The Multiple-Scale Nature of Urban Heat Island and Its Footprint on Air Quality in Real Urban Environment
Abstract
:1. Introduction
- Could the UHI phenomenon be a multiple-scale phenomenon? What is the impact of the UHI at different scales on the flow dynamics? Are there any differences in behavior?
- As UHI and UPI are commonly linked, is it possible to determine a relationship linking these two aspects at a very local scale? How the associated circulation would develop and how can relate to local pollutant concentrations?
2. Field Campaigns in Bologna
2.1. Rationale for the Study and Site Description
2.2. Instrumentation Setup
3. Results and Discussion
3.1. Urban Heat Island
3.1.1. City (Urban–Rural) and Neighborhood (Canyon–Canyon) Scales
3.1.2. Canyon (Facade-Facade) Scale: The In-Canyon Thermal Circulation
3.2. Canyon-Scale UHI and UPI Interaction
Verification with CFD Simulations
- 22/08/2018 12:00 (UTC+2)
- 22/08/2018 16:00 (UTC+2)
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Appendix A
Time (UTC +2) | Deviation (%) | ||
---|---|---|---|
22/08—12.00 | 27.0 | 25.7 | 5 |
22/08—14.00 | 27.6 | 26.9 | 3 |
22/08—16.00 | 27.8 | 28.1 | 1 |
22/08—18.00 | 26.5 | 26.9 | 2 |
22/08—20.00 | 24.6 | 24.6 | 0 |
22/08—22.00 | 23.2 | 23.1 | 0 |
22/08—24.00 | 22.1 | 21.7 | 2 |
23/08—02.00 | 21.6 | 21.1 | 2 |
23/08—04.00 | 21.3 | 20.8 | 2 |
23/08—06.00 | 20.9 | 19.8 | 5 |
23/08—08.00 | 22.6 | 22.2 | 2 |
23/08—10.00 | 26.9 | 25.6 | 5 |
Appendix B
References
- UN DESA (United Nations Department of Economic and Social Affairs). Revision of the World Urbanization Prospects, Population Division of the United Nations Department of Economic and Social Affairs. 2018. Available online: https://population.un.org/wup/ (accessed on 10 August 2020).
- Fan, C.; Myint, S.; Kaplan, S.; Middel, A.; Zheng, B.; Rahman, A.; Huang, H.P.; Brazel, A.; Blumberg, D.G. Understanding the impact of urbanization on surface urban heat islands—A longitudinal analysis of the oasis effect in subtropical desert cities. Remote Sens. 2017, 9, 672. [Google Scholar] [CrossRef] [Green Version]
- Li, Y.; Zhang, J.; Sailor, D.J.; Ban-Weiss, G.A. Effects of urbanization on regional meteorology and air quality in Southern California. Atmos. Chem. Phys. 2019, 19, 4439–4457. [Google Scholar] [CrossRef] [Green Version]
- Yang, L.; Qian, F.; Song, D.-X.; Zheng, J.-J. Research on urban heat island effect. Procedia Eng. 2016, 169, 11–18. [Google Scholar] [CrossRef]
- Mohajerani, A.; Bakaric, J.; Jeffrey-Bailey, T. The urban heat island effect, its causes, and mitigation, with reference to the thermal properties of asphalt concrete. J. Environ. Manag. 2017, 197, 522–538. [Google Scholar] [CrossRef]
- Grimm, N.B.; Faeth, S.H.; Golubieski, N.E.; Redman, C.L.; Wu, J.; Bai, X.; Briggs, J.M. Global change and the ecology of cities. Science 2008, 319, 756–760. [Google Scholar] [CrossRef] [Green Version]
- Meehl, G.A.; Tebaldi, C. More intense, more frequent, and longer lasting heat waves in the 21st century. Science 2004, 305, 994. [Google Scholar] [CrossRef] [Green Version]
- Luber, M.A.; McGeehin, M. Climate change and extreme heat events. Am. J. Prev. Med. 2008, 35, 429–435. [Google Scholar] [CrossRef]
- Stone, B.; Hess, J.J.; Frumkin, H. Urban form and extreme heat events: Are sprawling cities more vulnerable to climate change than compact cities. Environ. Health Perspect. 2010, 118, 1425–1428. [Google Scholar] [CrossRef] [Green Version]
- Basu, R.; Samet, J.M. Relation between elevated ambient temperature and mortality: A review of the epidemiological evidence. Epidemiol. Rev. 2002, 24, 190–202. [Google Scholar] [CrossRef]
- Doyon, B.; Belanger, D.; Gosselin, P. The potential impact of climate change on annual and seasonal mortality for three cities in Quebec, Canada. Int. J. Health Geogr. 2008, 7, 23. [Google Scholar] [CrossRef] [Green Version]
- Zhou, Y.; Gurney, K. A new methodology for quantifying on-site residential and commercial fossil fuel CO2 emissions at the building spatial scale and hourly time scale. Carbon Manag. 2010, 1, 45–56. [Google Scholar] [CrossRef] [Green Version]
- Moonen, P.; Defraeye, T.; Dorer, V.; Blocken, B.; Carmeliet, J. Urban physics: Effect of the micro-climate on comfort, health and energy demand. Front. Archit. Res. 2012, 1, 197–228. [Google Scholar] [CrossRef] [Green Version]
- Vahmani, P.; Sun, F.; Hall, A.; Ban-Weiss, G. Investigating the climate impacts of urbanization and the potential for cool roofs to counter future climate change in Southern California. Environ. Res. Lett. 2016, 11, 124027. [Google Scholar] [CrossRef]
- Garratt, J.R. The Atmospheric Boundary Layer; Houghton, J.T., Rycroft, M.J., Dessler, A.J., Eds.; Cambridge University Press: Cambridge, UK, 1994; pp. 15–38. [Google Scholar]
- Li, H.; Meier, F.; Lee, X.; Chakraborty, T.; Liu, J.; Schaap, M.; Sodoudi, M. Interaction between urban heat island and urban pollution island during summer in Berlin. Sci. Total Environ. 2018, 636, 818–828. [Google Scholar] [CrossRef]
- Morawska, L.; Chen, J.; Wang, T.; Zhu, T. Preface on air quality in China. Sci. Total Environ. 2017, 603–604, 26. [Google Scholar] [CrossRef]
- Qiu, G.; Song, R.; He, S. The aggravation of urban air quality deterioration due to urbanization, transportation and economic development—Panel models with marginal effect analyses across China. Sci. Total Environ. 2019, 651, 1114–1125. [Google Scholar] [CrossRef]
- Crutzen, P. New directions: The growing urban heat and pollution island effect-impact on chemistry and climate. Atmos. Environ. 2004, 38, 3539–3540. [Google Scholar] [CrossRef]
- Eckert, S.; Kohler, S. Urbanization and health in developing countries: A systematic review. World Health Popul. 2014, 15, 7–20. [Google Scholar] [CrossRef]
- Santamouris, M. Using cool pavements as a mitigation strategy to fight urban heat island—A review of the actual developments. Renew. Sustain. Energy Rev. 2013, 26, 224–240. [Google Scholar] [CrossRef]
- Mirzaei, P.A. Recent challenges in modeling of urban heat island. Sustain. Cities Soc. 2015, 19, 200–206. [Google Scholar] [CrossRef] [Green Version]
- Coutts, A.M.; White, E.C.; Tapper, N.J.; Beringer, J.; Livesley, S.J. Temperature and human thermal comfort effects of street. Theor. Appl. Climatol. 2016, 124, 55–68. [Google Scholar] [CrossRef]
- Bowler, D.E.; Buyung-Ali, L.; Knight, T.M.; Pullin, A.S. Urban greening to cool towns and cities: A systematic review of the empirical evidence. Landsc. Urban Plan. 2010, 97, 147–155. [Google Scholar] [CrossRef]
- Loughner, C.P.; Allen, D.J.; Zhang, D.-L.; Pickering, D.E.; Dickerson, R.R.; Landry, L. Roles of urban tree canopy and buildings in urban heat island effects: Parameterization and preliminary results. J. Appl. Meteorol. Clim. 2012, 51, 1775–1793. [Google Scholar] [CrossRef]
- Matthews, T.; Lo, A.Y.; Byrne, J.A. Reconceptualizing green infrastructure for climate change adaptation: Barriers to adoption and drivers for uptake by spatial planners. Landsc. Urban Plan. 2015, 138, 155–163. [Google Scholar] [CrossRef]
- Shashua-Bar, L.; Pealmutter, D.; Erell, E. The influence of trees and grass on outdoor thermal comfort in a hot-arid environment. Int. J. Climatol. 2010, 31, 1498–1506. [Google Scholar] [CrossRef]
- Taleghani, M. Outdoor thermal comfort by different heat mitigation strategies—A review. Renew. Sustain. Energy Rev. 2018, 81, 2011–2018. [Google Scholar] [CrossRef]
