Estimation of PM2.5 Concentrations in New York State: Understanding the Influence of Vertical Mixing on Surface PM2.5 Using Machine Learning
Abstract
:1. Introduction
2. Experiments
2.1. Datasets
2.1.1. Surface PM2.5 Observations
2.1.2. Meteorological Predictors
2.1.3. Aerosol Predictors
2.1.4. Geographic Predictors
2.1.5. Vertical Predictors
2.1.6. Data Processing
2.2. Model Configuration
- MLR model with set 1 predictors (MLR-1);
- MLR model and set 2 predictors (MLR-2);
- ANN model with set 1 predictors (ANN-1);
- ANN model with set 2 predictors (ANN-2).
2.3. Statistical Analysis
3. Results and Discussion
3.1. Model Performance
3.2. The Site-Variations of Model Performance
3.3. The Contributions of Predictors to Surface PM2.5 Concentrations
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Appendix A
Appendix B
U | V | RH | T | PBLH | PS | MERRA2_PM | Lat | Lon | VI | |
---|---|---|---|---|---|---|---|---|---|---|
U | ||||||||||
V | −0.04 | |||||||||
RH | −0.22 | 0.30 | ||||||||
T | 0.17 | 0.24 | −0.14 | |||||||
PBLH | 0.34 | −0.32 | −0.66 | 0.21 | ||||||
PS | −0.23 | −0.10 | −0.19 | 0.32 | 0.08 | |||||
MERRA2_PM | −0.03 | 0.26 | 0.19 | 0.39 | −0.12 | 0.16 | ||||
Lat | 0.17 | 0.04 | 0.14 | −0.35 | −0.05 | −0.70 | −0.27 | |||
Lon | −0.15 | −0.05 | −0.02 | 0.13 | 0.00 | 0.25 | 0.15 | −0.60 | ||
VI | 0.10 | 0.00 | 0.11 | −0.20 | 0.04 | −0.54 | −0.18 | 0.62 | −0.21 | |
Alt | 0.15 | 0.07 | 0.16 | −0.38 | −0.06 | −0.92 | −0.23 | 0.70 | −0.40 | 0.63 |
Weekday | −0.01 | 0.08 | 0.03 | −0.03 | 0.00 | −0.03 | 0.08 | −0.01 | 0.01 | 0.00 |
H-VWS | 0.14 | −0.26 | −0.18 | −0.32 | 0.22 | −0.02 | −0.13 | 0.03 | 0.01 | 0.02 |
M-VWS | 0.18 | −0.22 | −0.19 | −0.20 | 0.20 | −0.08 | −0.24 | 0.07 | −0.04 | 0.04 |
L-VWS | 0.14 | 0.35 | 0.25 | 0.06 | −0.28 | 0.02 | 0.16 | −0.09 | 0.07 | −0.11 |
W_avg | 0.15 | 0.02 | −0.04 | 0.14 | 0.05 | 0.29 | 0.09 | −0.23 | −0.07 | −0.21 |
AP_ratio | −0.01 | 0.00 | 0.02 | 0.00 | −0.01 | 0.00 | 0.04 | 0.00 | −0.01 | 0.00 |
AOD | −0.08 | 0.24 | 0.27 | 0.31 | −0.10 | 0.15 | 0.61 | −0.30 | 0.20 | −0.26 |
Obs_PM | 0.06 | 0.38 | 0.19 | 0.49 | −0.16 | 0.04 | 0.57 | −0.05 | −0.05 | −0.12 |
Alt | Weekday | H-VWS | M-VWS | L-VWS | W_avg | AP_ratio | AOD | |||
U | ||||||||||
V | ||||||||||
RH | ||||||||||
T | ||||||||||
PBLH | ||||||||||
PS | ||||||||||
MERR2A_P | ||||||||||
M | ||||||||||
Lat | ||||||||||
Lon | ||||||||||
VI | ||||||||||
Alt | ||||||||||
Weekday | 0.00 | |||||||||
H-VWS | 0.01 | −0.01 | ||||||||
M-VWS | 0.06 | −0.05 | 0.22 | |||||||
L-VWS | −0.11 | −0.04 | −0.11 | 0.08 | ||||||
W_avg | −0.27 | 0.01 | −0.01 | 0.04 | 0.21 | |||||
AP_ratio | 0.00 | −0.01 | 0.01 | 0.02 | 0.01 | 0.00 | ||||
AOD | −0.23 | 0.09 | −0.15 | −0.20 | 0.14 | 0.07 | 0.00 | |||
obs_PM | −0.09 | 0.02 | −0.22 | −0.26 | 0.13 | 0.06 | 0.03 | 0.40 |
Appendix C
Label | Name | ID Number | Bias (µg m−3) | R-Squared | RMSE (µg m−3) | |||
---|---|---|---|---|---|---|---|---|
Set 1 | Set 2 | Set 1 | Set 2 | Set 1 | Set 2 | |||
1 | Albany | 360010005 | −1.93 | −2.01 | 0.39 | 0.40 | 3.63 | 3.66 |
2 | Buffalo | 360290005 | 0.37 | 0.45 | 0.47 | 0.47 | 2.64 | 2.66 |
3 | Tonawanda II | 360291014 | 0.67 | 0.72 | 0.50 | 0.49 | 3.33 | 3.37 |
4 | Rochester | 360551007 | −0.51 | −0.53 | 0.45 | 0.45 | 2.83 | 2.83 |
5 | Utica | 360652001 | 1.19 | 1.12 | 0.41 | 0.40 | 3.22 | 3.21 |
6 | Whiteface Mountain | 360310003 | 2.36 | 3.47 | 0.54 | 0.52 | 3.22 | 4.13 |
7 | Rockland County | 360870005 | −0.18 | −0.19 | 0.55 | 0.56 | 2.83 | 2.82 |
8 | Pinnacle State Park | 361010003 | −2.64 | −3.06 | 0.56 | 0.55 | 3.29 | 3.65 |
