Assessment of Gridded CRU TS Data for Long-Term Climatic Water Balance Monitoring over the São Francisco Watershed, Brazil
Abstract
:1. Introduction
2. Material and Methods
2.1. CRU TS v4.02 Data
2.2. Point-Based Measurement Data
2.3. Thornthwaite’s Potential Evapotranspiration
2.4. Observed Data Quality Control
2.5. Statistical Assessment
2.5.1. Spatial and Temporal Units of Analysis
2.5.2. Accuracy Measurement
2.5.3. Trend Test and Change Point Detection
3. Results
3.1. Overall Spatial and Temporal Performance
3.2. Seasonal Performance
3.3. Trends and Change-Point Comparisons
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Appendix A
Month | USF | MSF | LMSF | LSF | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
CRU (µ ± σ) | Obs (µ ± σ) | Reliability | CRU (µ ± σ) | Obs (µ ± σ) | Reliability | CRU (µ ± σ) | Obs (µ ± σ) | Reliability | CRU (µ ± σ) | Obs (µ ± σ) | Reliability | |
1942–1966 | ||||||||||||
Jan | 281(±125) | 276(±168) | ✓ | 190(±116) | 191(±162) | ✗ | 63(±54) | 68(±69) | ✗ | 49(±41) | 45(±48) | ✗ |
Feb | 177(±67) | 211(±111) | ✓ | 137(±73) | 134(±93) | ✗ | 75(±55) | 73(±64) | ✗ | 50(±40) | 51(±56) | ✗ |
Mar | 151(±66) | 160(±104) | ✓ | 143(±92) | 119(±105) | ✗ | 114(±96) | 107(±97) | ✗ | 91(±76) | 95(±81) | ✗ |
Apr | 62(±28) | 47(±43) | ✗ | 69(±49) | 56(±57) | ✗ | 76(±53) | 87(±83) | ✗ | 112(±84) | 138(±109) | ✗ |
May | 30(±20) | 27(±31) | ✗ | 17(±19) | 10(±15) | ✗ | 39(±44) | 48(±59) | ✗ | 137(±122) | 145(±114) | ✗ |
Jun | 12(±11) | 9(±15) | ✗ | 3(±7) | 2(±6) | ✗ | 29(±41) | 36(±50) | ✗ | 107(±84) | 124(±83) | ✗ |
Jul | 13(±14) | 7(±15) | ✗ | 5(±11) | 2(±7) | ✗ | 22(±35) | 30(±48) | ✗ | 96(±76) | 96(±72) | ✗ |
Aug | 9(±10) | 5(±13) | ✗ | 3(±7) | 1(±4) | ✗ | 13(±23) | 16(±27) | ✗ | 64(±56) | 55(±48) | ✗ |
Sep | 36(±27) | 30(±34) | ✗ | 20(±24) | 11(±19) | ✗ | 7(±13) | 12(±21) | ✗ | 35(±42) | 40(±45) | ✗ |
Oct | 116(±58) | 110(±76) | ✓ | 84(±62) | 59(±62) | ✗ | 12(±21) | 17(±27) | ✗ | 22(±23) | 26(±37) | ✗ |
Nov | 208(±59) | 186(±89) | ✓ | 190(±88) | 156(±102) | ✗ | 37(±46) | 42(±63) | ✗ | 38(±37) | 36(±39) | ✗ |
Dec | 298(±86) | 306(±152) | ✓ | 253(±120) | 213(±141) | ✓ | 48(±55) | 58(±73) | ✗ | 38(±44) | 41(±50) | ✗ |
1967–1991 | ||||||||||||
Jan | 266(±150) | 250(±159) | ✓ | 198(±151) | 184(±143) | ✓ | 79(±70) | 74(±76) | ✗ | 49(±42) | 40(±47) | ✗ |
Feb | 158(±102) | 151(±107) | ✓ | 144(±110) | 133(±105) | ✓ | 90(±73) | 83(±76) | ✗ | 69(±55) | 57(±61) | ✗ |
Mar | 156(±82) | 146(±93) | ✗ | 141(±92) | 138(±109) | ✓ | 136(±82) | 135(±92) | ✓ | 105(±67) | 97(±70) | ✗ |
Apr | 68(±34) | 66(±49) | ✗ | 69(±46) | 67(±58) | ✗ | 92(±72) | 95(±87) | ✗ | 116(±79) | 110(±88) | ✓ |
May | 30(±25) | 28(±27) | ✗ | 18(±23) | 14(±19) | ✗ | 43(±47) | 48(±62) | ✗ | 127(±117) | 114(±113) | ✗ |
Jun | 14(±17) | 12(±18) | ✗ | 6(±14) | 4(±9) | ✗ | 30(±39) | 30(±44) | ✗ | 111(±88) | 100(±75) | ✗ |
Jul | 14(±18) | 14(±19) | ✗ | 6(±17) | 3(±8) | ✗ | 29(±47) | 29(±48) | ✗ | 115(±102) | 97(±80) | ✗ |
Aug | 14(±17) | 13(±18) | ✗ | 6(±13) | 4(±10) | ✗ | 11(±18) | 14(±25) | ✗ | 60(±51) | 53(±45) | ✗ |
Sep | 47(±33) | 44(±38) | ✗ | 22(±22) | 21(±25) | ✗ | 9(±15) | 11(±18) | ✗ | 40(±43) | 37(±41) | ✗ |
