Assessment and Correction of Solar Radiation Measurements with Simple Neural Networks
Abstract
:1. Introduction
2. Experiments
3. Results
3.1. Neural Network Results for 2015 Experiment
3.2. Neural Network Results for 2017 Experiment
4. Discussion
5. Conclusions
Funding
Acknowledgments
Conflicts of Interest
References
- Hegerl, G.C.; Black, E.; Allan, R.P.; Ingram, W.J.; Polson, D.; Trenberth, K.E.; Chadwick, R.S.; Arkin, P.A.; Sarojini, B.B.; Becker, A.; et al. Challenges in Quantifying Changes in the Global Water Cycle. Bull. Am. Meteorol. Soc. 2015, 96, 1097–1115. [Google Scholar] [CrossRef] [Green Version]
- Fisher, J.B.; Melton, F.; Middleton, E.; Hain, C.; Anderson, M.; Allen, R.; McCabe, M.F.; Hook, S.; Baldocchi, D.; Townsend, P.A.; et al. The future of evapotranspiration: Global requirements for ecosystem functioning, carbon and climate feedbacks, agricultural management, and water resources: The Future of evapotranspiration. Water Resour. Res. 2017, 53, 2618–2626. [Google Scholar] [CrossRef]
- Irmak, S.; Irmak, A.; Allen, R.G.; Jones, J.W. Solar and net radiation-based equations to estimate reference evapotranspiration in humid climates. J. Irrig. Drain. Eng. 2003, 129, 336–347. [Google Scholar] [CrossRef]
- Blonquist, J.M., Jr.; Bugbee, B. Solar, Net, and Photosynthetic Radiation. Agroclimatol. Link. Agric. Clim. 2020, 60, 1–49. [Google Scholar]
- Gavilán, P.; Berengena, J.; Allen, R.G. Measuring versus estimating net radiation and soil heat flux: Impact on Penman–Monteith reference ET estimates in semiarid regions. Agric. Water Manag. 2007, 89, 275–286. [Google Scholar] [CrossRef]
- Stöckle, C.O.; Kjelgaard, J.; Bellocchi, G. Evaluation of estimated weather data for calculating Penman-Monteith reference crop evapotranspiration. Irrig. Sci. 2004, 23, 39–46. [Google Scholar] [CrossRef]
- Blonquist, J.M.; Allen, R.G.; Bugbee, B. An evaluation of the net radiation sub-model in the ASCE standardized reference evapotranspiration equation: Implications for evapotranspiration prediction. Agric. Water Manag. 2010, 97, 1026–1038. [Google Scholar] [CrossRef]
- Chavez, J.L.; Gowda, P.H.; Howell, T.A.; Copeland, K.S. Radiometric surface temperature calibration effects on satellite based evapotranspiration estimation. Int. J. Remote Sens. 2009, 30, 2337–2354. [Google Scholar] [CrossRef]
- Allen, R.G.; Irmak, A.; Trezza, R.; Hendrickx, J.M.; Bastiaanssen, W.; Kjaersgaard, J. Satellite-based ET estimation in agriculture using SEBAL and METRIC. Hydrol. Process. 2011, 25, 4011–4027. [Google Scholar] [CrossRef]
- Morton, C.G.; Huntington, J.L.; Pohll, G.M.; Allen, R.G.; McGwire, K.C.; Bassett, S.D. Assessing calibration uncertainty and automation for estimating evapotranspiration from agricultural areas using METRIC. JAWRA J. Am. Water Resour. Assoc. 2013, 49, 549–562. [Google Scholar] [CrossRef]
- Foken, T. The energy balance closure problem: An overview. Ecol. Appl. 2008, 18, 1351–1367. [Google Scholar] [CrossRef]
- Leuning, R.; van Gorsel, E.; Massman, W.J.; Isaac, P.R. Reflections on the surface energy imbalance problem. Agric. For. Meteorol. 2012, 156, 65–74. [Google Scholar] [CrossRef]
- Grachev, A.A.; Fairall, C.W.; Blomquist, B.W.; Fernando, H.J.S.; Leo, L.S.; Otárola-Bustos, S.F.; Wilczak, J.M.; McCaffrey, K.L. On the surface energy balance closure at different temporal scales. Agric. For. Meteorol. 2020, 281, 107823. [Google Scholar] [CrossRef]
- von Schuckmann, K.; Palmer, M.D.; Trenberth, K.E.; Cazenave, A.; Chambers, D.; Champollion, N.; Hansen, J.; Josey, S.A.; Loeb, N.; Mathieu, P.-P.; et al. An imperative to monitor Earth’s energy imbalance. Nat. Clim. Chang. 2016, 6, 138–144. [Google Scholar] [CrossRef] [Green Version]
- Trenberth, K.E.; Anthes, R.A.; Belward, A.; Brown, O.B.; Habermann, T.; Karl, T.R.; Running, S.; Ryan, B.; Tanner, M.; Wielicki, B. Challenges of a sustained climate observing system. In Climate Science for Serving Society; Springer: Berlin/Heidelberg, Germany, 2013; pp. 13–50. ISBN 94-007-6691-2. [Google Scholar]
- ASCE Manuals and Reports on Engineering Practice No.70: Evaporation, Evapotranspiration, and Irrigation Water Requirements, 2nd ed.; Jensen, M.E.; Allen, R.G. (Eds.) American Society of Civil Engineers: Reston, VA, USA, 2016; ISBN 978-0-7844-1405-7. [Google Scholar]
- Allen, R.G. Self-calibrating method for estimating solar radiation from air temperature. J. Hydrol. Eng. 1997, 2, 56–67. [Google Scholar] [CrossRef]
- Samani, Z. Estimating solar radiation and evapotranspiration using minimum climatological data. J. Irrig. Drain. Eng. 2000, 126, 265–267. [Google Scholar] [CrossRef]
- Samani, Z.; Hargreaves, G.; Tran, V.; Bawazir, S. Estimating solar radiation from temperature with spatial and temporal calibration. J. Irrig. Drain. Eng. 2011, 137, 692–696. [Google Scholar] [CrossRef]
- Thornton, P.E.; Running, S.W. An improved algorithm for estimating incident daily solar radiation from measurements of temperature, humidity, and precipitation. Agric. For. Meteorol. 1999, 93, 211–228. [Google Scholar] [CrossRef]
- Majumdar, N.C.; Mathur, B.L.; Kaushik, S.B. Prediction of direct solar radiation for low atmospheric turbidity. Sol. Energy 1972, 13, 383–394. [Google Scholar] [CrossRef]
- Allen, R.G.; Pereira, L.S.; Raes, D.; Smith, M. Crop Evapotranspiration-Guidelines for Computing Crop Water Requirements-FAO Irrigation and Drainage Paper 56; FAO: Rome, Italy, 1998; Volume 300. [Google Scholar]
- Maier, H.R.; Dandy, G.C. Neural networks for the prediction and forecasting of water resources variables: A review of modelling issues and applications. Environ. Model. Softw. 2000, 15, 101–124. [Google Scholar] [CrossRef]
- Gardner, M.W.; Dorling, S.R. Artificial neural networks (the multilayer perceptron)—A review of applications in the atmospheric sciences. Atmos. Environ. 1998, 32, 2627–2636. [Google Scholar] [CrossRef]
- ASCE Task Committee on Application of Artificial Neural Networks in Hydrology. Artificial neural networks in hydrology. I: Preliminary concepts. J. Hydrol. Eng. 2000, 5, 115–123. [Google Scholar] [CrossRef]
- ASCE Task Committee on Application of Artificial Neural Networks in Hydrology. Artificial neural networks in hydrology. II: Hydrologic applications. J. Hydrol. Eng. 2000, 5, 124–137. [Google Scholar] [CrossRef]
- Morid, S.; Gosain, A.K.; Keshari, A.K. Solar radiation estimation using temperature-based, stochastic and artificial neural networks approaches. Hydrol. Res. 2002, 33, 291–304. [Google Scholar] [CrossRef]
- Bowden, G.J.; Maier, H.R.; Dandy, G.C. Input determination for neural network models in water resources applications. Part 2. Case study: Forecasting salinity in a river. J. Hydrol. 2005, 301, 93–107. [Google Scholar] [CrossRef]
- Martí, P.; González-Altozano, P.; Gasque, M. Reference evapotranspiration estimation without local climatic data. Irrig. Sci. 2011, 29, 479–495. [Google Scholar] [CrossRef] [Green Version]
- Kişi, Ö.; Öztürk, Ö. Adaptive neurofuzzy computing technique for evapotranspiration estimation. J. Irrig. Drain. Eng. 2007, 133, 368–379. [Google Scholar] [CrossRef]
