent quantum yields for acetone photolysis. J. Geophys. Res. Space Phys. 2005, 110, D22305. [Google Scholar] [CrossRef] [Green Version]
- Baur, D.; Saisana, M.; Schulze, N. Modelling the effects of meteorological variables on ozone concentration—A quantile regression approach. Atmos. Environ. 2004, 38, 4689–4699. [Google Scholar] [CrossRef]
- Berastegi, G.I.; Madariaga, I.; Elias, A.; Agirre, E.; Uria, J. Long term changes of O3 and traffic in Bilbao. Atmos. Environ. 2001, 35, 5581–5592. [Google Scholar] [CrossRef]
- Brasseur, G.P.; Hauglustaine, D.; Walters, S.; Rasch, P.J.; Muller, J.-F.; Granier, C.; Tie, X.X. MOZART, a global chemical transport model for ozone and related chemical tracers: 1. Model description. J. Geophys. Res. Space Phys. 1998, 103, 28265–28289. [Google Scholar] [CrossRef]
- Munir, S.; Chen, H.; Ropkins, K. Modelling the impact of road traffic on ground level ozone concentration using a quantile regression approach. Atmospheric Environ. 2012, 60, 283–291. [Google Scholar] [CrossRef]
- Westmoreland, E.J.; Carslaw, N.; Carslaw, D.; Gillah, A.; Bates, E. Analysis of air quality within a street canyon using statistical and dispersion modelling techniques. Atmos. Environ. 2007, 41, 9195–9205. [Google Scholar] [CrossRef]
- Wilkening, H.; Baraldi, D. CFD modelling of accidental hydrogen release from pipelines. Int. J. Hydrogen Energy 2007, 32, 2206–2215. [Google Scholar] [CrossRef]
- James, G.; Witten, D.; Hastie, T.; Tibshirani, R. An Introduction to Statistical Learning: with Applications in R; Springer: New York, NY, USA, 2013. [Google Scholar] [CrossRef]
- Salmond, J.A.; Clarke, A.G.; Tomlin, A.S. The Atmosphere; Harrison, R.M., Ed.; The Royal Society of Chemistry: London, UK, 2006; chapter 2; an introduction to pollution science; pp. 8–76. [Google Scholar]
- El-Harbawi, M. Air quality modelling, simulation, and computational methods: A review. Environ. Rev. 2013, 21, 149–179. [Google Scholar] [CrossRef]
- Modi, M.; Ramachandra, V.P.; Ahmed, L.S.K.; Hussain, Z. A review on theoretical air pollutants dispersion models. Int. J. Pharm. Chem. and Biol. Sci. 2013, 3, 1224–1230. [Google Scholar]
- Airviro User’s Reference. Working with the Dispersion Module—How to Simulate the Dispersion of Pollutants; Swedish Meteorological and Hydrological Institute: Norrkoping, Sweden, 2013; Available online: https://www.airviro.com/airviro/extras/pdffiles/UserRef_Volume2_Dispersion_v3.23.pdf (accessed on 17 January 2019).
- Airviro specification. Airviro Specification v4.00—Part I: Functions in Airviro. Apertum IT AB, Teknikringen 7- 583- 30. Linköping, Sweden. 2015. Available online: https://www.airviro.com/airviro/extras/pdffiles/Specification1_v4.00.pdf (accessed on 17 January 2019).
- Pasquill, F. The estimation of the dispersion of windborne material. Meteorol. Mag. 1961, 90, 33–49. [Google Scholar]
- Pasquill, F. Some observed properties of medium-scale diffusion in the atmosphere. Q. J. R. Meteorol. Soc. 1962, 88, 70–79. [Google Scholar] [CrossRef]
- Pasquill, F. Atmospheric Diffusion, 2nd ed.; Horwood: Chichester, UK, 1974; ISBN 0853120153. [Google Scholar]
- Briggs, G.A. A Plume Rise Model Compared with Observations. J. Air Pollut. Control. Assoc. 1965, 15, 433–438. [Google Scholar] [CrossRef]
- National Atmospheric Emissions Inventory. Air Pollutant Inventories for England, Scotland, Wales, and Northern Ireland, 1990–2016. 2018. Available online: https://uk-air.defra.gov.uk/assets/documents/reports/empire/naei/annreport/annrep99/chap1_2.html (accessed on 8 July 2019).
- Airviro User´s Reference. Working with the Emission Data Base (EDB): How to Construct a Dynamic Emission Database and Simulate Emission Scenarios, Version 4.00. 2018. Available online: https://www.airviro.com/airviro/extras/pdffiles/UserRef_Volume1_EDB_v4.00.pdf (accessed on 20 November 2019).