9 | Bronx | 360050112 | 0.32 | 0.32 | 0.58 | 0.58 | 2.83 | 2.82 |
10 | PS 314 | 360470052 | 1.11 | 1.08 | 0.56 | 0.57 | 2.68 | 2.65 |
11 | PS 274 | 360470118 | 1.08 | 1.09 | 0.55 | 0.56 | 2.95 | 2.93 |
12 | Esienhower Park | 360590005 | 0.49 | 0.52 | 0.55 | 0.56 | 2.91 | 2.89 |
13 | IS 143 | 360610115 | −0.93 | −0.92 | 0.58 | 0.59 | 2.94 | 2.92 |
14 | Division St. | 360610134 | −0.40 | −0.41 | 0.52 | 0.53 | 2.83 | 2.80 |
15 | CCNY | 360610135 | −0.64 | −0.64 | 0.50 | 0.51 | 2.88 | 2.86 |
16 | Newburgh | 360710002 | 0.69 | 0.65 | 0.45 | 0.46 | 2.65 | 2.63 |
17 | Maspeth | 360810120 | 0.84 | 0.84 | 0.54 | 0.55 | 2.88 | 2.87 |
18 | Queens | 360810124 | −0.74 | −0.76 | 0.59 | 0.60 | 2.74 | 2.72 |
19 | FKILL | 360850111 | −1.06 | −1.06 | 0.41 | 0.42 | 3.26 | 3.25 |
20 | Holtsville | 361030009 | 1.03 | 1.09 | 0.54 | 0.54 | 2.64 | 2.67 |
21 | White Plain | 361192004 | −0.59 | −0.52 | 0.54 | 0.54 | 2.91 | 2.88 |
Appendix D
Label | Name | ID Number | Bias (µg m−3) | R-Squared | RMSE (µg m−3) | |||
---|---|---|---|---|---|---|---|---|
Set 1 | Set 2 | Set 1 | Set 2 | Set 1 | Set 2 | |||
1 | Albany | 360010005 | −1.42 | −1.52 | 0.57 | 0.55 | 2.97 | 3.07 |
2 | Buffalo | 360290005 | −0.12 | 0.66 | 0.62 | 0.62 | 2.24 | 2.61 |
3 | Tonawanda II | 360291014 | 0.23 | 0.37 | 0.62 | 0.64 | 2.88 | 2.79 |
4 | Rochester | 360551007 | −0.75 | −0.26 | 0.63 | 0.62 | 2.40 | 2.33 |
5 | Utica | 360652001 | 0.51 | 0.12 | 0.50 | 0.50 | 2.79 | 2.75 |
6 | Whiteface Mountain | 360310003 | −2.99 | −1.16 | 0.57 | 0.57 | 3.89 | 2.38 |
7 | Rockland County | 360870005 | −0.71 | −0.10 | 0.66 | 0.71 | 2.63 | 2.26 |
8 | Pinnacle State Park | 361010003 | −2.60 | −1.80 | 0.60 | 0.63 | 3.22 | 2.55 |
9 | Bronx | 360050112 | −0.60 | 0.72 | 0.73 | 0.75 | 2.35 | 2.24 |
10 | PS 314 | 360470052 | 0.28 | 0.31 | 0.73 | 0.81 | 1.92 | 1.64 |
11 | PS 274 | 360470118 | 1.25 | 1.28 | 0.73 | 0.79 | 2.47 | 2.27 |
12 | Esienhower Park | 360590005 | 0.21 | 0.34 | 0.69 | 0.71 | 2.47 | 2.44 |
13 | IS 143 | 360610115 | 0.13 | −0.16 | 0.69 | 0.74 | 2.38 | 2.20 |
14 | Division St. | 360610134 | −0.87 | −0.56 | 0.74 | 0.76 | 2.27 | 2.07 |
15 | CCNY | 360610135 | −0.98 | −1.01 | 0.70 | 0.75 | 2.40 | 2.25 |
16 | Newburgh | 360710002 | −1.74 | −0.70 | 0.46 | 0.49 | 3.10 | 2.59 |
17 | Maspeth | 360810120 | 0.14 | 0.14 | 0.76 | 0.79 | 2.05 | 1.89 |
18 | Queens | 360810124 | −0.83 | −1.36 | 0.78 | 0.78 | 2.09 | 2.38 |
19 | FKILL | 360850111 | −1.15 | −2.00 | 0.54 | 0.57 | 2.97 | 3.32 |
20 | Holtsville | 361030009 | −0.39 | −0.21 | 0.61 | 0.62 | 2.25 | 2.21 |
21 | White Plain | 361192004 | −0.88 | 0.73 | 0.66 | 0.68 | 2.71 | 2.46 |
Appendix E
Site | U | V | RH | T | PBLH (10−3) | PS (10−4) | MERRA2_PM | Lat | Lon | VI | Alt |
---|---|---|---|---|---|---|---|---|---|---|---|
MLR-1 | |||||||||||
PS 314 | 0.088 | 0.246 | 0.012 | 0.437 | −1.587 | 3.611 | 0.277 | 1.025 | 0.068 | −5.370 | 0.007 |
Rochester | 0.101 | 0.248 | 0.009 | 0.424 | −1.556 | 3.568 | 0.289 | 0.982 | 0.075 | −4.764 | 0.007 |
Rockland County | 0.114 | 0.236 | 0.012 | 0.431 | −1.586 | 3.444 | 0.277 | 1.018 | 0.055 | −4.851 | 0.006 |
MLR-2 | |||||||||||
PS 314 | 0.109 | 0.264 | 0.012 | 0.437 | −1.678 | 3.269 | 0.271 | 1.005 | 0.063 | −5.298 | 0.006 |
Rochester | 0.122 | 0.271 | 0.010 | 0.427 | −1.689 | 3.239 | 0.283 | 0.959 | 0.071 | −4.715 | 0.006 |
Rockland County | 0.137 | 0.257 | 0.013 | 0.430 | −1.690 | 3.040 | 0.272 | 0.997 | 0.052 | −4.790 | 0.006 |
Site | Weekday | AOD | H-VWS | M-VWS | L-VWS | W_avg | AP_ratio | ||||
MLR-1 | |||||||||||
PS 314 | −0.008 | 1.342 | |||||||||
Rochester | −0.008 | 1.062 | |||||||||
Rockland County | −0.004 | 1.111 | |||||||||
MLR-2 | |||||||||||
PS 314 | −0.015 | 1.357 | 91.666 | −118.698 | −83.530 | 0.625 | 0.009 | ||||
Rochester | −0.015 | 1.080 | 105.872 | −105.617 | −102.905 | 0.452 | 0.007 | ||||
Rockland County | −0.012 | 1.125 | 88.544 | −117.948 | −100.918 | 0.945 | 0.010 |
References
- Pope, I.C.; Burnett, R.T.; Thun, M.J.; Calle, E.E.; Krewski, D.; Ito, K.; Thurston, G.D. Lung cancer, cardiopulmonary mortality, and long-term exposure to fine particulate air pollution. J. Am. Med. Assoc. 2002, 287, 1132–1141. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pope, C.A.; Burnett, R.T., III; Thurston, G.D.; Thun, M.J.; Calle, E.E.; Krewski, D.; Godleski, J.J. Cardiovascular Mortality and Long-Term Exposure to Particulate Air Pollution: Epidemiological Evidence of General Pathophysiological Pathways of Disease. Circulation 2004, 1, 71–77. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Apte, J.S.; Marshall, J.D.; Cohen, A.J.; Brauer, M. Addressing Global Mortality from Ambient PM2.5. Environ. Sci. Technol. 2015, 49, 8057–8066. [Google Scholar] [CrossRef] [PubMed]
- Franklin, M.; Zeka, A.; Schwartz, J. Association between PM2.5 and all-cause and specific-cause mortality in 27 US communities. J. Expo. Sci. Environ. Epidemiol. 2007, 17, 279–287. [Google Scholar] [CrossRef] [Green Version]
- Behera, S.N.; Sharma, M. Reconstructing Primary and Secondary Components of PM2.5 Composition for an Urban Atmosphere. Aerosol Sci. Technol. 2010, 44, 983–992. [Google Scholar] [CrossRef] [Green Version]
- Edney, E.O.; Kleindienst, T.E.; Jaoui, M.; Lewandowski, M.; Offenberg, J.H.; Wang, W.; Claeys, M. Formation of 2-methyltetrols and 2-methylglyceric acid in secondary organic aerosol from laboratory irradiated isoprene/NOX/SO2/air mixtures and their detection in ambient PM2.5 samples collected in the eastern United States. Atmos. Environ. 2005, 39, 5281–5289. [Google Scholar] [CrossRef]
- Lonati, G.; Ozgen, S.; Giugliano, M. Primary and secondary carbonaceous species in PM2.5 samples in Milan (Italy). Atmos. Environ. 2007, 41, 4599–4610. [Google Scholar] [CrossRef]
- Wang, Y.; Zhuang, G.; Tang, A.; Yuan, H.; Sun, Y.; Chen, S.; Zheng, A. The ion chemistry and the source of PM2.5 aerosol in Beijing. Atmos. Environ. 2005, 39, 3771–3784. [Google Scholar] [CrossRef]
- Yu, S.; Mathur, R.; Schere, K.; Kang, D.; Pleim, J.; Young, J.; Tong, D.; Pouliot, G.; McKeen, S.A.; Rao, S.T. Evaluation of real-time PM2.5 forecasts and process analysis for PM2.5 formation over the eastern United States using the Eta-CMAQ forecast model during the 2004 ICARTT study. J. Geophys. Res. 2008, 113, D06204. [Google Scholar] [CrossRef] [Green Version]
- Dawson, J.P.; Adams, P.J.; Pandis, S.N. Sensitivity of PM2.5 to climate in the Eastern US: A modeling case study. Atmos. Chem. Phys. 2007, 7, 4295–4309. [Google Scholar] [CrossRef] [Green Version]
- Tai, A.P.K.; Mickley, L.J.; Jacob, D.J. Correlations between fine particulate matter (PM2.5) and meteorological variables in the United States: Implications for the sensitivity of PM2.5 to climate change. Atmos. Environ. 2010, 44, 3976–3984. [Google Scholar] [CrossRef]
- Tran, H.N.Q.; Mölders, N. Investigations on meteorological conditions for elevated PM2.5 in Fairbanks, Alaska. Atmos. Res. 2011, 99, 39–49. [Google Scholar] [CrossRef]
- Wang, J.; Ogawa, S. Effects of Meteorological Conditions on PM2.5 Concentrations in Nagasaki, Japan. Int. J. Environ. Res. Public Health 2015, 12, 9089–9101. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Z.; Zhang, X.; Gong, D.; Quan, W.; Zhao, X.; Ma, Z.; Kim, S.-J. Evolution of surface O3 and PM2.5 concentrations and their relationships with meteorological conditions over the last decade in Beijing. Atmos. Environ. 2015, 108, 67–75. [Google Scholar] [CrossRef]