Oct | 119(±61) | 121(±71) | ✓ | 101(±67) | 87(±65) | ✗ | 16(±28) | 16(±32) | ✗ | 30(±39) | 21(±31) | ✗ |
Nov | 218(±76) | 218(±101) | ✓ | 182(±86) | 172(±98) | ✓ | 27(±39) | 34(±49) | ✗ | 29(±32) | 25(±37) | ✗ |
Dec | 279(±89) | 273(±112) | ✓ | 227(±127) | 217(±132) | ✓ | 55(±65) | 58(±71) | ✗ | 37(±44) | 38(±49) | ✗ |
1992–2016 | ||||||||||||
Jan | 275(±120) | 260(±138) | ✓ | 187(±115) | 175(±129) | ✓ | 88(±66) | 82(±85) | ✗ | 53(±39) | 52(±74) | ✗ |
Feb | 140(±68) | 151(±101) | ✓ | 131(±72) | 126(±96) | ✗ | 75(±47) | 82(±64) | ✗ | 57(±34) | 54(±57) | ✗ |
Mar | 162(±75) | 172(±99) | ✓ | 147(±83) | 148(±107) | ✗ | 106(±67) | 105(±82) | ✗ | 74(±45) | 69(±71) | ✗ |
Apr | 79(±43) | 59(±45) | ✗ | 70(±48) | 59(±55) | ✗ | 70(±45) | 63(±68) | ✗ | 90(±57) | 82(±75) | ✗ |
May | 29(±23) | 28(±27) | ✗ | 18(±17) | 14(±20) | ✗ | 41(±36) | 38(±52) | ✗ | 113(±88) | 96(±92) | ✗ |
Jun | 11(±14) | 10(±15) | ✗ | 6(±14) | 3(±8) | ✗ | 26(±36) | 27(±45) | ✗ | 109(±83) | 93(±82) | ✗ |
Jul | 9(±13) | 5(±11) | ✗ | 3(±6) | 1(±5) | ✗ | 24(±33) | 22(±34) | ✗ | 93(±64) | 84(±65) | ✗ |
Aug | 11(±11) | 10(±14) | ✗ | 6(±9) | 3(±9) | ✗ | 9(±13) | 12(±23) | ✗ | 54(±43) | 53(±47) | ✗ |
Sep | 51(±36) | 43(±38) | ✗ | 19(±19) | 15(±21) | ✗ | 8(±11) | 6(±14) | ✗ | 34(±33) | 28(±34) | ✗ |
Oct | 115(±69) | 95(±66) | ✗ | 83(±59) | 65(±60) | ✗ | 11(±18) | 15(±31) | ✗ | 26(±26) | 24(±35) | ✗ |
Nov | 213(±55) | 214(±90) | ✓ | 176(±71) | 183(±98) | ✓ | 25(±38) | 33(±50) | ✗ | 27(±25) | 29(±42) | ✗ |
Dec | 295(±106) | 299(±126) | ✓ | 215(±104) | 206(±114) | ✓ | 47(±39) | 54(±57) | ✗ | 33(±23) | 35(±49) | ✗ |
Month | USF | MSF | LMSF | LSF | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
CRU (µ ± σ) | Obs (µ ± σ) | Reliability | CRU (µ ± σ) | Obs (µ ± σ) | Reliability | CRU (µ ± σ) | Obs (µ ± σ) | Reliability | CRU (µ ± σ) | Obs (µ ± σ) | Reliability | |
1942–1966 | ||||||||||||
Jan | 112(±9) | 109(±16) | ✓ | 121(±12) | 116(±24) | ✓ | 147(±14) | 142(±30) | ✓ | 146(±16) | 140(±15) | ✓ |
Feb | 102(±9) | 102(±15) | ✓ | 111(±12) | 105(±21) | ✓ | 129(±13) | 120(±28) | ✓ | 128(±15) | 127(±14) | ✓ |
Mar | 100(±9) | 104(±15) | ✓ | 116(±12) | 114(±24) | ✓ | 137(±15) | 131(±32) | ✓ | 138(±15) | 134(±15) | ✓ |
Apr | 78(±9) | 86(±13) | ✓ | 100(±13) | 102(±24) | ✓ | 120(±13) | 112(±29) | ✓ | 115(±16) | 115(±15) | ✓ |
May | 63(±7) | 64(±11) | ✓ | 88(±14) | 88(±24) | ✓ | 108(±12) | 99(±27) | ✓ | 105(±10) | 101(±13) | ✓ |
Jun | 50(±6) | 51(±9) | ✓ | 72(±13) | 71(±21) | ✓ | 89(±10) | 77(±18) | ✓ | 87(±12) | 85(±13) | ✓ |
Jul | 50(±6) | 52(±8) | ✓ | 70(±12) | 71(±21) | ✓ | 88(±13) | 76(±20) | ✓ | 81(±11) | 79(±12) | ✓ |
Aug | 66(±8) | 71(±16) | ✓ | 86(±12) | 89(±26) | ✓ | 92(±12) | 88(±21) | ✓ | 85(±12) | 81(±10) | ✓ |
Sep | 81(±10) | 92(±20) | ✓ | 110(±14) | 112(±28) | ✓ | 112(±16) | 110(±26) | ✓ | 95(±12) | 91(±10) | ✓ |
Oct | 99(±12) | 104(±23) | ✓ | 124(±15) | 128(±31) | ✓ | 143(±18) | 135(±32) | ✓ | 120(±13) | 114(±13) | ✓ |
Nov | 97(±10) | 108(±22) | ✓ | 116(±14) | 121(±30) | ✓ | 144(±14) | 139(±31) | ✓ | 132(±16) | 123(±13) | ✓ |
Dec | 105(±9) | 113(±18) | ✓ | 119(±13) | 120(±27) | ✓ | 153(±16) | 146(±31) | ✓ | 143(±16) | 134(±15) | ✓ |
1967–1991 | ||||||||||||
Jan | 114(±11) | 120(±20) | ✓ | 124(±13) | 123(±22) | ✓ | 146(±13) | 142(±27) | ✓ | 145(±16) | 138(±23) | ✓ |
Feb | 105(±9) | 110(±18) | ✓ | 114(±12) | 111(±21) | ✓ | 127(±13) | 123(±25) | ✓ | 126(±16) | 123(±20) | ✓ |
Mar | 106(±10) | 113(±17) | ✓ | 120(±12) | 118(±20) | ✓ | 134(±15) | 131(±28) | ✓ | 137(±16) | 131(±22) | ✓ |
Apr | 83(±10) | 89(±17) | ✓ | 104(±13) | 103(±19) | ✓ | 120(±13) | 116(±25) | ✓ | 115(±17) | 116(±23) | ✓ |
May | 67(±8) | 70(±13) | ✓ | 92(±14) | 92(±20) | ✓ | 108(±13) | 104(±25) | ✓ | 106(±11) | 106(±25) | ✓ |
Jun | 53(±7) | 56(±10) | ✓ | 76(±14) | 76(±19) | ✓ | 89(±10) | 86(±20) | ✓ | 88(±13) | 89(±25) | ✓ |
Jul | 53(±7) | 56(±10) | ✓ | 74(±13) | 76(±18) | ✓ | 88(±14) | 82(±19) | ✓ | 82(±13) | 88(±28) | ✓ |
Aug | 68(±8) | 73(±13) | ✓ | 90(±13) | 96(±22) | ✓ | 95(±12) | 94(±23) | ✓ | 88(±13) | 93(±29) | ✓ |
Sep | 77(±9) | 87(±17) | ✓ | 110(±15) | 114(±24) | ✓ | 116(±17) | 115(±27) | ✓ | 97(±13) | 103(±31) | ✓ |
Oct | 98(±11) | 106(±19) | ✓ | 126(±16) | 129(±25) | ✓ | 144(±17) | 141(±29) | ✓ | 123(±14) | 123(±27) | ✓ |
Nov | 103(±9) | 108(±18) | ✓ | 120(±14) | 120(±23) | ✓ | 145(±14) | 146(±27) | ✓ | 134(±16) | 130(±23) | ✓ |
Dec | 109(±10) | 115(±18) | ✓ | 123(±14) | 121(±22) | ✓ | 154(±16) | 152(±28) | ✓ | 144(±16) | 137(±23) | ✓ |
1992–2016 | ||||||||||||
Jan | 120(±11) | 126(±21) | ✓ | 131(±13) | 136(±22) | ✓ | 150(±13) | 147(±27) | ✓ | 149(±17) | 150(±23) | ✓ |
Feb | 110(±11) | 115(±19) | ✓ | 119(±13) | 123(±21) | ✓ | 131(±13) | 130(±23) | ✓ | 130(±16) | 134(±20) | ✓ |
Mar | 109(±11) | 114(±18) | ✓ | 125(±13) | 127(±22) | ✓ | 140(±14) | 140(±26) | ✓ | 142(±15) | 145(±22) | ✓ |
Apr | 90(±10) | 95(±15) | ✓ | 112(±13) | 116(±21) | ✓ | 125(±14) | 126(±27) | ✓ | 120(±18) | 131(±22) | ✓ |
May | 68(±8) | 70(±12) | ✓ | 97(±15) | 101(±23) | ✓ | 113(±13) | 115(±28) | ✓ | 110(±12) | 120(±25) | ✓ |
Jun | 54(±6) | 56(±11) | ✓ | 79(±15) | 82(±19) | ✓ | 91(±10) | 90(±23) | ✓ | 90(±15) | 101(±26) | ✓ |
Jul | 57(±6) | 59(±12) | ✓ | 81(±14) | 83(±19) | ✓ | 93(±14) | 87(±23) | ✓ | 85(±15) | 99(±30) | ✓ |
Aug | 72(±9) | 75(±16) | ✓ | 96(±14) | 102(±21) | ✓ | 97(±12) | 97(±27) | ✓ | 90(±14) | 106(±34) | ✓ |
Sep | 85(±12) | 96(±21) | ✓ | 120(±16) | 130(±23) | ✓ | 120(±18) | 119(±28) | ✓ | 101(±14) | 118(±33) | ✓ |
Oct | 108(±14) | 118(±24) | ✓ | 138(±16) | 149(±24) | ✓ | 148(±17) | 144(±27) | ✓ | 128(±14) | 138(±31) | ✓ |
Nov | 106(±10) | 113(±22) | ✓ | 126(±15) | 133(±24) | ✓ | 149(±14) | 149(±26) | ✓ | 138(±16) | 144(±25) | ✓ |
Dec | 117(±11) | 122(±20) | ✓ | 131(±14) | 136(±23) | ✓ | 159(±15) | 154(±27) | ✓ | 149(±15) | 154(±23) | ✓ |
References
- Nelson, G.C.; Valin, H.; Sands, R.D.; Havlík, P.; Ahammad, H.; Deryng, D.; Kyle, P. Climate change effects on agriculture: Economic responses to biophysical shocks. Proc. Natl. Acad. Sci. USA 2014, 111, 3274–3279. [Google Scholar] [CrossRef][Green Version]
- Rosenzweig, C.; Elliott, J.; Deryng, D.; Ruane, A.C.; Müller, C.; Arneth, A.; Neumann, K. Assessing agricultural risks of climate change in the 21st century in a global gridded crop model intercomparison. Proc. Natl. Acad. Sci. USA 2014, 111, 3268–3273. [Google Scholar] [CrossRef][Green Version]
- Arora, N.K. Impact of climate change on agriculture production and its sustainable solutions. Environ. Sustain. 2019, 2, 95–96. [Google Scholar] [CrossRef][Green Version]
- Folberth, C.; Khabarov, N.; Balkovič, J.; Skalský, R.; Visconti, P.; Ciais, P.; Obersteiner, M. The global cropland-sparing potential of high-yield farming. Nat. Sustain. 2020, 3, 281–289. [Google Scholar] [CrossRef]
- Huang, J.; Ji, M.; Xie, Y.; Wang, S.; He, Y.; Ran, J. Global semi-arid climate change over last 60 years. Clim. Dyn. 2016, 46, 1131–1150. [Google Scholar] [CrossRef][Green Version]
- Henn, B.; Newman, A.J.; Livneh, B.; Daly, C.; Lundquist, J.D. An assessment of differences in gridded precipitation datasets in complex terrain. J. Hydrol. 2018, 556, 1205–1219. [Google Scholar] [CrossRef]
- Shi, H.; Li, T.; Wei, J. Evaluation of the gridded CRU TS precipitation dataset with the point raingauge records over the Three-River Headwaters Region. J. Hydrol. 2017, 548, 322–332. [Google Scholar] [CrossRef][Green Version]
- Michot, V.; Vila, D.; Arvor, D.; Corpetti, T.; Ronchail, J.; Funatsu, B.M.; Dubreuil, V. Performance of TRMM TMPA 3B42 V7 in replicating daily rainfall and regional rainfall regimes in the Amazon basin (1998–2013). Remote Sens. 2018, 10, 1879. [Google Scholar] [CrossRef][Green Version]
- Alemayehu, T.; van Griensven, A.; Bauwens, W. Evaluating CFSR and WATCH data as input to SWAT for the estimation of the potential evapotranspiration in a data-scarce Eastern-African catchment. J. Hydrol. Eng. 2016, 21, 05015028. [Google Scholar] [CrossRef]
- Harris, I.; Jones, P.D.; Osborn, T.J.; Lister, D.H. Updated high-resolution grids of monthly climatic observations—The CRU TS3.10 Dataset. Int. J. Clim. 2014, 34, 623–642. [Google Scholar] [CrossRef][Green Version]
- Wagner, P.D.; Fiener, P.; Wilken, F.; Kumar, S.; Schneider, K. Comparison and evaluation of spatial interpolation schemes for daily rainfall in data scarce regions. J. Hydrol. 2012, 464–465, 388–400. [Google Scholar] [CrossRef]
- Chen, M.; Shi, W.; Xie, P.; Silva, V.B.S.; Kousky, V.E.; Higgins, R.W.; Janowiak, J.E. Assessing objective techniques for gauge-based analyses of global daily precipitation. J. Geophys. Res. Atmos. 2008, 113, 1–13. [Google Scholar] [CrossRef]
- Harris, I.; Osborn, T.J.; Jones, P.; Lister, D. Version 4 of the CRU TS monthly high-resolution gridded multivariate climate dataset. Sci. Data 2020, 7, 1–18. [Google Scholar] [CrossRef][Green Version]
- Schamm, K.; Ziese, M.; Becker, A.; Finger, P.; Meyer-Christoffer, A.; Schneider, U.; Stender, P. Global gridded precipitation over land: A description of the new GPCC First Guess Daily product. Earth Syst. Sci. Data 2014, 6, 49–60. [Google Scholar] [CrossRef][Green Version]
- Funk, C.C.; Peterson, P.J.; Landsfeld, M.F.; Pedreros, D.H.; Verdin, J.P.; Rowland, J.D.; Verdin, A.P. A Quasi-Global Precipitation Time Series for Drought Monitoring. 2014. Available online: https://pubs.er.usgs.gov/publication/ds832 (accessed on 23 June 2020).
- Huffman, G.J.; Bolvin, D.T. TRMM and Other Data Precipitation Data Set Documentation. 2015. Available online: https://pmm.nasa.gov/sites/default/files/document_files/3B42_3B43_doc_V7.pdf (accessed on 23 June 2020).
- Ma, L.; Zhang, T.; Frauenfeld, O.W.; Ye, B.; Yang, D.; Qin, D. Evaluation of precipitation from the ERA-40, NCEP-1, and NCEP-2 reanalyses and CMAP-1, CMAP-2, and GPCP-2 with ground-based measurements in China. J. Geophys. Res. Atmos. 2009, 114, 1–20. [Google Scholar] [CrossRef]
- Salvacion, A.R.; Magcale-Macandog, D.B.; Cruz, P.C.S.; Saludes, R.B.; Pangga, I.B.; Cumagun, C.J.R. Evaluation and spatial downscaling of CRU TS precipitation data in the Philippines. Model Earth Syst. Environ. 2018, 4, 891–898. [Google Scholar] [CrossRef]
- Prömmel, K.; Geyer, B.; Jones, J.M.; Widmann, M. Evaluation of the skill and added value of a reanalysis-driven regional simulation for Alpine temperature. Int. J. Clim. 2010, 30, 760–773. [Google Scholar] [CrossRef][Green Version]
- Jones, P.D.; Harpham, C.; Harris, I.; Goodess, C.M.; Burton, A.; Centella-Artola, A.; Joslyn, O. Long-term trends in precipitation and temperature across the Caribbean. Int. J. Clim. 2016, 36, 3314–3333. [Google Scholar] [CrossRef][Green Version]
- Malsy, M.; aus der Beek, T.; Flörke, M. Evaluation of large-scale precipitation data sets for water resources modelling in Central Asia. Environ. Earth Sci. 2015, 73, 787–799. [Google Scholar] [CrossRef]
- Thorne, P.W.; Donat, M.G.; Dunn, R.J.H.; Williams, C.N.; Alexander, L.V.; Caesar, J.; Menne, M.J. Reassessing changes in diurnal temperature range: Intercomparison and evaluation of existing global data set estimates. J. Geophys. Res. Atmos. 2016, 121, 5138–5158. [Google Scholar] [CrossRef][Green Version]
- Paredes-Trejo, F.J.; Barbosa, H.A.; Kumar, T.V.L. Validating CHIRPS-based satellite precipitation estimates in Northeast Brazil. J. Arid. Environ. 2017, 139, 26–40. [Google Scholar] [CrossRef]
- Rodrigues, D.T.; Gonçalves, W.A.; Spyrides, M.H.C.; Santos e Silva, C.M. Spatial and temporal assessment of the extreme and daily precipitation of the Tropical Rainfall Measuring Mission satellite in Northeast Brazil. Int. J. Remote Sens. 2020, 41, 549–572. [Google Scholar] [CrossRef]
- Xavier, A.C.; King, C.W.; Scanlon, B.R. Daily gridded meteorological variables in Brazil (1980-2013). Int. J. Clim. 2016, 2659, 2644–2659. [Google Scholar] [CrossRef][Green Version]
- Mutti, P.R.; de Abreu, L.P.; de MB Andrade, L.; Spyrides, M.H.C.; Lima, K.C.; de Oliveira, C.P.; Bezerra, B.G. A detailed framework for the characterization of rainfall climatology in semiarid watersheds. Theor. Appl. Climatol. 2020, 139, 109–125. [Google Scholar] [CrossRef]
- Mudelsee, M. Trend analysis of climate time series: A review of methods. Earth-Sci. Rev. 2019, 190, 310–322. [Google Scholar] [CrossRef]
- Mendes, L.A.; de Barros, M.T.L.; Zambon, R.C.; Yeh, W.W.G. Trade-off analysis among multiple water uses in a hydropower system: Case of São Francisco River Basin, Brazil. J. Water Resour. Plan Manag. 2015, 141, 04015014. [Google Scholar] [CrossRef]
- Koch, H.; Selge, F.; de Azevedo, J.R.G.; da Silva, G.N.S.; Siegmund-Schultze, M.; Hattermann, F.F. Reservoir operation and environmental water demand: Scenarios for the Sub-Middle and Lower São Francisco River basin, Brazil. Ecohydrology 2018, 11, e2026. [Google Scholar] [CrossRef]
- Bezerra, B.G.; Silva, L.L.; Santos ESilva, C.M.; de Carvalho, G.G. Changes of precipitation extremes indices in São Francisco River Basin, Brazil from 1947 to 2012. Appl. Clim. 2019, 135, 565–576. [Google Scholar] [CrossRef]
- Marques, É.T.; Gunkel, G.; Sobral, M.C. Management of tropical river basins and reservoirs under water stress: Experiences from Northeast Brazil. Environments 2019, 6, 62. [Google Scholar] [CrossRef][Green Version]
