Near-Surface Ozone Variations in East Asia during Boreal Summer
Abstract
:1. Introduction
2. CCMI Data and Analysis Method
3. Results and Discussion
3.1. Increasing Trend of Ozone Concentration During Summer in East Asia
3.2. Interannual Variability of Detrended Ozone During Summer in East Asia
3.3. Ozone Variation, East Asia Summer Monsoon and ENSO
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Anenberg, S.C.; Schwartz, J.; Shindell, D.; Amann, M.; Faluvegi, G.; Klimont, Z.; Janssens-Maenhout, G.; Pozzoli, L.; Dingenen, R.V.; Vignati, E.; et al. Global air quality and health co-benefits of mitigating near-term climate change through methane and black carbon emission controls. Environ. Health Perspect. 2016, 120, 831–839. [Google Scholar] [CrossRef] [Green Version]
- Akimoto, H.; Kurokawa, J.; Sudo, K.; Nagashima, T.; Takemura, T.; Klimont, Z.; Amann, M.; Suzuki, K. SLCP co-control approach in East Asia: Tropospheric ozone reduction strategy by simultaneous reduction of NOx/NMVOC and methane. Atmos. Environ. 2016, 122, 588–595. [Google Scholar] [CrossRef]
- Scovronick, N.; Dora, C.; Fletcher, E.; Haines, A.; Shindell, D. Reduce short-lived climate pollutants for multiple benefits. Lancet 2015, 386, e28–e31. [Google Scholar] [CrossRef]
- Hegglin, M.I.; Shepherd, T.G. Large climate-induced changes in ultraviolet index and stratosphere-to-troposphere ozone flux. Nat. Geosci. 2009, 2, 687–691. [Google Scholar] [CrossRef]
- Lelieveld, J.; Dentener, F.J. What controls tropospheric ozone? J. Geophys. Res. 2000, 205, 3531–3551. [Google Scholar] [CrossRef]
- Neu, J.L.; Flury, T.; Manney, G.L.; Santee, M.L.; Livesey, N.J.; Worden, J. Tropospheric ozone variations governed by changes in stratospheric circulation. Nat. Geosci. 2014, 7, 340–344. [Google Scholar] [CrossRef]
- Fishman, J.; Ramanathan, V.; Crutzen, P.J.; Liu, S.C. Tropospheric Ozone and Climate. Nature 1979, 282, 818–820. [Google Scholar] [CrossRef]
- Verstraeten, W.W.; Neu, J.L.; Williams, J.E.; Bowman, K.W.; Worden, J.R.; Boersma, K.F. Rapid increases in tropospheric ozone production and export from China. Nat. Geosci. 2015, 8, 690–695. [Google Scholar] [CrossRef]
- Kurokawa, J.; Ohara, T.; Uno, I.; Hayasaki, M.; Tanimoto, H. Influence of meteorological variability on interannual variations of springtime boundary layer ozone over Japan during 1981–2005. Atmos. Chem. Phys. 2009, 9, 6287–6304. [Google Scholar] [CrossRef] [Green Version]
- Lin, M.; Holloway, T.; Oki, T.; Streets, D.G.; Richter, A. Multi-scale model analysis of boundary layer ozone over East Asia. Atmos. Chem. Phys. 2009, 9, 3277–3301. [Google Scholar] [CrossRef] [Green Version]
- Yang, Y.; Liao, H.; Li, J. Impacts of the East Asian summer monsoon on interannual variations of summertime surface-layer ozone concentrations over china. Atmos. Chem. Phys. 2014, 14, 6867–6879. [Google Scholar] [CrossRef] [Green Version]
- Stathopoulou, E.; Mihalakakou, G.; Santamouris, M.; Bagiorgas, H.S. On the impact of temperature on tropospheric ozone concentration levels in urban environments. J. Earth Syst. Sci. 2008, 117, 227–236. [Google Scholar] [CrossRef]
- Walcek, C.J.; Yuan, H.H. Calculated influence of temperature-related factors on ozone formation rates in the lower troposphere. J. Appl. Meteorol. 1995, 34, 1056–1069. [Google Scholar] [CrossRef] [Green Version]
- Fusco, A.C.; Logan, J.A. Analysis of 1970–1995 trends in tropospheric ozone at Northern Hemisphere midlatitudes with the geos-chem model. J. Geophys. Res. Atmos. 2003, 108, 4449. [Google Scholar] [CrossRef]
- Knowland, K.E.; Doherty, R.M.; Hodges, K.I.; Ott, L.E. The influence of mid-latitude cyclones on European background surface ozone. Atmos. Chem. Phys. 2017, 17, 12421–12447. [Google Scholar] [CrossRef] [Green Version]
- Roelofs, G.J.; Kentarchos, A.S.; Trickl, T.; Stohl, A.; Collins, W.J.; Crowther, R.A.; Hauglustaine, D.; Klonecki, A.; Law, K.S.; Lawrence, M.G.; et al. Intercomparison of tropospheric ozone models: Ozone transport in a complex tropopause folding event. J. Geophys. Res. 2003, 108, 8529. [Google Scholar] [CrossRef] [Green Version]
- Wie, J.; Moon, B.K. Impact of the western north Pacific subtropical high on summer surface ozone in the Korean peninsula. Atmos. Pollut. Res. 2018, 9, 655–661. [Google Scholar] [CrossRef]
- Park, H.J.; Moon, B.K.; Wie, J. Characteristics of summer tropospheric ozone over East Asia in a chemistry-climate model simulation. J. Korean Earth Sci. Soc. 2017, 38, 345–356. [Google Scholar] [CrossRef]
- Chandra, S.; Ziemke, J.R.; Min, W.; Read, W.G. Effects of 1997–1998 El Niño on tropospheric ozone and water vapor. Geophys. Res. Lett. 1998, 25, 3867–3870. [Google Scholar] [CrossRef] [Green Version]
- Sudo, K.; Takahashi, M. Simulation of tropospheric ozone changes during 1997–1998 El Niño: Meteorological impact on tropospheric photochemistry. Geophys. Res. Lett. 2001, 28, 4091–4094. [Google Scholar] [CrossRef]
- Ziemke, J.R.; Chandra, S. La Niña and El Niño-induced variabilities of ozone in the tropical lower atmosphere during 1970–2001. Geophys. Res. Lett. 2003, 30, 1142. [Google Scholar] [CrossRef]
- Granier, C.; Bessagnet, B.; Bond, T.; D’Angiola, A.; van der Gon, H.D.; Frost, G.J.; Heil, A.; Kaiser, J.W.; Kinne, S.; Klimont, Z.; et al. Evolution of anthropogenic and biomass burning emissions of air pollutants at global and regional scales during the 1980–2010 period. Clim. Chang. 2011, 109, 163–190. [Google Scholar] [CrossRef]
- Van Der A, R.J.; Eskes, H.J.; Boersma, K.F.; Van Noije, T.P.C.; Van Roozendael, M.; De Smedt, I.; Peters, D.H.M.U.; Meijer, E.W. Trends, seasonal variability and dominant NOx source derived from a ten year record of NO2 measured from space. J. Geophys. Res. Atmos. 2008, 113, D04302. [Google Scholar] [CrossRef]