- Chen, Y.; An, J.; Wang, X.; Sun, Y.; Wang, Z.; Duan, J. Observation of wind shear during evening transition and an estimation of submicron aerosol concentrations in Beijing using a Doppler wind lidar. J. Meteor. Res. 2017, 31, 350–362. [Google Scholar] [CrossRef]
- Li, Z.; Guo, J.; Ding, A.; Liao, H.; Liu, J.; Sun, Y.; Wang, T.; Xue, H.; Zhang, H.; Zhu, B. Aerosol and boundary-layer interactions and impact on air quality. Nat. Sci. Rev. 2017, 4, 810–833. [Google Scholar] [CrossRef]
- Yang, Y.; Yim, S.H.L.; Haywood, J.; Osborne, M.; Chan, J.C.S.; Zeng, Z.; Cheng, J.C.H. Characteristics of heavy particulate matter pollution events over Hong Kong and their relationships with vertical wind profiles using high-time-resolution Doppler lidar measurements. J. Geophys. Res. Atmos. 2019, 124, 9609–9623. [Google Scholar] [CrossRef] [Green Version]
- Zhang, J.; Rao, S.T. The Role of Vertical Mixing in the Temporal Evolution of Ground-Level Ozone Concentrations. J. Appl. Meteor. 1999, 38, 1674–1691. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Y.; Guo, J.; Yang, Y.; Wang, Y.; Yim, S.H.L. Vertical Wind Shear Modulates Particulate Matter Pollutions: A Perspective from Radar Wind Profiler Observations in Beijing, China. Remote Sens. 2020, 12, 546. [Google Scholar] [CrossRef] [Green Version]
- Hu, J.; Chen, J.; Ying, Q.; Zhang, H. One-year simulation of ozone and particulate matter in China using WRF/CMAQ modeling system. Atmos. Chem. Phys. 2016, 16, 10333–10350. [Google Scholar] [CrossRef] [Green Version]
- Saide, P.E.; Carmichael, G.R.; Spak, S.N.; Gallardo, L.; Osses, A.E.; Mena-Carrasco, M.A.; Pagowski, M. Forecasting urban PM10 and PM2.5 pollution episodes in very stable nocturnal conditions and complex terrain using WRF–Chem CO tracer model. Atmos. Environ. 2011, 45, 2769–2780. [Google Scholar] [CrossRef]
- Eeftens, M.; Beelen, R.; de Hoogh, K.; Bellander, T.; Cesaroni, G.; Cirach, M.; Declercq, C.; Dėdelė, A.; Dons, E.; De Nazelle, A.; et al. Development of Land Use Regression Models for PM2.5, PM2.5 Absorbance, PM10 and PMcoarse in 20 European Study Areas; Results of the ESCAPE Project. Environ. Sci. Technol. 2012, 46, 11195–11205. [Google Scholar] [CrossRef] [PubMed]
- Hoek, G.; Beelen, R.; de Hoogh, K.; Vienneau, D.; Gulliver, J.; Fischer, P.; Briggs, D. A review of land-use regression models to assess spatial variation of outdoor air pollution. Atmos. Environ. 2008, 42, 7561–7578. [Google Scholar] [CrossRef]
- Chu, Y.; Liu, Y.; Li, X.; Liu, Z.; Lu, H.; Lu, Y.; Mao, Z.; Chen, X.; Li, N.; Ren, M.; et al. A Review on Predicting Ground PM2.5 Concentration Using Satellite Aerosol Optical Depth. Atmosphere 2016, 7, 129. [Google Scholar] [CrossRef] [Green Version]
- Liu, Y.; Sarnat, J.A.; Kilaru, V.; Jacob, D.J.; Koutrakis, P. Estimating Ground-Level PM2.5 in the Eastern United States Using Satellite Remote Sensing. Environ. Sci. Technol. 2005, 39, 3269–3278. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Van Donkelaar, A.; Martin, R.V.; Spurr, R.J.D.; Burnett, R.T. High-Resolution Satellite-Derived PM2.5 from Optimal Estimation and Geographically Weighted Regression over North America. Environ. Sci. Technol. 2015, 49, 10482–10491. [Google Scholar] [CrossRef]
- Gupta, P.; Christopher, S.A. Particulate matter air quality assessment using integrated surface, satellite, and meteorological products: Multiple regression approach. J. Geophys. Res. 2009, 114, D14205. [Google Scholar] [CrossRef] [Green Version]