- Stolf, R.; de Piedade, S.M.; Silva, J.R.D.; da Silva, L.C.; Maniero, M.Â. Water transfer from São Francisco river to semiarid northeast of Brazil: Technical data, environmental impacts, survey of opinion about the amount to be transferred. Eng. Agríc. 2012, 32, 998–1010. [Google Scholar] [CrossRef][Green Version]
- Cabral Júnior, J.B.; Santos e Silva, C.M.; de Almeida, H.A.; Bezerra, B.G.; Spyrides, M.H.C. Detecting linear trend of reference evapotranspiration in irrigated farming areas in Brazil’s semiarid region. Appl. Clim. 2019, 138, 215–225. [Google Scholar] [CrossRef]
- Marengo, J.A.; Chou, S.C.; Kay, G.; Alves, L.M.; Pesquero, J.F.; Soares, W.R.; Chagas, D.J. Development of regional future climate change scenarios in South America using the Eta CPTEC/HadCM3 climate change projections: Climatology and regional analyses for the Amazon, São Francisco and the Paraná River basins. Clim. Dyn. 2012, 38, 1829–1848. [Google Scholar] [CrossRef]
- Avila-Diaz, A.; Benezoli, V.; Justino, F.; Torres, R.; Wilson, A. Assessing current and future trends of climate extremes across Brazil based on reanalyses and earth system model projections. Clim. Dyn. 2020, 55, 1403–1426. [Google Scholar] [CrossRef]
- Santos, C.A.G.; Brasil Neto, R.M.; da Silva, R.M.; Passos, J.S. Integrated spatiotemporal trends using TRMM 3B42 data for the Upper São Francisco River basin, Brazil. Environ. Monit. Assess. 2018, 190, 175. [Google Scholar] [CrossRef]
- Dubreuil, V.; Fante, K.P.; Planchon, O.; Sant’Anna Neto, J.L. Climate change evidence in Brazil from Köppen’s climate annual types frequency. Int. J. Clim. 2019, 39, 1446–1456. [Google Scholar] [CrossRef][Green Version]
- Costa, R.L.; de Mello Baptista, G.M.; Gomes, H.B.; dos Santos Silva, F.D.; da Rocha Júnior, R.L.; de Araújo Salvador, M.; Herdies, D.L. Analysis of climate extremes indices over northeast Brazil from 1961 to 2014. Weather Clim. Extrem. 2020, 28, 100254. [Google Scholar] [CrossRef]
- Lofgren, B.M.; Hunter, T.S.; Wilbarger, J. Effects of using air temperature as a proxy for potential evapotranspiration in climate change scenarios of Great Lakes basin hydrology. J. Great Lakes Res. 2011, 37, 744–752. [Google Scholar] [CrossRef]
- Zhang, B.; He, C. A modified water demand estimation method for drought identification over arid and semiarid regions. Agric. Meteorol. 2016, 230–231, 58–66. [Google Scholar] [CrossRef]
- Beguería, S.; Vicente-Serrano, S.M.; Reig, F.; Latorre, B. Standardized precipitation evapotranspiration index (SPEI) revisited: Parameter fitting, evapotranspiration models, tools, datasets and drought monitoring. Int. J. Clim. 2014, 34, 3001–3023. [Google Scholar] [CrossRef][Green Version]
- Thornthwaite, C.W. An approach toward a rational classification of climate. Geogr. Rev. 1948, 38, 55–94. Available online: //www.jstor.org/stable/210739?origin=crossref (accessed on 17 February 2020). [CrossRef]
- Wilm, H.G.; Thornthwaite, C.W.; Colman, E.A.; Cummings, N.W.; Croft, A.R.; Gisborne, H.T.; Kittredge, J. Reports of the committee on transpiration and evaporation, 1943–44. Trans. Am. Geophys. Union 1944, 25, 683–693. [Google Scholar] [CrossRef]
- Chapman, A.D. Quality Control and Validation of Point-sourced Environmental Resource Data. In Spatial Accuracy Assessment: Land Information Uncertainty in Natural Resources, 1st ed.; Lowell, K., Jaton, A., Chelsea, Eds.; Sleeping Bear Press Inc.: Michigan, MI, USA, 1999; p. 409. [Google Scholar]
- Alexandersson, H. A homogeneity test applied to precipitation data. J. Clim. 1986, 6, 661–675. [Google Scholar] [CrossRef]
- Khaliq, M.N.; Ouarda, T.B.M.J. On the critical values of the standard normal homogeneity tes (SNHT). Int. J. Clim. 2007, 27, 681–687. [Google Scholar] [CrossRef]
- Domonkos, P. Measuring performances of homogenization methods. Quaterly J. Hung. Meteorol. Serv. 2013, 117, 91–112. [Google Scholar]
