High PM2.5 Concentrations in a Small Residential City with Low Anthropogenic Emissions in South Korea
Abstract
:1. Introduction
2. Experiments
2.1. Sampling
2.2. Chemical Analysis
2.3. Meteorological Data and Other Pollutants
2.4. Backward Trajectories
2.5. Statistical Analysis
3. Results and Discussion
3.1. General Trends
3.2. Sourcing the Measured Species
3.3. Effect of Humidity
3.4. Effect of Biomass Burning
3.5. High Concentration Episode
3.6. Comparison with Other Studies
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
References
- Medina-Ramón, M.; Zanobetti, A.; Schwartz, J. The effect of ozone and PM10 on hospital admissions for pneumonia and chronic obstructive pulmonary disease: A national multicity study. Am. J. Epidemiol. 2006, 163, 579–588. [Google Scholar] [CrossRef] [PubMed]
- Moolgavkar, S.H.; Luebeck, E.G.; Anderson, E.L. Air pollution and hospital admissions for respiratory causes in Minneapolis-St. Paul and Birmingham. Epidemiology 1997, 8, 364–370. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pope, C.A.; Burnett, R.T.; Thun, M.J.; Calle, E.E.; Krewski, D.; Ito, K.; Thurston, G.D. Lung cancer, cardiopulmonary mortality, and long-term exposure to fine particulate air pollution. J. Am. Med. Assoc. 2002, 287, 1132–1141. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lin, Y.; Zou, J.; Yang, W.; Li, C.Q. A review of recent advances in research on PM2.5 in China. Int. J. Environ. Res. Public Health 2018, 15, 438. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Anderson, H.R.; Spix, C.; Medina, S.; Schouten, J.P.; Castellsague, J.; Rossi, G.; Bacharova, L. Air pollution and daily admissions for chronic obstructive pulmonary disease in 6 European cities: Results from the APHEA project. Eur. Respir. J. 1997, 10, 1064–1071. [Google Scholar] [CrossRef] [Green Version]
- Tsai, S.S.; Yang, C.Y. Fine particulate air pollution and hospital admissions for pneumonia in a subtropical city: Taipei, Taiwan. J. Toxicol. Environ. Health 2014, 77, 192–201. [Google Scholar] [CrossRef]
- Slaughter, J.C.; Kim, E.; Sheppard, L.; Sullivan, J.H.; Larson, T.V.; Claiborn, C. Association between particulate matter and emergency room visits, hospital admissions and mortality in Spokane, Washington. J. Expo. Sci. Environ. Epidemiol. 2005, 15, 153–159. [Google Scholar] [CrossRef] [Green Version]
- Jorge, H.M.; Susana, R.R.; Jose, F.R.M.; Arturo, C.R.; Salvador, B.J.; Beatriz, C.G.; Darrel, G.B. Chemical characterization and source apportionment of PM10 and PM2.5 in the metropolitan area of Costa Rica, Central America. Atmos. Pollut. Res. 2013, 4, 181–190. [Google Scholar]
- Cao, J.J.; Shen, Z.X.; Chow, J.C.; Watson, J.G.; Lee, S.C.; Tie, X.X.; Han, Y.M. Winter and summer PM2.5 chemical compositions in fourteen Chinese cities. J. Air Waste Manag. Assoc. 2012, 62, 1214–1226. [Google Scholar] [CrossRef]
- Timonen, H.; Aurela, M.; Carbone, S.; Saarnio, K.; Saarikoski, S.; Mäkelä, T.; Hillamo, R. High time-resolution chemical characterization of the water-soluble fraction of ambient aerosols with PILS-TOC-IC and AMS. Atmos. Meas. Tech. 2010, 3, 1063–1074. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Q.; Jimenez, J.L.; Canagaratna, M.R.; Allan, J.D.; Coe, H.; Ulbrich, I.; Dzepina, K. Ubiquity and dominance of oxygenated species in organic aerosols in anthropogenically-influenced northern hemisphere midlatitudes. Geophys. Res. Lett. 2007, 34, L13801. [Google Scholar] [CrossRef] [Green Version]
- Gonçalves, C.; Alves, C.; Fernandes, A.P.; Monteiro, C.; Tarelho, L.; Evtyugina, M.; Pio, C. Organic compounds in PM2.5 emitted from fireplace and woodstove combustion of typical Portuguese wood species. Atmos. Environ. 2011, 45, 4533–4545. [Google Scholar] [CrossRef] [Green Version]
- Hamad, S.H.; Schauer, J.J.; Heo, J.; Kadhim, A.K. Source apportionment of PM2.5 carbonaceous aerosol in Baghdad, Iraq. Atmos. Res. 2015, 156, 80–90. [Google Scholar] [CrossRef]
- Kawamura, K.; Seméré, R.; Imai, Y.; Fujii, Y.; Hayashi, M. Masahiko Hayashi, Water soluble dicarboxylic acids and related compounds in Antarctic aerosols. J. Geophys. Res. Atmos. 1996, 101, 18721–18728. [Google Scholar] [CrossRef]
- Witkowska, A.; Lewandowska, A.U. Water soluble organic carbon in aerosols (PM1, PM2.5, PM10) and various precipitation forms (rain, snow, mixed) over the southern Baltic Sea station. Sci. Total Environ. 2016, 573, 337–346. [Google Scholar] [CrossRef] [PubMed]
- Heo, J.B.; Hopke, P.K.; Yi, S.M. Source apportionment of PM2.5 in Seoul, Korea. Atmos. Chem. Phys. 2009, 9, 4957–4971. [Google Scholar] [CrossRef] [Green Version]
- