A Simple Conceptual Model for the Heat Induced Circulation over Northern South America and Meso-America
Abstract
:1. Introduction
1.1. The Rainiest Place on Earth
1.2. A Strong Diabatic Heating Source
1.3. Far Eastern Pacific Cyclonic Vortexes
1.4. The Atlantic—South America Walker Circulation
1.5. The Central Hypothesis of This Work
1.6. The Organization of the Paper
2. Results
2.1. Main Flow Patterns over Northern South America and Mesoamerica
2.2. Response to an Asymmetric Location of the Diabatic Heating Source
2.3. Ambient Wind Influence
2.4. Mechanism for a Regional Heat-Induced Circulation
3. Discussion
3.1. The Rossby-Kelvin Pattern from Matsuno-Gill Model Matches with the Main Features of Northern South America and Meso-America Circulation
3.2. Next Task: To Extend This Explanation to Different Time Scales
4. Materials and Methods
4.1. Data
4.2. Methods
4.2.1. Drawing the Main Features of Heat-Induced Circulation
4.2.2. Idealized Model
4.2.3. Theoretical Experiments
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Poveda, G.; Waylen, P.R.; Pulwarty, R.S. Annual and inter-annual variability of the present climate in northern South America and southern Mesoamerica. Palaeogeogr. Palaeoclimatol. Palaeoecol. 2006, 234, 3–27. [Google Scholar] [CrossRef]
- Poveda, G.; Jaramillo, L.; Vallejo, L.F. Seasonal precipitation patterns along pathways of South American low-level jets and aerial rivers. Water Resour. Res. 2014, 50, 98–118. [Google Scholar] [CrossRef]
- Arias, P.A.; Martínez, J.A.; Vieira, S.C. Moisture sources to the 2010–2012 anomalous wet season in northern South America. Clim. Dyn. 2015, 45, 2861–2884. [Google Scholar] [CrossRef]
- Poveda, G.; Mesa, O.J. On the existence of Lloró (the rainiest locality on Earth): Enhanced ocean-land-atmosphere interaction by a low-level jet. Geophys. Res. Lett. 2000, 27, 1675–1678. [Google Scholar] [CrossRef] [Green Version]
- Ahrens, C.D. Essentials of Meteorology: An Introduction to the Atmosphere, 2nd ed.; Wadsworth: Belmont, CA, USA, 1998. [Google Scholar]
- Xie, S.P.; Xu, H.; Saji, N.; Wang, Y.; Liu, W.T. Role of narrow mountains in large-scale organization of Asian monsoon convection. J. Clim. 2006, 19, 3420–3429. [Google Scholar] [CrossRef]
- Chan, S.C.; Nigam, S. Residual diagnosis of diabatic heating from ERA-40 and NCEP reanalyses: Intercomparisons with TRMM. J. Clim. 2009, 22, 414–428. [Google Scholar] [CrossRef] [Green Version]
- Zhang, K.; Randel, W.J.; Fu, R. Relationships between outgoing longwave radiation and diabatic heating in reanalyses. Clim. Dyn. 2017, 49, 2911–2929. [Google Scholar] [CrossRef]
- Serra, Y.L.; Kiladis, G.N.; Hodges, K.I. Tracking and mean structure of easterly waves over the Intra-Americas Sea. J. Clim. 2010, 23, 4823–4840. [Google Scholar] [CrossRef]
- Stensrud, D.J. Importance of Low-Level Jets to Climate: A Review. J. Clim. 1996, 9, 1698–1711. [Google Scholar] [CrossRef]
- Bjerknes, J. Atmospheric teleconnections from the equatorial Pacific. Mon. Wea. Rev 1969, 97, 163–172. [Google Scholar] [CrossRef]
- Krishnamurti, T. Tropical east-west circulations during the northern summer. J. Atmos. Sci. 1971, 28, 1342–1347. [Google Scholar] [CrossRef] [Green Version]
- Krishnamurti, T.; Kanamitsu, M.; Koss, W.J.; Lee, J.D. Tropical east–west circulations during the northern winter. J. Atmos. Sci. 1973, 30, 780–787. [Google Scholar] [CrossRef] [Green Version]
- Trenberth, K.E.; Stepaniak, D.P.; Caron, J.M. The global monsoon as seen through the divergent atmospheric circulation. J. Clim. 2000, 13, 3969–3993. [Google Scholar] [CrossRef]
- Webster, P.J. The large-scale structure of the tropical atmosphere. In Large-Scale Dynamical Processes in the Atmosphere; Cambridge University Press: Cambridge, UK, 2001; p. 235. [Google Scholar]
- Lau, K.; Yang, S. Walker circulation. Encycl. Atmos. Sci. 2003, 2505–2510. [Google Scholar]
- Stechmann, S.N.; Ogrosky, H.R. The Walker circulation, diabatic heating, and outgoing longwave radiation. Geophys. Res. Lett. 2014, 41, 9097–9105. [Google Scholar] [CrossRef]
- Wang, C. Atlantic climate variability and its associated atmospheric circulation cells. J. Clim. 2002, 15, 1516–1536. [Google Scholar] [CrossRef]
- Wang, C. ENSO, Atlantic climate variability, and the Walker and Hadley circulations. In The Hadley Circulation: Present, Past and Future; Springer: Berlin/Heidelberg, Germany, 2004; pp. 173–202. [Google Scholar]