- Franchito, S.H.; Rao, V.B.; Vasques, A.C.; Santo, C.M.E.; Conforte, J.C. Validation of TRMM precipitation radar monthly rainfall estimates over Brazil. J. Geophys. Res. 2009, 114, 1–9. [Google Scholar] [CrossRef][Green Version]
- Adeyewa, Z.D.; Nakamura, K. Validation of TRMM radar rainfall data over major climatic regions in Africa. J. Appl. Meteorol. 2003, 42, 331–347. [Google Scholar] [CrossRef]
- Wilks, D.S. Statistical Methods in the atmospheric sciences. In International Geophysics Series, 2nd ed.; Dmowska, R., Hartmann, D., Rossby, H.T., Eds.; Elsevier: San Diego, CA, USA, 2006; Volume 14, p. 649. [Google Scholar]
- Simmons, A.J.; Jones, P.D.; da Costa Bechtold, V.; Beljaars, A.C.M.; Kållberg, P.W.; Saarinen, S.; Wedi, N. Comparison of trends and low-frequency variability in CRU, ERA-40, and NCEP/NCAR analyses of surface air temperature. J. Geophys. Res. Atmos. 2004, 109, 1–18. [Google Scholar] [CrossRef]
- Pettitt, A.N. A Non-Parametric Approach to the Change-Point Problem. J. R Stat. Soc. 1979, 28, 126–135. [Google Scholar] [CrossRef]
- Ahmed, K.; Shahid, S.; Wang, X.; Nawaz, N.; Khan, N. Evaluation of gridded precipitation datasets over arid regions of Pakistan. Water 2019, 11, 210. [Google Scholar] [CrossRef][Green Version]
- Maneta, M.P.; Singh, P.N.; Torres, M.; Wallender, W.W.; Vosti, S.A.; Rodrigues, L.N.; Young, J.A. A parsimonious crop-water productivity index: An application to Brazil. Area 2009, 41, 94–106. [Google Scholar] [CrossRef]
- Maneta, M.P.; Torres, M.; Wallender, W.W.; Vosti, S.; Kirby, M.; Bassoi, L.H.; Rodrigues, L.N. Water demand and flows in the São Francisco River Basin (Brazil) with increased irrigation. Agric. Water Manag. 2009, 96, 1191–1200. [Google Scholar] [CrossRef][Green Version]
- Persaud, B.D.; Whitfield, P.H.; Quinton, W.L.; Stone, L.E. Evaluating the suitability of three gridded-datasets and their impacts on hydrological simulation at Scotty Creek in the southern Northwest Territories, Canada. Hydrol. Process 2020, 34, 898–913. [Google Scholar] [CrossRef]
- De Medeiros, F.J.; de Oliveira, C.P.; Torres, R.R. Climatic aspects and vertical structure circulation associated with the severe drought in Northeast Brazil (2012–2016). Clim. Dyn. 2020, 16, 1–15. [Google Scholar] [CrossRef]
- Marengo, J.A.; Alves, L.M.; Alvala, R.C.; Cunha, A.P.; Brito, S.; Moraes, O.L. Climatic characteristics of the 2010-2016 drought in the semiarid Northeast Brazil region. Acad. Bras. Cienc. 2017, 1, 1–13. Available online: http://www.scielo.br/scielo.php?script=sci_arttext&pid=S0001-37652017005019115&lng=en&tlng=en (accessed on 27 June 2020). [CrossRef]
- Cavalcanti, I.F.A. Large scale and synoptic features associated with extreme precipitation over South America: A review and case studies for the first decade of the 21st century. Atmos. Res. 2012, 118, 27–40. [Google Scholar] [CrossRef]
- De Oliveira, P.T.; Santos e Silva, C.M.; Lima, K.C. Climatology and trend analysis of extreme precipitation in subregions of Northeast Brazil. Appl. Clim. 2017, 130, 77–90. [Google Scholar] [CrossRef]
- Hastenrath, S. Exploring the climate problems of Brazil’s Nordeste: A review. Clim. Chang. 2012, 112, 243–251. [Google Scholar] [CrossRef]
- De Oliveira, P.T.; Lima, K.C.; Santos e Silva, C.M. Synoptic environment associated with heavy rainfall events on the coastland of Northeast Brazil. Adv. Geosci. 2013, 35, 73–78. [Google Scholar] [CrossRef][Green Version]
- Gomes, H.B.; Ambrizzi, T.; da Silva, B.F.P.; Hodges, K.; Silva Dias, P.L.; Herdies, D.L.; Gomes, H.B. Climatology of easterly wave disturbances over the tropical South Atlantic. Clim. Dyn. 2019, 53, 1393–1411. [Google Scholar] [CrossRef][Green Version]