- Santamouris, M.; Ding, L.; Fiorito, F.; Oldfield, P.; Osmond, P.; Paolini, R.; Prasad, D.; Synnefa, A. Passive and active cooling for the built environment—Analysis and assessment of the cooling potential of mitigation technologies using performance data from 220 large scale projects. Sol. Energy 2017, 154, 14–33. [Google Scholar] [CrossRef]
- Salmond, J.A.; Williams, D.E.; Laing, G.; Kingham, S.; Dirks, K.; Longley, I.; Henshaw, G.S. The influence of vegetation on the horizontal and vertical distribution of pollutants in a street canyon. Sci. Total Environ. 2013, 443, 287–298. [Google Scholar] [CrossRef]
- Roy, S.; Byrne, J.; Pickering, C. A systematic quantitative review of urban tree benefits, costs, and assessment methods across cities in different climatic zones. Urban For. Urban Green. 2012, 11, 351–363. [Google Scholar] [CrossRef] [Green Version]
- Abhijth, K.V.; Kumar, P.; Gallagher, J.; McNabola, A.; Baldauf, R.; Pilla, F.; Broderick, B.; Di Sabatino, S.; Pulvirenti, B. Air pollution abatement performances of green infrastructure in open road and built-up street canyon environments—A review. Atmos. Environ. 2017, 162, 71–86. [Google Scholar] [CrossRef]
- Molnár, G.; Zénó, A.; Gál, T. Integration of an LCZ-based classification into WRF to assess the intra-urban temperature pattern under a heatwave period in Szeged, Hungary. Theor. Appl. Climatol. 2019, 138, 1139–1158. [Google Scholar] [CrossRef] [Green Version]
- Zonato, A.; Martilli, A.; Di Sabatino, S.; Zardi, D.; Giovannini, L. Evaluating the performance of a novel WUDAPT averaging technique to define urban morphology with mesoscale models. Urban Clim. 2020, 31, 100584. [Google Scholar] [CrossRef]
- Wang, Y.; Li, Y.; Di Sabatino, S.; Martilli, A.; Chan, P.W. Effects of anthropogenic heat due to air-conditioning systems on a extreme high temperature event in Hong Kong. Environ. Res. Lett. 2018, 13, 034015. [Google Scholar] [CrossRef]
- Santiago, J.L.; Krayenhoff, E.S.; Martilli, A. Flow simulations for simplified urban configurations with microscale distributions of surface thermal forcing. Urban Clim. 2014, 9, 285–295. [Google Scholar] [CrossRef]
- Wang, X.; Li, Y. Predicting urban heat island circulation using CFD. Build. Environ. 2016, 99, 82–97. [Google Scholar] [CrossRef]
- Maggiotto, G.; Buccolieri, R.; Santo, M.A.; Leo, L.S.; Di Sabatino, S. Validation of temperature-perturbation and CFD-based modeling for the prediction of the thermal urban environment: The Lecce case study. Environ. Model. Softw. 2014, 60, 223–229. [Google Scholar] [CrossRef]
- Zhao, J.; Liu, J.; Sun, J. Numerical simulation of the thermal environment of urban street canyon and a design strategy. Build. Simul. 2008, 1, 261–269. [Google Scholar] [CrossRef]
- De Lieto Vollaro, A.; De Simone, G.; Romagnoli, R.; Vallati, A.; Botillo, S. Numerical study of urban canyon microclimate related to geometrical parameters. Sustainability 2014, 6, 7894–7905. [Google Scholar] [CrossRef] [Green Version]
- Qaid, A.; Ossen, D.R. Effect of asymmetrical street aspect ratios on microclimates in hot, humid regions. Int. J. Biometeorol. 2015, 59, 657–677. [Google Scholar] [CrossRef]
- Dimitrova, R.; Sini, J.-F.; Richards, K.; Schaatzmann, M.; Weeks, M.; Perez García, E.; Borrego, C. Influence of thermal effects on the wind field within the urban environment. Bound. Layer Meteorol. 2009, 131, 223–243. [Google Scholar] [CrossRef]
- Park, S.-B.; Baik, J.-J.; Raasch, S.; Letzel, M.O. A Large-Eddy simulation study of thermal effects on turbulent flow and dispersion in and above a street canyon. J. Appl. Meteorol. Climatol. 2012, 51, 829–841. [Google Scholar] [CrossRef]
- Yaghoobian, N.; Kleissl, J. An improved three-dimensional simulation of the diurnally varying street-canyon flow. Bound. Layer Meteorol. 2014, 153, 251–276. [Google Scholar] [CrossRef]
- Oke, T.R. Boundary Layer Climates, 2nd ed.; 435 S; Taylor & Francis Ltd.: London, UK, 1987; ISBN 10:0415043190. [Google Scholar]
- Britter, R.E.; Hanna, S.R. Flow and dispersion in urban areas. Annu. Rev. Fluid Mech. 2003, 35, 469–496. [Google Scholar] [CrossRef]
- Grimmond, C.S.B.; Oke, T.R. Turbulent heat fluxes in urban areas: Observations and a local-scale urban meteorological parameterization scheme (LUMPS). J. Appl. Meteorol. 2002, 41, 792–810. [Google Scholar] [CrossRef] [Green Version]
- Di Sabatino, S.; Kastner-Klein, P.; Berkowicz, R.; Britter, R.E.; Fedorovich, E. The modelling of turbulence from traffic in urban dispersion models—Part I: Theoretical considerations. Environ. Fluid Mech. 2003, 3, 129–143. [Google Scholar] [CrossRef]
- Kastner-Klein, P.; Fedorovich, E.; Ketzel, M.; Berkowicz, R.; Britter, R. The modelling of turbulence from traffic in urban dispersion models—Part II: Evaluation against laboratory and full-scale concentration measurements in street canyons. Environ. Fluid Mech. 2003, 3, 145–172. [Google Scholar] [CrossRef]
- Finardi, S.; Silibello, C.; D’Allaura, A.; Radice, P. Analysis of pollutant exchange between the Po Valley and the surrounding European region. Urban Clim. 2014, 10, 682–702. [Google Scholar] [CrossRef]
- Ratti, C.; Di Sabatino, S.; Britter, R.E.; Brown, M.J.; Caton, F.; Burian, S. Analysis of 3-D urban databases with respect to air pollution dispersion for a number of European and American cities. Water Air Soil Pollut. Focus 2002, 2, 459–469. [Google Scholar] [CrossRef]
- Di Sabatino, S.; Leo, L.S.; Cataldo, R.; Ratti, C.; Britter, R.E. Construction of digital elevation models for a Southern European city and a comparative morphological analysis with respect to Northern European and North American cities. J. Appl. Meteorol. Climatol. 2010, 49, 1377–1396. [Google Scholar] [CrossRef]
- Pardyjak, E.R.; Stoll, R. Improving measurement technology for the design of sustainable cities. Meas. Sci. Technol. 2017, 28, 092001. [Google Scholar] [CrossRef]
- He, B.-J. Potentials of meteorological characteristics and synoptic conditions to mitigate urban heat island effects. Urban Clim. 2018, 24, 26–33. [Google Scholar] [CrossRef]
- Lee, T.-W.; Ho, A. Scaling of the urban heat island effect based on the energy balance. Nighttime minimum temperature increase vs urban length scale of Phoenix and Tucson, AZ, USA. Clim. Res. 2010, 42, 209–216. [Google Scholar] [CrossRef] [Green Version]
- Lee, T.-W.; Lee, J.Y.; Wang, Z.-H. Scaling of the urban heat island intensity using time-dependent energy balance. Urban Clim. 2012, 2, 16–24. [Google Scholar] [CrossRef] [Green Version]
- Lee, T.-W.; Choi, H.S.; Lee, J. Generalized scaling of urban heat island effect and its applications for energy consumption and renewable energy. Adv. Meteorol. 2014, 2014, 948306. [Google Scholar] [CrossRef] [Green Version]
- Leo, L.S.; Fernando, H.J.S.; Di Sabatino, S. Near-surface flow in complex terrain with coastal and urban influence. Environ. Fluid Mech. 2015, 15, 349–372. [Google Scholar] [CrossRef]
- Fernando, H.J.S. Fluid mechanics of urban atmospheres in complex terrain. Annu. Rev. Fluid Mech. 2010, 42, 365–389. [Google Scholar] [CrossRef]
- Barlow, J.F. Progress in observing and modelling the urban boundary layer. Urban Clim. 2014, 10, 216–240. [Google Scholar] [CrossRef] [Green Version]
- Barbano, F.; Brattich, E.; Di Sabatino, S. Characteristic length scales for turbulent exchange processes in a real urban canopy. Bound. Layer Meteorol. 2020, 1–24. [Google Scholar] [CrossRef]
- Di Sabatino, S.; Bacchetti, M.; Barbano, F.; Barbieri, C.; Brattich, E.; Cappelletti, D.; Deserti, M.; Drebs, A.; Minguzzi, E.; Nardino, M.; et al. Disentangling the effect of vegetation on ventilation and air quality in urban street canyons: The Bologna iSCAPE experimental campaigns. in preparation.
- Kubilay, A.; Neophytou, M.K.A.; Matsentides, S.; Loizou, M.; Carmeliet, J. The pollutant removal capacity of an urban street canyon and its link to the breathability and exchange velocity. Procedia Eng. 2017, 180, 443–451. [Google Scholar] [CrossRef]
- Bus Time Schedules for the City of Bologna. Available online: https://www.tper.it/orari (accessed on 30 October 2020). (In Italian).
- Regional Inventory of Circulating Vehicles in Italy. Available online: http://www.aci.it/laci/studi-e-ricerche/dati-e-statistiche/open-data.html (accessed on 30 October 2020). (In Italian).
- EEA (European Environment Agency) EMEP/EEA Air Pollutant Emission Inventory Guidebook 2016. 2017. Last Update June 2017. Available online: https://www.eea.europa.eu/themes/air/air-pollution-sources-1/emep-eea-air-pollutant-emission-inventory-guidebook (accessed on 10 August 2020).
- Pulvirenti, B.; Di Sabatino, S. CFD characterization of street canyon heating by solar radiation on building walls. In Proceedings of the HARMO 2017—18th International Conference on Harmonisation within Atmospheric Dispersion Modeling for Regulatory Purposes, Bologna, Italy, 9–12 October 2017; Hungarian Meteorological Service: Budapest, Hungary, 2017; pp. 902–906. [Google Scholar]
- Taha, H. Urban climates and heat islands: Albedo, evapotranspiration, and anthropogenic heat. Energy Build. 1997, 25, 99–103. [Google Scholar] [CrossRef] [Green Version]
- Taha, H. Meso-urban meteorological and photochemical modeling of heat island mitigation. Atmos. Environ. 2008, 42, 8795–8809. [Google Scholar] [CrossRef]
- Cao, C.; Lee, X.; Liu, S.; Schultz, N.; Xiao, W.; Zhang, M.; Zhao, L. Urban heat islands in China enhanced by haze pollution. Nat. Commun. 2016, 7, 1–7. [Google Scholar] [CrossRef] [PubMed]
- Kakoniti, A.; Georgiou, G.; Marakkos, K.; Kumar, P.; Neophytou, M.K.-A. The role of materials selection in the urban heat island effect in dry mid-latitude climates. Environ. Fluid Mech. 2015, 16, 347–371. [Google Scholar] [CrossRef]
- Di Sabatino, S.; Buccolieri, R.; Pulvirenti, B.; Britter, R. Simulations of pollutant dispersion within idealised urban-type geometries with CFD and integral models. Atmos. Environ. 2007, 41, 8316–8329. [Google Scholar] [CrossRef]
Site | Site Description | Type | Instrumentation | Sample Rate |
---|---|---|---|---|
Marconi St. Ground level (MA1) | Instrumented mobile van (measuring at 4 m AGL) parked sideline below a compact mean-high building with gallery and no vegetation. | In-canyon high-frequency meteorology and air quality | Sonic anemometer | 20 Hz |
Thermohygrometer | 1 Hz | |||
Barometer | 1 Hz | |||
Air quality Lab | 1 min/1 d * | |||
Marconi St. Mid-canyon level (MA2) | T-bone pole on the 2nd floor balcony (7 m AGL) stretching towards the street from compact high-rise building. Short tree line on the opposite side. | In-canyon high-frequency meteorology | Sonic anemometer | 20 Hz |
Thermohygrometer | 1 Hz | |||
Marconi St. Roof-top level (MA3) | Vertical pole on the rooftop balcony of a 33-m (AGL) high building. Located on compact high-rise building with no obstacles. There is no vegetation on the rooftop but trees at the canyon opposite side (see MA2). | Canyon rooftop interface high-frequency meteorology | Sonic anemometer | 20 Hz |
Thermohygrometer | 1 Hz | |||
Radiometer | 1 min | |||
Laura Bassi St. Ground level (LB1) | Instrumented mobile van (measuring at 3 m AGL) parked sideline below the tree line and in front of an isolated 2-floor house. Trees on both sides of the street. | In-canyon high-frequency meteorology and air quality | Sonic anemometer | 20 Hz |