- Lee, S.S.; Seo, Y.W.; Ha, K.J.; Jhun, J.G. Impact of the western north Pacific subtropical high on the East Asian monsoon precipitation and the Indian ocean precipitation in the boreal summertime. Asia Pac. J. Atmos. Sci. 2013, 49, 171–182. [Google Scholar] [CrossRef]
- Kley, D.; Crutzen, P.J.; Smit, H.G.J.; Vomel, H.; Oltmans, S.J.; Grassl, H.; Ramanathan, V. Observations of near-zero ozone concentrations over the convective pacific: Effects on air chemistry. Science 1996, 274, 230–233. [Google Scholar] [CrossRef]
- He, Y.J.; Uno, I.; Wang, Z.F.; Pochanart, P.; Li, J.; Akimoto, H. Significant impact of the East Asia monsoon on ozone seasonal behavior in the boundary layer of eastern china and the west Pacific region. Atmos. Chem. Phys. 2008, 8, 7543–7555. [Google Scholar] [CrossRef] [Green Version]
- Wie, J.; Moon, B.K. Seasonal relationship between meteorological conditions and surface ozone in Korea based on an offline chemistry-climate model. Atmos. Pollut. Res. 2016, 7, 385–392. [Google Scholar] [CrossRef]
- Eyring, V.; Lamarque, J.F.; Hess, P.; Arfeuille, F.; Bowman, K.; Chipperfiel, M.P.; Duncan, B.; Fiore, A.; Gettelman, A.; Giorgetta, M.A.; et al. Overview of IGAC/SPARC chemistry-climate model initiative (CCMI) community simulations in support of upcoming ozone and climate assessments. SPARC Newsl. 2013, 40, 48–66. [Google Scholar]
- Son, S.W.; Han, B.R.; Garfinkel, C.I.; Kim, S.Y.; Park, R.; Abraham, N.L.; Akiyoshi, H.; Archibald, A.T.; Butchart, N.; Chipperfield, M.P.; et al. Tropospheric jet response to Antarctic ozone depletion: An update with Chemistry-Climate Model Initiative (CCMI) models. Environ. Res. Lett. 2018, 13, 054024. [Google Scholar] [CrossRef]
- Orbe, C.; Yang, H.; Waugh, D.W.; Zeng, G.; Morgenstern, O.; Kinnison, D.E.; Lamarque, J.F.; Tilmes, S.; Plummer, D.A.; Scinocca, J.F.; et al. Large-scale tropospheric transport in the Chemistry-Climate Model Initiative (CCMI) simulations. Atmos. Chem. Phys. 2018, 18, 7217–7235. [Google Scholar] [CrossRef] [Green Version]
- Hegglin, M.I.; Lamarque, J.-F. The IGAC/SPARC Chemistry-Climate Model Initiative Phase-1 (CCMI-1) Model Data Output, NCAS British Atmospheric Data Centre. 20 February 2017. Available online: http://catalogue.ceda.ac.uk/uuid/9cc6b94df0f4469d8066d69b5df879d5 (accessed on 11 April 2018).
- Morgenstern, O.; Hegglin, M.I.; Rozanov, E.; O’Connor, F.M.; Abraham, N.L.; Akiyoshi, H.; Archibald, A.; Bekki, S.; Butchart, N.; Chipperfield, M.P.; et al. Review of the global models used within phase 1 of the Chemistry-Climate Model Initiative (CCMI). Geosci. Model Dev. 2017, 10, 639–671. [Google Scholar] [CrossRef] [Green Version]
- Lamarque, J.F.; Bond, T.C.; Eyring, V.; Granier, C.; Heil, A.; Klimont, Z.; Lee, D.; Liousse, C.; Mieville, A.; Owen, B.; et al. Historical (1850–2000) gridded anthropogenic and biomass burning emissions of reactive gases and aerosols: Methodology and application. Atmos. Chem. Phys. 2010, 10, 7017–7039. [Google Scholar] [CrossRef] [Green Version]