- García-Hinde, O.; Gómez-Verdejo, V.; Martínez-Ramón, M.; Casanova-Mateo, C.; Sanz-Justo, J.; Jiménez-Fernández, S.; Salcedo-Sanz, S. Feature selection in solar radiation prediction using bootstrapped SVRs. In Proceedings of the 2016 IEEE Congress on Evolutionary Computation (CEC), Vancouver, BC, Canada, 24–29 July 2016; pp. 3638–3645. [Google Scholar]
- Irmak, A.; Kamble, B. Evapotranspiration data assimilation with genetic algorithms and SWAP model for on-demand irrigation. Irrig. Sci. 2009, 28, 101–112. [Google Scholar] [CrossRef]
- Hunt, B.R.; Kostelich, E.J.; Szunyogh, I. Efficient data assimilation for spatiotemporal chaos: A local ensemble transform Kalman filter. Phys. D Nonlinear Phenom. 2007, 230, 112–126. [Google Scholar] [CrossRef] [Green Version]
- Sachindra, D.A.; Ahmed, K.; Rashid, M.M.; Shahid, S.; Perera, B.J.C. Statistical downscaling of precipitation using machine learning techniques. Atmos. Res. 2018, 212, 240–258. [Google Scholar] [CrossRef]
- Şenkal, O.; Yıldız, B.Y.; Şahin, M.; Pestemalcı, V. Precipitable water modelling using artificial neural network in Çukurova region. Environ. Monit. Assess. 2011, 184, 141–147. [Google Scholar] [CrossRef]
- Najafi, M.R.; Moradkhani, H.; Wherry, S.A. Statistical downscaling of precipitation using machine learning with optimal predictor selection. J. Hydrol. Eng. 2011, 16, 650–664. [Google Scholar] [CrossRef]
- Kourakos, G.; Harter, T. Vectorized simulation of groundwater flow and streamline transport. Environ. Model. Softw. 2014, 52, 207–221. [Google Scholar] [CrossRef]
- Kumar, M.; Raghuwanshi, N.S.; Singh, R. Artificial neural networks approach in evapotranspiration modeling: A review. Irrig. Sci. 2011, 29, 11–25. [Google Scholar] [CrossRef]
- Kisi, O. Least squares support vector machine for modeling daily reference evapotranspiration. Irrig. Sci. 2013, 31, 611–619. [Google Scholar] [CrossRef]
- Dai, W.; Jin, H.; Zhang, Y.; Liu, T.; Zhou, Z. Detecting temporal changes in the temperature sensitivity of spring phenology with global warming: Application of machine learning in phenological model. Agric. For. Meteorol. 2019, 279, 107702. [Google Scholar] [CrossRef]
- Meyers, J.N.; Kisekka, I.; Upadhyaya, S.K.; Michelon, G.K. Development of an Artificial Neural Network Approach for Predicting Plant Water Status in Almonds. Trans. ASABE 2019, 62, 19–32. [Google Scholar] [CrossRef]
- Salcedo-Sanz, S.; Casanova-Mateo, C.; Muñoz-Marí, J.; Camps-Valls, G. Prediction of Daily Global Solar Irradiation Using Temporal Gaussian Processes. IEEE Geosci. Remote Sens. Lett. 2014, 11, 1936–1940. [Google Scholar] [CrossRef]
- Qing, X.; Niu, Y. Hourly day-ahead solar irradiance prediction using weather forecasts by LSTM. Energy 2018, 148, 461–468. [Google Scholar] [CrossRef]
- Huang, C.-J.; Kuo, P.-H. A Deep CNN-LSTM Model for Particulate Matter (PM2.5) Forecasting in Smart Cities. Sensors 2018, 18, 2220. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liu, H.; Mi, X.; Li, Y. Smart multi-step deep learning model for wind speed forecasting based on variational mode decomposition, singular spectrum analysis, LSTM network and ELM. Energy Convers. Manag. 2018, 159, 54–64. [Google Scholar] [CrossRef]
- Cuenca, R.H.; Higgins, C.W. Assessing Agricultural Consumptive Use in the Upper Colorado River Basin Phase II; Upper Colorado River Commission. 2016, p. 326. Available online: http://www.ucrcommission.com (accessed on 9 July 2020).
- Kelley, J.; Higgins, C.; Vagher, T.; Walker, W. Neural Networks and Low Cost Sensors to Estimate Site-Specific Evapotranspiration. In Proceedings of the 2017 International Meeting of the ASABE, Spokane, WA, USA, 16–19 July 2017; American Society of Agricultural and Biological Engineers: St. Joseph, MI, USA, 2017. [Google Scholar]
- Kelley, J.; Pardyjak, E.R. Using Neural Networks to Estimate Site-Specific Crop Evapotranspiration with Low-Cost Sensors. Agronomy 2019, 9, 108. [Google Scholar] [CrossRef] [Green Version]
- Higgins, C.W.; Drake, S.A.; Kelley, J.; Oldroyd, H.J.; Jensen, D.D.; Wharton, S. Ensemble-Averaging Resolves Rapid Atmospheric Response to the 2017 Total Solar Eclipse. Front. Earth Sci. 2019, 7, 198. [Google Scholar] [CrossRef] [Green Version]
- Beale, M.; Hagan, M.; Demuth, H. Neural Network Toolbox (TM) Reference; 9.1.; The MathWorks Inc.: Natick, MA, USA, 2016. [Google Scholar]
- Kelley, J.; McCauley, D.; Alexander, A.; Gray, W.; Siegfried, R.; Oldroyd, H.J. Using Machine Learning to Integrate On-Farm Sensors and Agro-Meteorology Networks into Site-Specific Decision Support. Trans. ASABE 2020, 63. [Google Scholar] [CrossRef]
- Allen, R.G.; Jensen, M.E. ASCE Manual 70–Second Edition: Evaporation, Evapotranspiration and Irrigation Requirements. In Proceedings of the 2015 ASABE/IA Irrigation Symposium: Emerging Technologies for Sustainable Irrigation-A Tribute to the Career of Terry Howell, Sr. Conference Proceedings; American Society of Agricultural and Biological Engineers, Long Beach, CA, USA, 9–11 November 2015; pp. 1–16. [Google Scholar]
- Haigh, T.; Koundinya, V.; Hart, C.; Klink, J.; Lemos, M.; Mase, A.S.; Prokopy, L.; Singh, A.; Todey, D.; Widhalm, M. Provision of climate services for agriculture: Public and private pathways to farm decision-making. Bull. Am. Meteorol. Soc. 2018, 99, 1781–1790. [Google Scholar] [CrossRef] [Green Version]
- Laurenson, M.R.; Kiura, T.; Ninomiya, S. Providing agricultural models with mediated access to heterogeneous weather databases. Appl. Eng. Agric. 2002, 18, 617. [Google Scholar] [CrossRef]
- Allen, R.G.; Pereira, L.S.; Howell, T.A.; Jensen, M.E. Evapotranspiration information reporting: I. Factors governing measurement accuracy. Agric. Water Manag. 2011, 98, 899–920. [Google Scholar] [CrossRef] [Green Version]
- Mahmood, R.; Boyles, R.; Brinson, K.; Fiebrich, C.; Foster, S.; Hubbard, K.; Robinson, D.; Andresen, J.; Leathers, D. Mesonets: Mesoscale weather and climate observations for the United States. Bull. Am. Meteorol. Soc. 2017, 98, 1349–1361. [Google Scholar] [CrossRef]
- Reges, H.W.; Doesken, N.; Turner, J.; Newman, N.; Bergantino, A.; Schwalbe, Z. COCORAHS: The evolution and accomplishments of a volunteer rain gauge network. Bull. Am. Meteorol. Soc. 2016, 97(10), 1831–1846. [Google Scholar] [CrossRef]
- van de Giesen, N.; Hut, R.; Selker, J. The Trans-African Hydro-Meteorological Observatory (TAHMO). Wiley Interdiscip. Rev. Water 2014, 1, 341–348. [Google Scholar] [CrossRef] [Green Version]
- Allen, R.G.; Trezza, R.; Tasumi, M. Analytical integrated functions for daily solar radiation on slopes. Agric. For. Meteorol. 2006, 139, 55–73. [Google Scholar] [CrossRef]