Thermohygrometer | 1 Hz | |||
Barometer | 1 Hz | |||
Air quality Lab | 1 min/1 d * | |||
Laura Bassi St. Mid-canyon level (LB2) | T-bone pole on the 3rd floor balcony (9 m AGL) stretching towards the street from isolated 3-floor house. Trees on both sides of the street. | In-canyon high-frequency meteorology | Sonic anemometer | 20 Hz |
Thermohygrometer | 1 Hz | |||
Laura Bassi St. Rooftop level (LB3) | Vertical pole on the rooftop of a 18/15 **-m (AGL) height semi-isolated building of 6 floors (the tallest of the neighborhood). No obstacles from the neighboring buildings and no vegetation on the rooftop. Trees on both sides of the street below. | Canyon rooftop interface high-frequency meteorology | Sonic anemometer | 20 Hz |
Thermohygrometer | 1 Hz | |||
Radiometer | 1 min | |||
Silvani St. (SI) | WMO-(World Meteorological Organization) standard meteorological station at 35/27 *** m AGL located on top of the highest building of the neighborhood (red dot on left figure). | Urban (city-scale) meteorology | Cup and vane anemometer | 30 min |
Thermohygrometer | 30 min | |||
Asinelli Tower (AS) | WMO-standard meteorological station at 100 m AGL on top of the Asinelli Tower (red dot on left figure), 70–80 m above the nearest buildings. | Synoptic scale meteorology | Cup and vane anemometer | 30 min |
Thermohygrometer | 30 min | |||
Porta San Felice (PSF) | WMO-standard urban traffic air quality 2-m AGL station (red dot on left figure) sideline to the urban ring-road next to a small vegetated area. | Urban traffic air quality | Gas and particulate analyzer | 30 min |
Giardini Margherita (GM) | WMO-standard urban background 2-m AGL air quality station (red dot on left figure) within the largest urban park of the city. | Urban background air quality | Gas and particulate analyzer | 30 min |
Irnerio St. (CL) | Ceilometer located on the rooftop balcony (15 m AGL) within the city, with an open vertical path. | Urban boundary-layer height | Ceilometer | 16 s |
Mezzolara (MZ) | WMO-standard meteorological station at 10/2 *** m AGL within the rural area within Mezzolara, 7 km to the north of Bologna. | Rural meteorology | Cup and vane anemometer | 30 min |
Thermohygrometer | 30 min |
K | RMSE | |||
---|---|---|---|---|
SI-MZ | 5.8 | 0.7 | 0.78 | 0.97 |
AS-MZ | 7.9 | 0.8 | 0.76 | 1.43 |
MA1-MZ | 8.1 | 0.6 | 0.76 | 1.30 |
LB1-MZ | 6.1 | 0.6 | 0.72 | 1.14 |
MA1-LB1 | 2.3 | 0.8 | 0.60 | 0.43 |
[°C m−2 s2] | b | RMSE | ||
---|---|---|---|---|
MA | 0.55 | 0.28 | 0.87 | 0.73 |
LB | 6.39 | −0.51 | 0.87 | 0.65 |
Wind Speed (m s−1) | Wind Direction (°) | T East (K) | T West (K) | |||
---|---|---|---|---|---|---|
Case 1 | 2.69 | 127° | 0.4419 | 1.3067 | 300 | 307 |
Case 2 | 2.61 | 91° | 0.1473 | 0.0003 | 312 | 302 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Di Sabatino, S.; Barbano, F.; Brattich, E.; Pulvirenti, B. The Multiple-Scale Nature of Urban Heat Island and Its Footprint on Air Quality in Real Urban Environment. Atmosphere 2020, 11, 1186. https://doi.org/10.3390/atmos11111186
Di Sabatino S, Barbano F, Brattich E, Pulvirenti B. The Multiple-Scale Nature of Urban Heat Island and Its Footprint on Air Quality in Real Urban Environment. Atmosphere. 2020; 11(11):1186. https://doi.org/10.3390/atmos11111186
Chicago/Turabian StyleDi Sabatino, Silvana, Francesco Barbano, Erika Brattich, and Beatrice Pulvirenti. 2020. "The Multiple-Scale Nature of Urban Heat Island and Its Footprint on Air Quality in Real Urban Environment" Atmosphere 11, no. 11: 1186. https://doi.org/10.3390/atmos11111186