- Webster, P.J. Response of the tropical atmosphere to local, steady forcing. Mon. Wea. Rev. 1972, 100, 518–541. [Google Scholar] [CrossRef]
- Gill, A.E. Some simple solutions for heat-induced tropical circulation. Q. J. R. Meteorol. Soc. 1980, 106, 447–462. [Google Scholar] [CrossRef]
- Matsuno, T. Quasi-geostrophic motions in the equatorial area. J. Meteorol. Soc. Japan. Ser. II 1966, 44, 25–43. [Google Scholar] [CrossRef] [Green Version]
- Holton, J.R.; Hakim, G.J. An Introduction to Dynamic Meteorology; Academic Press: Cambridge, MA, USA, 2012; Volume 88. [Google Scholar]
- Phlips, P.; Gill, A. An analytic model of the heat-induced tropical circulation in the presence of a mean wind. Q. J. R. Meteorol. Soc. 1987, 113, 213–236. [Google Scholar] [CrossRef]
- Hurtado-Montoya, A.F.; Mesa, Ó.J. Reanalysis of monthly precipitation fields in Colombian territory. Dyna 2014, 81, 251–258. [Google Scholar] [CrossRef]
- Kållberg, P.; Berrisford, P.; Hoskins, B.; Simmons, A.; Lamy-thépaut, S.; Hine, R. ERA-40 Atlas; ECMWF: Shinfield Park, Reading, UK, 2005. [Google Scholar]
- Volland, H. Atmospheric Tidal and Planetary Waves; Springer Science & Business Medi: Berlin, Germany, 2012; Volume 12. [Google Scholar]
- Anderson, D.L. The low-level jet as a western boundary current. Mon. Weather Rev. 1976, 104, 907–921. [Google Scholar] [CrossRef] [Green Version]
- Dee, D.P.; Uppala, S.M.; Simmons, A.; Berrisford, P.; Poli, P.; Kobayashi, S.; Andrae, U.; Balmaseda, M.; Balsamo, G.; Bauer, d.P.; et al. The ERA-Interim reanalysis: Configuration and performance of the data assimilation system. Q. J. R. Meteorol. Soc. 2011, 137, 553–597. [Google Scholar] [CrossRef]
- Hoyos, I.; Baquero-Bernal, A.; Hagemann, S. How accurately are climatological characteristics and surface water and energy balances represented for the Colombian Caribbean Catchment Basin? Clim. Dyn. 2013, 41, 1269–1290. [Google Scholar] [CrossRef]
- Hoyos, I.; Dominguez, F.; Cañón-Barriga, J.; Martínez, J.; Nieto, R.; Gimeno, L.; Dirmeyer, P. Moisture origin and transport processes in Colombia, northern South America. Clim. Dyn. 2018, 50, 971–990. [Google Scholar] [CrossRef]
- Davey, M.; Gill, A. Experiments on tropical circulation with a simple moist model. Q. J. R. Meteorol. Soc. 1987, 113, 1237–1269. [Google Scholar] [CrossRef]
- Abramowitz, M. Handbook of Mathematical Functions; National Bureau of, Standards, Ed.; Number 55 in Applied Mathematics Series, National Bureau of Standards; U.S. Government Printing Office: Washington, DC, USA, 1964.
- Dalu, G.A.; Gaetani, M.; Lavaysse, C.; Flamant, C.; Evan, A.T.; Baldi, M. Simple solutions for the summer shallow atmospheric circulation over North Africa. Q. J. R. Meteorol. Soc. 2018, 144, 765–779. [Google Scholar] [CrossRef] [Green Version]
Station | First | Lat. | Lon. | P Mean | P Max |
---|---|---|---|---|---|
Year | mm/Year | mm/Year | |||
Pto López | 1960 | 2.85 | −77.25 | 13,159 | 22,572 |
Concha La | 1985 | 3.17 | −77.14 | 12,069 | 20,288 |
Tutunendo | 1966 | 5.74 | −76.54 | 10,946 | 19,468 |
Yurumangui | 1980 | 3.26 | −77.26 | 10,536 | 26,987 |
Junín | 1963 | 1.34 | −78.12 | 9106 | 12,125 |
Nóvita | 1966 | 4.96 | −76.61 | 9020 | 13,763 |
Vuelta la | 1943 | 5.46 | −76.55 | 8741 | 11,522 |
Bebedó | 1973 | 4.93 | −76.83 | 8724 | 13,551 |
Cértegui | 1967 | 5.38 | −76.61 | 8264 | 11,522 |
Lloró | 1983 | 5.50 | −76.54 | 8240 | 10,695 |
Apto El Carano | 1947 | 5.69 | −76.64 | 8128 | 12,182 |
Opogodó | 1966 | 5.06 | −76.65 | 8029 | 14,157 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rojo Hernández, J.D.; Mesa, Ó.J. A Simple Conceptual Model for the Heat Induced Circulation over Northern South America and Meso-America. Atmosphere 2020, 11, 1235. https://doi.org/10.3390/atmos11111235
Rojo Hernández JD, Mesa ÓJ. A Simple Conceptual Model for the Heat Induced Circulation over Northern South America and Meso-America. Atmosphere. 2020; 11(11):1235. https://doi.org/10.3390/atmos11111235
Chicago/Turabian StyleRojo Hernández, Julián David, and Óscar José Mesa. 2020. "A Simple Conceptual Model for the Heat Induced Circulation over Northern South America and Meso-America" Atmosphere 11, no. 11: 1235. https://doi.org/10.3390/atmos11111235
APA StyleRojo Hernández, J. D., & Mesa, Ó. J. (2020). A Simple Conceptual Model for the Heat Induced Circulation over Northern South America and Meso-America. Atmosphere, 11(11), 1235. https://doi.org/10.3390/atmos11111235