- Mukherjee, P.; Viswanathan, S.; Choon, L.C. Modeling mobile source emissions in presence of stationary sources. J. Hazard. Mater. 2000, 76, 23–37. [Google Scholar] [CrossRef]
- Carslaw, D. Defra Regional and Transboundary Model Evaluation Analysis—Phase 1, 15th ed.; King’s College London: London, UK, April 2011. Available online: https://uk-air.defra.gov.uk/assets/documents/reports/cat20/1105091514_RegionalFinal.pdf (accessed on 18 August 2019).
- Sayegh, A.S. Comparing the Performance of Statistical Models for Predicting PM10 Concentrations. Aerosol Air Qual. Res. 2014, 14, 653–665. [Google Scholar] [CrossRef] [Green Version]
- Leksmono, N.; Longhurst, J.; Ling, K.; Chatterton, T.; Fisher, B.; Irwin, J. Assessment of the relationship between industrial and traffic sources contributing to air quality objective exceedences: A theoretical modelling exercise. Environ. Model. Softw. 2006, 21, 494–500. [Google Scholar] [CrossRef]
- Svensson, N. Evaluation of Atmospheric Dispersion Models: Comparison with Measurements in Stockholm. Master degree project in meteorology, Stockholm University, Stockholm, Sweden, 2013. [Google Scholar]
- AQEG. Fine Particulate Matter (PM2.5) in the UK. Available online: https://uk-air.defra.gov.uk/assets/documents/reports/cat11/1212141150_AQEG_Fine_Particulate_Matter_in_the_UK.pdf (accessed on 21 November 2019).
- Dėdelė, A.; Miškinytė, A.; Česnakaitė, I. Comparison of Measured and Modelled Traffic-Related Air Pollution in Urban Street Canyons. Pol. J. Environ. Stud. 2019, 28, 3115–3123. [Google Scholar] [CrossRef]
- Gidhagen, L.; Bennet, C.; Segersson, D.; Omstedt, D. Exposure Modeling of Traffic and Wood Combustion Emissions in Northern Sweden—Application of the Airviro Air Quality Management System. IFIP Adv. Inf. Commun. Technol. 2015, 448, 242–251. [Google Scholar]
Pollutant | Point Sources | Road Sources | Area Sources | Total Emission |
---|---|---|---|---|
SO2 | 12999 | 1157 | 14156 | |
NOx | 6774 | 5370 | 2425 | 14569 |
NO2 | 122 | 122 | ||
CO | 3077 | 2203 | 5280 | |
PM10 | 1449 | 345 | 281 | 2075 |
PM2.5 | 224 | 224 |
Site Name | Site Type | Easting (X) | Northing (Y) | Pollutant Monitored | Monitoring Technique | Distance to Road (m) | Inlet Height (m) |
---|---|---|---|---|---|---|---|
Sheffield Tinsley (SHE) | Urban Industrial | 440,215 | 390,598 | NO2 | Chemiluminescence | 120 (M1) | 3 |
Sheffield Devonshire Green (SHDG) | Urban Background | 435,158 | 386,885 | NO2, PM10, PM2.5, O3, | Chemiluminescence, TEOM, UV Absorption | 20 | 3 |
Sheffield Barnsley Road (SHBR) | Urban Traffic | 436,276 | 389,930 | NO, NO2, NOx | Chemiluminescence | 4.5 | 2 |
Pollutant | Season 2017 | Devonshire Green | Tinsley | Barnsley Rd | |||
---|---|---|---|---|---|---|---|
Observed | Predicted | Observed | Predicted | Observed | Predicted | ||
NOx | Winter | 49.2 | 76.0 | 69.4 | 66.3 | 111.7 | 47.5 |
Summer | 23.3 | 58.3 | 30.5 | 50.6 | 63.6 | 31.2 | |
Autumn | 27.3 | 79.6 | 41.4 | 73.3 | 73.8 | 47.2 | |
Spring | 36.2 | 70.9 | 44.2 | 56.9 | 86.5 | 41.2 | |
Annual | 33.9 | 65.5 | 46.3 | 56.4 | 83.7 | 38.8 | |
PM10 | Winter | 15.8 | 6.98 | Not monitored | |||
Summer | 16.08 | 5.98 | |||||
Autumn | 13.5 | 7.55 | |||||
Spring | 19.0 | 7.19 | |||||