- Imai, K.; Manago, N.; Mitsuda, C.; Naito, Y.; Nishimoto, E.; Sakazaki, T.; Fujiwara, M.; Froidevaux, L.; von Clarmann, T.; Stiller, G.P.; et al. Validation of ozone data from the Superconducting Submillimeter-Wave Limb-Emission Sounder (SMILES). J. Geophys. Res. Atmos. 2013, 118, 5750–5769. [Google Scholar] [CrossRef] [Green Version]
- Akiyoshi, H.; Nakamura, T.; Miyasaka, T.; Shiotani, M.; Suzuki, M. A nudged chemistry-climate model simulation of chemical constituent distribution at northern high-latitude stratosphere observed by SMILES and MLS during the 2009/2010 stratospheric sudden warming. J. Geophys. Res. 2016, 121, 1361–1380. [Google Scholar] [CrossRef] [Green Version]
- Jonsson, A.I.; de Grandpré, J.; Fomichev, V.I.; McConnell, J.C.; Beagley, S.R. Doubled CO2-induced cooling in the middle atmosphere: Photochemical analysis of the ozone radiative feedback. J. Geophys. Res. 2004, 109, D24103. [Google Scholar] [CrossRef]
- Scinocca, J.F.; McFarlane, N.A.; Lazare, M.; Li, J.; Plummer, D. Technical Note: The CCCma third generation AGCM and its extension into the middle atmosphere. Atmos. Chem. Phys. 2008, 8, 7055–7074. [Google Scholar] [CrossRef] [Green Version]
- Jöckel, P.; Kerkweg, A.; Pozzer, A.; Sander, R.; Tost, H.; Riede, H.; Baumgaertner, A.; Gromov, S.; Kern, B. Development cycle 2 of the Modular Earth Submodel System (MESSy2). Geosci. Model Dev. 2010, 3, 717–752. [Google Scholar] [CrossRef] [Green Version]
- Jöckel, P.; Tost, H.; Pozzer, A.; Kunze, M.; Kirner, O.; Brenninkmeijer, C.A.M.; Brinkop, S.; Cai, D.S.; Dyroff, C.; Eckstein, J.; et al. Earth System Chemistry integrated Modelling (ESCiMo) with the Modular Earth Submodel System (MESSy) version 2.51. Geosci. Model Dev. 2016, 9, 1153–1200. [Google Scholar] [CrossRef] [Green Version]
- Molod, A.; Takacs, L.; Suarez, M.; Bacmeister, J.; Song, I.-S.; Eichmann, A. The GEOS-5 Atmospheric General Circulation Model: Mean Climate and Development from MERRA to Fortuna. NASA Tech. Rep. Ser. Glob. Modeling Data Assim. 2012, 28, 117. [Google Scholar]
- Molod, A.; Takacs, L.; Suarez, M.; Bacmeister, J. Development of the GEOS-5 atmospheric general circulation model: Evolution from MERRA to MERRA2. Geosci. Model Dev. 2015, 8, 1339–1356. [Google Scholar] [CrossRef] [Green Version]
- Oman, L.D.; Ziemke, J.R.; Douglass, A.R.; Waugh, D.W.; Lang, C.; Rodriguez, J.M.; Nielsen, J.E. The response of tropical tropospheric ozone to ENSO. Geophys. Res. Lett. 2011, 38, L13706. [Google Scholar] [CrossRef] [Green Version]
- Oman, L.D.; Douglass, A.R.; Ziemke, J.R.; Rodriguez, J.M.; Waugh, D.W.; Nielsen, J.E. The ozone response to ENSO in Aura satellite measurements and a chemistry-climate simulation. J. Geophys. Res. 2013, 118, 965–976. [Google Scholar] [CrossRef] [Green Version]