- Gupta, P.; Christopher, S.A. Particulate matter air quality assessment using integrated surface, satellite, and meteorological products: 2. A neural network approach. J. Geophys. Res. 2009, 114, D20205. [Google Scholar] [CrossRef]
- Reid, C.E.; Jerrett, M.; Petersen, M.L.; Pfister, G.G.; Morefield, P.E.; Tager, I.B.; Raffuse, S.M.; Balmes, J.R. Spatiotemporal Prediction of Fine Particulate Matter During the 2008 Northern California Wildfires Using Machine Learning. Environ. Sci. Technol. 2015, 49, 3887–3896. [Google Scholar] [CrossRef]
- Engel-Cox, J.A.; Holloman, C.H.; Coutant, B.W.; Hoff, R.M. Qualitative and quantitative evaluation of MODIS satellite sensor data for regional and urban scale air quality. Atmos. Environ. 2004, 38, 2495–2509. [Google Scholar] [CrossRef]
- Weber, S.A.; Engel-Cox, J.A.; Hoff, R.M.; Prados, A.I.; Zhang, H. An improved method for estimating surface fine particle concentrations using seasonally adjusted satellite aerosol optical depth. J. Air Waste Manag. Assoc. 2010, 60, 574–585. [Google Scholar] [CrossRef] [PubMed]
- Xu, Y.; Ho, H.C.; Wong, M.S.; Deng, C.; Shi, Y.; Chan, T.-C.; Knudby, A. Evaluation of machine learning techniques with multiple remote sensing datasets in estimating monthly concentrations of ground-level PM2.5. Environ. Pollut. 2018, 242, 1417–1426. [Google Scholar] [CrossRef] [PubMed]
- Xue, T.; Zheng, Y.; Tong, D.; Zheng, B.; Li, X.; Zhu, T.; Zhang, Q. Spatiotemporal continuous estimates of PM2.5 concentrations in China, 2000–2016: A machine learning method with inputs from satellites, chemical transport model, and ground observations. Environ. Int. 2019, 123, 345–357. [Google Scholar] [CrossRef] [PubMed]
- Yao, J.; Brauer, M.; Raffuse, S.; Henderson, S.B. Machine Learning Approach to Estimate Hourly Exposure to Fine Particulate Matter for Urban, Rural, and Remote Populations during Wildfire Seasons. Environ. Sci. Technol. 2018, 52, 13239–13249. [Google Scholar] [CrossRef] [PubMed]
- Emami, F.; Masiol, M.; Hopke, P.K. Air pollution at Rochester, NY: Long-term trends and multivariate analysis of upwind SO2 source impacts. Sci. Total Environ. 2018, 612, 1506–1515. [Google Scholar] [CrossRef] [PubMed]
- Rattigan, O.V.; Felton, H.D.; Bae, M.-S.; Schwab, J.J.; Demerjian, K.L. Multi-year hourly PM2.5 carbon measurements in New York: Diurnal, day of week and seasonal patterns. Atmos. Environ. 2010, 44, 2043–2053. [Google Scholar] [CrossRef]
- Rattigan, O.V.; Civerolo, K.L.; Felton, H.D.; Schwab, J.J.; Demerjian, K.L. Long Term Trends in New York: PM2.5 Mass and Particle Components. Aerosol Air Qual. Res. 2015, 16, 191–1203. [Google Scholar] [CrossRef] [Green Version]
- Squizzato, S.; Masiol, M.; Rich, D.Q.; Hopke, P.K. PM2.5 and gaseous pollutants in New York state during 2005–2016: Spatial variability, temporal trends, and economic influences. Atmos. Environ. 2018, 183, 209–224. [Google Scholar] [CrossRef]
- Bari, A.; Dutkiewicz, V.A.; Judd, C.D.; Wilson, L.R.; Luttinger, D.; Husain, L. Regional sources of particulate sulfate, SO2, PM2.5, HCL, HNO3, HONO and NH3 in New York, NY. Atmos. Environ. 2003, 37, 2837–2844. [Google Scholar] [CrossRef]
- Qin, Y.; Kim, E.; Hopke, P.K. The concentrations and sources of PM2.5 in metropolitan New York City. Atmos. Environ. 2006, 40, 312–332. [Google Scholar] [CrossRef]
- DeGaetano, A.T.; Doherty, O.M. Temporal, spatial and meteorological variations in hourly PM2.5 concentration extremes in New York City. Atmos. Environ. 2004, 38, 1547–1558. [Google Scholar] [CrossRef]