Measured Parameter | Sensor (Manufacturer) | Period of Operation |
---|---|---|
4 component Net Radiation (excluding Downwelling SR) | NR01 (Hukseflux, Hukseflux, Delft, The Netherlands) | 1 April to 1 October |
Downwelling Shortwave Radiation | NR01 (Hukseflux, Hukseflux, Delft, The Netherlands) | 1 April to 20 June |
Air Temperature and Humidity (two heights) | HMP155 (Vaisala, Vanta, Finland) | 1 April to 1 October |
Measured Parameter | Sensor (Manufacturer) | Period of Operation |
---|---|---|
Net Radiation | Q-7 net radiometer (REBS, no longer in production) | 12 June to 4 September |
Net Radiation | NR01 (Hukseflux, Hukseflux, Delft, The Netherlands) | 21 June to 3 July 19 to 31 August |
Air Temperature and Humidity | HMP60 (Vaisala, Vanta, Finland) | 12 June to 4 September |
Air Temperature and Humidity | HCS2 (Rotronic AG, Bassersdorf, Switzerland) | 21 June to 3 July 19 to 31 August |
Photosynthetic Active Radiation | PAR quantum sensor (Apogee Instr., Logan, UT, USA) | 12 June to 4 September |
Wind Speed and Direction | DS-2 Sonic anemometer (Decagon Inc., Pullman WA, USA) | 12 June to 4 September |
Wind Speed and Direction | Wind Sentry cup and vane (RM Young, Traverse City, MI, USA) | 12 June to 4 September |
2015 Experiment (Rifle, CO, USA) | |
NN4 | Time, Uplooking IR, Air Temperature, RH |
NN3 | Time, Uplooking IR, Air Temperature |
NN3c | Time, Air Temperature, Relative Humidity |
NN2 | Time, Air Temperature |
NN2b | Time, Uplooking IR |
NN4b | Time, Downlooking SW, Up. IR, Air Temp. |
2017 Experiment (Corvallis, OR, USA) | |
NN5 | Time, PAR, Wind Speed, Air Temp., RH |
NN3 | Time, PAR, RH |
NN3b | Time, Air Temperature, RH |
NN2 | Time, PAR |
NN2b | Time, Air Temperature |
NN Model | R2 | RMSE (W·m−2) | Slope |
---|---|---|---|
NN4 | 0.915 | 93.4 | 0.94 |
NN4b | 0.93 | 92.8 | 1.04 |
NN3 | 0.896 | 100 | 0.905 |
NN3c | 0.737 | 148 | 0.763 |
NN2 | 0.737 | 140 | 0.72 |
NN2b | 0.902 | 102 | 0.957 |
Predictor: Observed | R2 | RMSE (W·m−2) | Slope |
---|---|---|---|
NR01: Q7 | 0.980 | 35.2 | 0.90 |
ECL: Q7 | 0.977 | 31.3 | 1.07 |
Q7: NN5 | 0.974 | 42.9 | 1.14 |
ECL: NN5 | 0.967 | 44.5 | 1.25 |
Q7: NN3 | 0.982 | 35.5 | 1.13 |
ECL: NN3 | 0.952 | 51.8 | 1.21 |
Q7: NN3b | 0.927 | 74.6 | 1.15 |
ECL: NN3b | 0.921 | 78.7 | 1.41 |
Q7: NN2 | 0.988 | 28.9 | 1.13 |
ECL: NN2 | 0.971 | 39.4 | 1.21 |
Q7: NN2b | 0.914 | 78.9 | 1.11 |
ECL: NN2b | 0.925 | 73.8 | 1.36 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kelley, J. Assessment and Correction of Solar Radiation Measurements with Simple Neural Networks. Atmosphere 2020, 11, 1160. https://doi.org/10.3390/atmos11111160
Kelley J. Assessment and Correction of Solar Radiation Measurements with Simple Neural Networks. Atmosphere. 2020; 11(11):1160. https://doi.org/10.3390/atmos11111160
Chicago/Turabian StyleKelley, Jason. 2020. "Assessment and Correction of Solar Radiation Measurements with Simple Neural Networks" Atmosphere 11, no. 11: 1160. https://doi.org/10.3390/atmos11111160
APA StyleKelley, J. (2020). Assessment and Correction of Solar Radiation Measurements with Simple Neural Networks. Atmosphere, 11(11), 1160. https://doi.org/10.3390/atmos11111160