- Jeong, Y.-C.; Yeh, S.-W.; Lee, S.; Park, R.J. A global/regional integrated model system-chemistry climate model: 1. simulation characteristics. Earth Space Sci. 2019, 6, 2016–2030. [Google Scholar] [CrossRef]
- Josse, B.; Simon, P.; Peuch, V.-H. Radon global simulations with the multiscale chemistry and transport model MOCAGE. Tellus B 2004, 56, 339–3564. [Google Scholar] [CrossRef]
- Guth, J.; Josse, B.; Marécal, V.; Joly, M.; Hamer, P. First implementation of secondary inorganic aerosols in the MOCAGE version R2.15.0 chemistry transport model. Geosci. Model Dev. 2016, 9, 137–160. [Google Scholar] [CrossRef] [Green Version]
- Yukimoto, S.; Yoshimura, H.; Hosaka, M.; Sakami, T.; Tsujino, H.; Hirabara, M.; Tanaka, T.Y.; Deushi, M.; Obata, A.; Nakano, H.; et al. Meteorological Research Institute Earth System Model Version 1 (MRIESM1)—Model Description. Tech. Rep. MRI 2011, 64, 83. [Google Scholar]
- Yukimoto, S.; Adachi, Y.; Hosaka, M.; Sakami, T.; Yoshimura, H.; Hirabara, M.; Tanaka, T.Y.; Shindo, E.; Tsujino, H.; Deushi, M.; et al. A new global climate model of the Meteorological Research Institute: MRI-CGCM3—Model description and basic performance. J. Meteorol. Soc. Jpn. 2012, 90, 23–64. [Google Scholar] [CrossRef] [Green Version]
- Deushi, M.; Shibata, K. Development of a Meteorological Research Institute chemistry-climate model version 2 for the study of tropospheric and stratospheric chemistry. Pap. Meteorol. Geophys. 2011, 62, 1–46. [Google Scholar] [CrossRef] [Green Version]
- Stone, K.A.; Morgenstern, O.; Karoly, D.J.; Klekociuk, A.R.; French, W.J.; Abraham, N.L.; Schofield, R. Evaluation of the ACCESS—chemistry-climate model for the Southern Hemisphere. Atmos. Chem. Phys. 2016, 16, 2401–2415. [Google Scholar] [CrossRef] [Green Version]
- Morgenstern, O.; Braesicke, P.; O’Connor, F.M.; Bushell, A.C.; Johnson, C.E.; Osprey, S.M.; Pyle, J.A. Evaluation of the new UKCA climate-composition model—Part 1: The stratosphere. Geosci. Model Dev. 2009, 2, 43–57. [Google Scholar] [CrossRef] [Green Version]
- Morgenstern, O.; Zeng, G.; Abraham, N.L.; Telford, P.J.; Braesicke, P.; Pyle, J.A.; Hardiman, S.C.; O’Connor, F.M.; Johnson, C.E. Impacts of climate change, ozone recovery, and increasing methane on surface ozone and the tropospheric oxidizing capacity. J. Geophys. Res. Atmos. 2013, 118, 1028–1041. [Google Scholar] [CrossRef]
- Revell, L.E.; Tummon, F.; Stenke, A.; Sukhodolov, T.; Coulon, A.; Rozanov, E.; Garny, H.; Grewe, V.; Peter, T. Drivers of the tropospheric ozone budget throughout the 21st century under the medium-high climate scenario RCP 6.0. Atmos. Chem. Phys. 2015, 15, 5887–5902. [Google Scholar] [CrossRef] [Green Version]
- Stenke, A.; Schraner, M.; Rozanov, E.; Egorova, T.; Luo, B.; Peter, T. The SOCOL version 3.0 chemistry-climate model: Description, evaluation, and implications from an advanced transport algorithm. Geosci. Model Dev 2013, 6, 1407. [Google Scholar] [CrossRef] [Green Version]