- Dutkiewicz, V.A.; Das, M.; Husain, L. The relationship between regional SO2 emissions and downwind aerosol sulfate concentrations in the Northeastern US. Atmos. Environ. 2000, 34, 1821–1832. [Google Scholar] [CrossRef]
- Dutkiewicz, V.A.; Qureshi, S.; Khan, A.R.; Ferraro, V.; Schwab, J.; Demerjian, K.; Husain, L. Sources of fine particulate sulfate in New York. Atmos. Environ. 2004, 38, 3179–3189. [Google Scholar] [CrossRef]
- Dutkiewicz, V.A.; Husain, L.; Roychowdhury, U.K.; Demerjian, K.L. Impact of Canadian wildfire smoke on air quality at two rural sites in NY State. Atmos. Environ. 2011, 45, 2028–2033. [Google Scholar] [CrossRef]
- Hung, W.-T.; Lu, C.-H.S.; Shrestha, B.; Lin, H.-C.; Lin, C.-A.; Grohan, D.; Hong, J.; Ahmadov, R.; James, E.; Joseph, E. The impacts of transported wildfire smoke aerosols on surface air quality in New York State: A case study in summer 2018. Atmos. Environ. 2020, 227, 117415. [Google Scholar] [CrossRef]
- Roger, H.M.; Ditto, J.C.; Gentner, D.R. Evidence for impacts on surface-level air quality in the northeastern US from long-distance transport of smoke from North American fires during the Long Island Sound Tropospheric Ozone Study (LISTOS) 2018. Atmos. Chem. Phys. 2020, 20, 671–682. [Google Scholar] [CrossRef] [Green Version]
- Wu, Y.; Arapi, A.; Huang, J.; Gross, B.; Moshary, F. Intra-continental wildfire smoke transport and impact on local air quality observed by ground-based and satellite remote sensing in New York City. Atmos. Environ. 2018, 187, 266–281. [Google Scholar] [CrossRef]
- Zu, K.; Tao, G.; Long, K.; Goodman, J.; Valberg, P. Long-range fine particulate matter from the 2002 Quebec forest fires and daily mortality in Greater Boston and New York City. Air Qual. Atmos. Health 2016, 9, 213–221. [Google Scholar] [CrossRef] [Green Version]
- Alexander, C.R.; Weygandt, S.S.; Smirnova, T.G.; Benjamin, S.; Hofmann, P.; James, E.P.; Koch, D.A. High Resolution Rapid Refresh (HRRR): Recent enhancements and evaluation during the 2010 convective season. In Proceedings of the 25th Conference on Severe Local Storms, Denver, CO, USA, 12 October 2010. [Google Scholar]
- Cao, C.; Deluccia, F.; Xiong, X.; Wolfe, R.; Weng, F. Early on-orbit performance of the VIIRS onboard the S-NPP satellite. IEEE Trans. Geosci. Remote Sens. 2013, 99. [Google Scholar] [CrossRef] [Green Version]
- Gelaro, R.; McCarty, W.; Suárez, M.J.; Todling, R.; Molod, A.; Takacs, L.; Randles, C.A.; Darmenov, A.; Bosilovich, M.G.; Reichle, R.; et al. The Modern-Era Retrospective Analysis for Research and Applications, Version 2 (MERRA-2). J. Climate 2017, 30, 5419–5454. [Google Scholar] [CrossRef]
- Colarco, P.; da Silva, A.; Chin, M.; Diehl, T. Online simulations of global aerosol distributions in the NASA GEOS-4 model and comparisons to satellite and ground-based aerosol optical depth. J. Geophys. Res. 2010, 115, D14207. [Google Scholar] [CrossRef] [Green Version]
- Buchard, V.; Randles, C.A.; da Silva, A.M.; Darmenov, A.; Colarco, P.R.; Govindaraju, R.; Ferrare, R.; Hair, J.; Beyersdorf, A.J.; Ziemba, L.D.; et al. The MERRA-2 Aerosol Reanalysis, 1980 Onward. Part II: Evaluation and Case Studies. J. Climate 2017, 30, 6851–6872. [Google Scholar] [CrossRef] [PubMed]
- Randles, C.A.; da Silva, A.M.; Buchard, V.; Colarco, P.R.; Darmenov, A.; Govindaraju, R.; Smirnov, A.; Holben, B.; Ferrare, R.; Hair, J.; et al. The MERRA-2 Aerosol Reanalysis, 1980 Onward. Part I: System description and data assimilation evaluation. J. Climate 2017, 30, 6823–6850. [Google Scholar] [CrossRef]