Annual | 16.0 | 6.63 |
Metric | January | |||
---|---|---|---|---|
Devonshire Green | Tinsley | |||
NOx_pred | NOx_obs | NOx_pred | NOx_obs | |
Minimum | 0.83 | 2.73 | 1.30 | 3.24 |
1st Quartile | 11.80 | 18.54 | 14.15 | 23.61 |
Median | 28.20 | 32.17 | 27.40 | 42.75 |
Mean | 40.29 | 49.04 | 51.21 | 63.25 |
3rd Quartile | 46.85 | 61.23 | 58.05 | 78.78 |
Maximum | 284.00 | 367.97 | 381.00 | 496.62 |
Metric | Devonshire Green | Sheffield Tinsley |
---|---|---|
FAC2 | 0.65 | 0.52 |
MB | −8.67 | −11.96 |
MAE | 25.99 | 38.18 |
NMB | −0.18 | −0.19 |
NMAE | 0.53 | 0.60 |
RMSE | 45.62 | 59.86 |
r | 0.55 | 0.62 |
COE | 0.22 | 0.12 |
Metric | July | |||
---|---|---|---|---|
Devonshire Green | Tinsley | |||
NOx_pred | NOx_obs | NOx_pred | NOx_obs | |
Minimum | 3.95 | 2.10 | 5.42 | 4.56 |
1st Quartile | 21.30 | 12.16 | 16.50 | 17.70 |
Median | 32.10 | 16.62 | 26.10 | 27.48 |
Mean | 35.78 | 19.73 | 38.71 | 32.00 |
3rd Quartile | 40.45 | 23.47 | 46.05 | 40.30 |
Maximum | 161.00 | 87.82 | 260.00 | 143.45 |
Metric | Devonshire Green | Sheffield Tinsley |
---|---|---|
FAC2 | 0.51 | 0.59 |
MB | 16.05 | 6.78 |
MAE | 19.40 | 23.58 |
NMB | 0.81 | 0.21 |
NMAE | 0.98 | 0.74 |
RMSE | 28.15 | 36.36 |
r | 0.32 | 0.34 |
COE | −1.24 | −0.65 |
Metric | January | July | ||
---|---|---|---|---|
PM10_obs | PM10_pred | PM10_obs | PM10_pred | |
Minimum | 1.50 | 0.15 | 4.00 | 0.24 |
1st Quartile | 9.83 | 0.55 | 8.55 | 0.812 |
Median | 15.20 | 1.57 | 10.35 | 1.46 |
Mean | 17.77 | 3.17 | 11.12 | 2.05 |
3rd Quartile | 22.80 | 3.17 | 12.69 | 2.38 |
Maximum | 58.35 | 28.30 | 39.20 | 13.30 |
Metric | Devonshire Green | |
---|---|---|
January | July | |
FAC2 | 0.05 | 0.06 |
MB | −14.60 | −9.07 |
MAE | 14.84 | 9.07 |
NMB | −0.82 | −0.82 |
NMAE | 0.84 | 0.82 |
RMSE | 17.59 | 9.90 |
r | 0.46 | 0.40 |
COE | −0.74 | −2.11 |
Legends→ | Red | Yellow | Green | Blue | Purple | Total |
---|---|---|---|---|---|---|
Area (sq.km) | 2.128 | 6.001 | 20.533 | 36.269 | 43.308 | 108.239 |
Pop (# residents) | 19218 | 47,517 | 81,201 | 160,797 | 143,023 | 451,756 |
NOx conc. (µg/m3) | >65 | 52–65 | 39–51 | 26–38 | 13–25 | NA |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Munir, S.; Mayfield, M.; Coca, D.; Mihaylova, L.S.; Osammor, O. Analysis of Air Pollution in Urban Areas with Airviro Dispersion Model—A Case Study in the City of Sheffield, United Kingdom. Atmosphere 2020, 11, 285. https://doi.org/10.3390/atmos11030285
Munir S, Mayfield M, Coca D, Mihaylova LS, Osammor O. Analysis of Air Pollution in Urban Areas with Airviro Dispersion Model—A Case Study in the City of Sheffield, United Kingdom. Atmosphere. 2020; 11(3):285. https://doi.org/10.3390/atmos11030285
Chicago/Turabian StyleMunir, Said, Martin Mayfield, Daniel Coca, Lyudmila S Mihaylova, and Ogo Osammor. 2020. "Analysis of Air Pollution in Urban Areas with Airviro Dispersion Model—A Case Study in the City of Sheffield, United Kingdom" Atmosphere 11, no. 3: 285. https://doi.org/10.3390/atmos11030285
APA StyleMunir, S., Mayfield, M., Coca, D., Mihaylova, L. S., & Osammor, O. (2020). Analysis of Air Pollution in Urban Areas with Airviro Dispersion Model—A Case Study in the City of Sheffield, United Kingdom. Atmosphere, 11(3), 285. https://doi.org/10.3390/atmos11030285