- Pitari, G.; Aquila, V.; Kravitz, B.; Robock, A.; Watanabe, S.; Cionni, I.; De Luca, N.; Di Genova, G.; Mancini, E.; Tilmes, S. Stratospheric ozone response to sulfate geoengineering: Results from the Geoengineering Model Intercomparison Project (GeoMIP). J. Geophys. Res. 2014, 119, 2629–2653. [Google Scholar] [CrossRef]
- Bednarz, E.M.; Maycock, A.C.; Abraham, N.L.; Braesicke, P.; Dessens, O.; Pyle, J.A. Future Arctic ozone recovery: The importance of chemistry and dynamics. Atmos. Chem. Phys. 2016, 16, 12159–12176. [Google Scholar] [CrossRef] [Green Version]
- Holton, J.R. An Introduction to Dynamic Meteorology, 4th ed.; Elsevier Academic Press: New York, NY, USA; London, UK, 2004; p. 535. [Google Scholar]
- Reichler, T.; Kim, J. How well do coupled models simulate today’s climate? Bull. Am. Meteorol. Soc. 2008, 89, 303–311. [Google Scholar] [CrossRef]
- Wang, Y.; Konopka, P.; Liu, Y.; Chen, H.; Muller, R.; Ploger, F.; Riese, M.; Cai, Z.; Lu, D. Tropospheric ozone trend over Beijing from 2002–2010: Ozonesonde measurements and modeling analysis. Atmos. Chem. Phys. 2012, 12, 8389–8399. [Google Scholar] [CrossRef] [Green Version]
- Doherty, R.M.; Stevenson, D.S.; Collins, W.J.; Sanderson, M.G. Influence of convective transport on tropospheric ozone and its precursors in a chemistry-climate model. Atmos. Chem. Phys. 2005, 5, 3205–3218. [Google Scholar] [CrossRef] [Green Version]
- Hannachi, A.; Jolliffe, I.T.; Stephenson, D.B. Empirical orthogonal functions and related techniques in atmospheric science: A review. Int. J. Climatol. 2007, 27, 1119–1152. [Google Scholar] [CrossRef]
- Allen, R.J.; Sherwood, S.C.; Norris, J.R.; Zender, C.S. Recent northern hemisphere tropical expansion primarily driven by black carbon and tropospheric ozone. Nature 2012, 485, 350–354. [Google Scholar] [CrossRef]
- Yang, H.; Chen, G.; Tang, Q.; Hess, P. Quantifying isentropic stratosphere-troposphere exchange of ozone. J. Geophys. Res. Atmos. 2016, 121, 3372–3387. [Google Scholar] [CrossRef] [Green Version]
- Holton, J.R.; Haynes, P.H.; McIntyre, M.E.; Douglass, A.R.; Rood, R.B.; Pfister, L. Stratosphere-troposphere exchange. Rev. Geophys. 1995, 33, 403–439. [Google Scholar] [CrossRef]
- Song, F.F.; Zhou, T.J. The climatology and interannual variability of East Asian summer monsoon in CMIP5 coupled models: Does air-sea coupling improve the simulations? J. Clim. 2014, 27, 8761–8777. [Google Scholar] [CrossRef]
- Wang, B.; Wu, R.G.; Fu, X.H. Pacific-East Asian teleconnection: How does ENSO affect East Asian climate? J. Clim. 2000, 13, 1517–1536. [Google Scholar] [CrossRef]
- Yihui, D.; Chan, J.C.L. The East Asian summer monsoon: An overview. Meteorol. Atmos. Phys. 2005, 89, 117–142. [Google Scholar] [CrossRef]
- Wang, B.; Xiang, B.Q.; Lee, J.Y. Subtropical high predictability establishes a promising way for monsoon and tropical storm predictions. Proc. Natl. Acad. Sci. USA 2013, 110, 2718–2722. [Google Scholar] [CrossRef] [Green Version]