- Huete, A.; Didan, K.; Miura, T.; Rodriguez, E.P.; Gao, X.; Ferreira, L.G. Overview of the radiometric and biophysical performance of the MODIS vegetation indices. Remote Sens. Environ. 2002, 83, 195–213. [Google Scholar] [CrossRef]
- Obata, K.; Miura, T.; Yoshioka, H.; Huete, A.R.; Vargas, M. Spectral Cross-Calibration of VIIRS Enhanced Vegetation Index with MODIS: A Case Study Using Year-Long Global Data. Remote Sens. 2016, 8, 34. [Google Scholar] [CrossRef] [Green Version]
- Géron, A. Hands-on Machine Learning with Scikit-Learn and TensorFlow: Concepts, Tools, and Techniques to Build Intelligent Systems; O’Reilly Media: Sebastopol, CA, USA, 2017; ISBN 978-1491962299. [Google Scholar]
- Hornik, K.; Stinchcombe, M.; White, H. Multilayer feedforward networks are universal approximators. Neural Netw. 1989, 2, 359–366. [Google Scholar] [CrossRef]
- LeCun, Y.; Bottou, L.; Bengio, Y.; Haffner, P. Gradient-Based Learning Applied to Document Recognition. Proc. IEEE 1998, 86, 2278–2324. [Google Scholar] [CrossRef] [Green Version]
- Fletcher, D.; Goss, E. Forecasting with neural networks: An application using bankruptcy data. Inf. Manag. 1993, 24, 159–167. [Google Scholar] [CrossRef]
- Chollet, F. Deep Learning with Python; Manning Publications Co.: Greenwich, CT, USA, 2017; ISBN 9781617294433. [Google Scholar]
- Sammut, C.; Webb, G.I. Encyclopedia of Machine Learning; Springer Publishing Company: New York, NY, USA, 2011; ISBN 9780387301648. [Google Scholar]
- Watson, G.; Telesca, D.; Reid, C.; Pfister, G.; Jerrett, M. Machine learning models accurately model ozone exposure during wildfire events. Environ. Pollut. 2019, 254. [Google Scholar] [CrossRef]
- Breiman, L. Random forests. Mach. Learn. 2001, 45, 5–32. [Google Scholar] [CrossRef] [Green Version]
- McGovern, A.; Lagerquist, R.; Gagne, D.J.; Jergensen, G.E.; Elmore, K.L.; Homeyer, C.R.; Smith, T. Making the Black Box More Transparent: Understanding the Physical Implications of Machine Learning. Bull. Amer. Meteor. Soc. 2019, 100, 2175–2199. [Google Scholar] [CrossRef]
- Pal, S.; Davis, K.J.; Lauvaux, T.; Browell, E.V.; Gaudet, B.J.; Stauffer, D.R.; Obland, M.D.; Choi, Y.; DiGangi, J.P.; Feng, S.; et al. Observations of greenhouse gas changes across summer frontal boundaries in the eastern United States. J. Geophys. Res. Atmos. 2020, 125, e2019JD030526. [Google Scholar] [CrossRef]
Variable | Source | Level | Spatial Resolution | Temporal Resolution |
---|---|---|---|---|
Target | ||||
PM2.5 observation (µg m−3) | EPA AQS 1 | Surface | Hourly | |
Meteorological predictors | ||||
Surface pressure (Pa) | HRRR 2 | Surface | 3 km | 3-hourly |
Temperature (K) | HRRR | 2 m a.g.l. | 3 km | 3-hourly |
Relative humidity (%) | HRRR | 2 m a.g.l. | 3 km | 3-hourly |
U-component of horizontal wind (m s−1) | HRRR | 10 m a.g.l. | 3 km | 3-hourly |
V-component of horizontal wind (m s−1) | HRRR | 10 m a.g.l. | 3 km | 3-hourly |
Planetary boundary layer height (m) | HRRR | 3 km | 3-hourly | |
Aerosol predictors | ||||
Aerosol optical depth | VIIRS 3 | Total column | 0.25° × 0.25° | Daily |
PM2.5 concentration (µg m−3) | MERRA-2 4 | Surface | 0.5° × 0.625° | Hourly |
Geographic predictors | ||||
Latitude | EPA AQS | |||
Longitude | EPA AQS | |||
Altitude (m) | EPA AQS | |||
Vegetation index | VIIRS 5 | Surface | 0.05° × 0.05° | Monthly |
Weekday | Daily | |||
Vertical predictors | ||||
Wind shear (s−1) | HRRR | Surface—850 hPa 850—700 hPa 700—500 hPa | 3 km | 3-hourly |
Average vertical velocity (Pa s−1) | HRRR | Surface—500 hPa | 3 km | 3-hourly |