- De Jong, P.; Tanajura, C.A.S.; Sánchez, A.S.; Dargaville, R.; Kiperstok, A.; Torres, E.A. Hydroelectric production from Brazil’s São Francisco River could cease due to climate change and inter-annual variability. Sci. Total Environ. 2018, 634, 1540–1553. [Google Scholar] [CrossRef]
Subregion | Köppen’s Climate Type | Mean Annual Rainfall (Wet Months) (mm) | Mean Annual PET (mm) | No. of Rainfall Stations/Density × 10−3 (Station km−2) | No. of Temperature (PET) Stations/Density × 10−3 (Station km−2) |
---|---|---|---|---|---|
USF | Cwa/b–humid subtropical with dry winter | 1400 (Oct–Mar) | 1100 | 48/0.48 | 13/0.13 |
MSF | Aw–tropical with dry winter | 1100 (Nov–Mar) | 1300 | 82/0.20 | 28/0.07 |
LMSF | Bsh–dry semiarid | 600 (Jan–Apr) | 1500 | 28/0.25 | 10/0.09 |
LSF | As–tropical with dry summer | 900 (Mar–Jul) | 1400 | 13/0.51 | 6/0.24 |
Total | - | - | - | 171/0.27 | 57/0.09 |
Subregion | Change Point | Period | Annual Mean (mm) | Slope (mm/Decade) |
---|---|---|---|---|
USF | ||||
Obs rainfall | Dec/2012 | Jan/1942–Dec/2016 | 1339 | −1 |
Jan/1942–Dec/2012 | 1355 | 0 | ||
Dec/2012–Dec/2016 | 1056 | −14 | ||
CRU TS rainfall | Dec/2012 | Jan/1942–Dec/2016 | 1383 | −1 |
Jan/1942–Dec/2012 | 1397 | 0 | ||
Dec/2012–Dec/2016 | 1120 | −17 | ||
Obs PET | Nov/1993 | Jan/1942–Dec/2016 | 1123 | 2 |
Jan/1942–Nov/1993 | 1092 | 1 | ||
Nov/1993–Dec/2016 | 1165 | 3 | ||
CRU TS PET | Nov/1993 | Jan/1942–Dec/2016 | 1063 | 2 |
Jan/1942–Nov/1993 | 1036 | 1 | ||
Nov/1993–Dec/2016 | 1122 | 3 | ||
MSF | ||||
Obs rainfall | Mar/1964 | Jan/1942–Dec/2016 | 1006 | 1 |
Jan/1942–Mar/1964 | 913 | 11 | ||
Mar/1964–Dec/2016 | 1035 | −2 | ||
CRU TS rainfall | Oct/1986 | Jan/1942–Dec/2016 | 1103 | −1 |
Jan/1942–Oct/1986 | 1138 | 0 | ||
Oct/1986–Dec/2016 | 1059 | 0 | ||
Obs PET | Jul/1987 | Jan/1942–Dec/2016 | 1275 | 6 |
Jan/1942–Jul/1987 | 1171 | 8 | ||
Jul/1987–Dec/2016 | 1406 | 2 | ||
CRU TS PET | Jul/1986 | Jan/1942–Dec/2016 | 1258 | 2 |
Jan/1942–Jul/1986 | 1219 | 1 | ||
Jul/1986–Dec/2016 | 1312 | 3 | ||
LMSF | ||||
Obs rainfall | Jan/1964 | Jan/1942–Dec/2016 | 557 | 0 |
Jan/1942–Jan/1964 | 520 | −4 | ||
Jan/1964–Dec/2016 | 572 | −3 | ||
CRU TS rainfall | Dec/1963 | Jan/1942–Dec/2016 | 528 | 0 |
Jan/1942–Dec/1963 | 475 | −1 | ||
Dec/1963–Dec/2016 | 552 | −3 | ||
Obs PET | Jan/1993 | Jan/1942–Dec/2016 | 1484 | 2 |
Jan/1942–Jan/1993 | 1445 | 0 | ||
Jan/1993–Dec/2016 | 1535 | −1 | ||
CRU TS PET | May/1987 | Jan/1942–Dec/2016 | 1467 | 1 |
Jan/1942–May/1987 | 1444 | 0 | ||
May/1987–Dec/2016 | 1500 | 1 | ||
LSF | ||||
Obs rainfall | Jul/1979 | Jan/1942–Dec/2016 | 785 | −2 |
Jan/1942–Jul/1979 | 866 | 5 | ||
Jul/1979–Dec/2016 | 720 | 1 | ||
CRU TS rainfall | Jul/1990 | Jan/1942–Dec/2016 | 878 | −1 |
Jan/1942–Jul/1990 | 928 | 2 | ||
Jul/1990–Dec/2016 | 803 | 1 | ||
Obs PET | May/1995 | Jan/1942–Dec/2016 | 1269 | 6 |
Jan/1942–May/1995 | 1162 | −1 | ||
May/1995–Dec/2016 | 1427 | 11 | ||
CRU TS PET | Jun/1987 | Jan/1942–Dec/2016 | 1355 | 1 |
Jan/1942–Jun/1987 | 1333 | 0 | ||
Jun/1987–Dec/2016 | 1387 | 1 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mutti, P.R.; Dubreuil, V.; Bezerra, B.G.; Arvor, D.; de Oliveira, C.P.; Santos e Silva, C.M. Assessment of Gridded CRU TS Data for Long-Term Climatic Water Balance Monitoring over the São Francisco Watershed, Brazil. Atmosphere 2020, 11, 1207. https://doi.org/10.3390/atmos11111207
Mutti PR, Dubreuil V, Bezerra BG, Arvor D, de Oliveira CP, Santos e Silva CM. Assessment of Gridded CRU TS Data for Long-Term Climatic Water Balance Monitoring over the São Francisco Watershed, Brazil. Atmosphere. 2020; 11(11):1207. https://doi.org/10.3390/atmos11111207
Chicago/Turabian StyleMutti, Pedro R., Vincent Dubreuil, Bergson G. Bezerra, Damien Arvor, Cristiano P. de Oliveira, and Cláudio M. Santos e Silva. 2020. "Assessment of Gridded CRU TS Data for Long-Term Climatic Water Balance Monitoring over the São Francisco Watershed, Brazil" Atmosphere 11, no. 11: 1207. https://doi.org/10.3390/atmos11111207