- Wu, R.G.; Hu, Z.Z.; Kirtman, B.P. Evolution of ENSO-related rainfall anomalies in East Asia. J. Clim. 2003, 16, 3742–3758. [Google Scholar] [CrossRef]
- Wang, B.; Wu, R.G.; Li, T. Atmosphere-warm ocean interaction and its impacts on Asian-Australian monsoon variation. J. Clim. 2003, 16, 1195–1211. [Google Scholar] [CrossRef]
- Wang, B.; Luo, X.; Yang, Y.M.; Sun, W.Y.; Cane, M.A.; Cai, W.J.; Yeh, S.W.; Liu, J. Historical change of El Niño properties sheds light on future changes of extreme El Niño. Proc. Natl. Acad. Sci. USA 2019, 116, 22512–22517. [Google Scholar] [CrossRef] [Green Version]
Model | Center and Location | Resolution | References |
---|---|---|---|
CCSRNIES-MIROC3.2 | NIES, Japan | T42 L34 | [34,35] |
CMAM | CCCma, Environment and Climate Change Canada, Canada | T47 L71 | [36,37] |
EMAC-L47MA | MESSy-Consortium, Germany | T42 L47 | [38,39] |
EMAC-L90MA | MESSy-Consortium, Germany | T42 L90 | [38,39] |
GEOSCCM | NASA/GSFC, USA | 2.0° × 2.5°, L72 | [40,41,42,43] |
GRIMs-CCM | Seoul National University, Korea | 1.9° × 1.875°, L47 | [44] |
MOCAGE | GAME/CNRM Meteo-France, France | 2.0° × 2.0°, L47 | [45,46] |
MRI-ESM1r1 | MRI, Japan | TL159 L80 | [47,48,49] |
NIWA-UKCA | NIWA, NZ | 3.75° × 2.5°, CP60 | [50,51,52] |
SOCOL3 | PMOD/WRC and IAC ETHZ, Switzerland | T42 L39 | [53,54] |
ULAQ-CCM | University of L’Aquila, Italy | T21 CP126 | [55] |
UMUKCA-UCAM | University of Cambridge, UK | 3.75° × 2.5° L60 | [51,56] |
Index | DJF NINO3 | MAM NINO3 | JJA NINO3 | JJA WPSH |
---|---|---|---|---|
PC1 | 0.34 * | 0.47 ** | 0.55 *** | 0.00 |
PC2 | −0.52 *** | −0.40 ** | 0.14 | −0.63 *** |
Model | DJF NINO3 | JJA WPSHI |
---|---|---|
CCSRNIES-MIROC3.2 | −0.50 *** | −0.42 ** |
CMAM | 0.21 | 0.35 ** |
EMAC-L47MA | −0.16 | −0.04 |
EMAC-L90MA | −0.37 ** | −0.43 ** |
GEOSCCM | −0.12 | −0.22 |
GRIMs-CCM | −0.43 ** | −0.40 ** |
MOCAGE | −0.32 * | −0.54 *** |
MRI-ESM1r1 | −0.33 * | −0.44 ** |
NIWA-UKCA | −0.37 ** | −0.33 * |
SOCOL3 | −0.35 ** | −0.02 |
ULAQ-CCM | −0.20 | −0.23 |
UMUKCA-UCAM | −0.31 * | −0.02 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wie, J.; Park, H.-J.; Lee, H.; Moon, B.-K. Near-Surface Ozone Variations in East Asia during Boreal Summer. Atmosphere 2020, 11, 206. https://doi.org/10.3390/atmos11020206
Wie J, Park H-J, Lee H, Moon B-K. Near-Surface Ozone Variations in East Asia during Boreal Summer. Atmosphere. 2020; 11(2):206. https://doi.org/10.3390/atmos11020206
Chicago/Turabian StyleWie, Jieun, Hyo-Jin Park, Hyomee Lee, and Byung-Kwon Moon. 2020. "Near-Surface Ozone Variations in East Asia during Boreal Summer" Atmosphere 11, no. 2: 206. https://doi.org/10.3390/atmos11020206
APA StyleWie, J., Park, H. -J., Lee, H., & Moon, B. -K. (2020). Near-Surface Ozone Variations in East Asia during Boreal Summer. Atmosphere, 11(2), 206. https://doi.org/10.3390/atmos11020206