Ratio of AOD change rate to PM change rate | VIIRS | 0.25° × 0.25° | Daily | |
EPA AQS | Daily |
Label | Name | ID Number | Latitude | Longitude | Altitude (m) | Type |
---|---|---|---|---|---|---|
1 | Albany | 360010005 | 42.64 | −73.75 | 7 | UNY |
2 | Buffalo | 360290005 | 42.88 | −78.81 | 185 | UNY |
3 | Tonawanda II | 360291014 | 43 | −78.9 | 182 | UNY |
4 | Rochester * | 360551007 | 43.15 | −77.55 | 137 | UNY |
5 | Utica | 360652001 | 43.1 | −75.22 | 139 | UNY |
6 | Whiteface Mountain | 360310003 | 44.36 | −73.9 | 599 | Rural |
7 | Rockland County | 360870005 | 41.18 | −74.03 | 140 | Rural |
8 | Pinnacle State Park * | 361010003 | 42.1 | −77.21 | 507 | Rural |
9 | Bronx | 360050112 | 40.81 | −73.89 | 20 | NYC |
10 | PS 314 | 360470052 | 40.64 | −74.02 | 26 | NYC |
11 | PS 274 | 360470118 | 40.69 | −73.93 | 18 | NYC |
12 | Esienhower Park | 360590005 | 40.74 | −73.59 | 27 | NYC |
13 | IS 143 | 360610115 | 40.85 | −73.93 | 0 | NYC |
14 | Division St. | 360610134 | 40.71 | −73.99 | 17 | NYC |
15 | CCNY | 360610135 | 40.82 | −73.95 | 45 | NYC |
16 | Newburgh | 360710002 | 41.5 | −74.01 | 127 | NYC |
17 | Maspeth | 360810120 | 40.73 | −73.89 | 31 | NYC |
18 | Queens * | 360810124 | 40.74 | −73.82 | 25 | NYC |
19 | FKILL | 360850111 | 40.58 | −74.2 | 3 | NYC |
20 | Holtsville | 361030009 | 40.83 | −73.06 | 45 | NYC |
21 | White Plain | 361192004 | 41.05 | −73.76 | 64 | NYC |
Model | Bias (µg m−3) | R-Squared | RMSE (µg m−3) |
---|---|---|---|
MLR-1 | 0.03 ± 1.14 | 0.51 ± 0.06 | 2.96 ± 0.26 |
MLR-2 | 0.06 ± 1.31 | 0.52 ± 0.06 | 3.01 ± 0.39 |
ANN-1 | −0.63 ± 0.99 | 0.65 ± 0.09 | 2.59 ± 0.45 |
ANN-2 | −0.29 ± 0.88 | 0.67 ± 0.10 | 2.42 ± 0.37 |
Model | Bias (µg m−3) | R-Squared | RMSE (µg m−3) |
---|---|---|---|
Rural sites | |||
MLR-1 | −0.15 ± 2.04 | 0.55 ± 0.01 | 3.11 ± 0.20 |
MLR-2 | 0.07 ± 2.67 | 0.54 ± 0.02 | 3.53 ± 0.54 |
ANN-1 | −2.10 ± 1.00 | 0.61 ± 0.04 | 3.25 ± 0.51 |
ANN-2 | −1.02 ± 0.70 | 0.64 ± 0.06 | 2.40 ± 0.12 |
NYC sites | |||
MLR-1 | 0.09 ± 0.80 | 0.53 ± 0.05 | 2.85 ± 0.16 |
MLR-2 | 0.10 ± 0.80 | 0.54 ± 0.05 | 2.84 ± 0.15 |
ANN-1 | −0.42 ± 0.76 | 0.68 ± 0.09 | 2.42 ± 0.33 |
ANN-2 | −0.19 ± 0.89 | 0.71 ± 0.09 | 2.31 ± 0.38 |
UNY sites | |||
MLR-1 | −0.04 ± 1.09 | 0.45 ± 0.04 | 3.13 ± 0.35 |
MLR-2 | −0.05 ± 1.12 | 0.44 ± 0.04 | 3.15 ± 0.36 |
ANN-1 | −0.31 ± 0.70 | 0.59 ± 0.05 | 2.66 ± 0.29 |
ANN-2 | −0.13 ± 0.76 | 0.58 ± 0.05 | 2.71 ± 0.24 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hung, W.-T.; Lu, C.-H.; Alessandrini, S.; Kumar, R.; Lin, C.-A. Estimation of PM2.5 Concentrations in New York State: Understanding the Influence of Vertical Mixing on Surface PM2.5 Using Machine Learning. Atmosphere 2020, 11, 1303. https://doi.org/10.3390/atmos11121303
Hung W-T, Lu C-H, Alessandrini S, Kumar R, Lin C-A. Estimation of PM2.5 Concentrations in New York State: Understanding the Influence of Vertical Mixing on Surface PM2.5 Using Machine Learning. Atmosphere. 2020; 11(12):1303. https://doi.org/10.3390/atmos11121303
Chicago/Turabian StyleHung, Wei-Ting, Cheng-Hsuan (Sarah) Lu, Stefano Alessandrini, Rajesh Kumar, and Chin-An Lin. 2020. "Estimation of PM2.5 Concentrations in New York State: Understanding the Influence of Vertical Mixing on Surface PM2.5 Using Machine Learning" Atmosphere 11, no. 12: 1303. https://doi.org/10.3390/atmos11121303
APA StyleHung, W. -T., Lu, C. -H., Alessandrini, S., Kumar, R., & Lin, C. -A. (2020). Estimation of PM2.5 Concentrations in New York State: Understanding the Influence of Vertical Mixing on Surface PM2.5 Using Machine Learning. Atmosphere, 11(12), 1303. https://doi.org/10.3390/atmos11121303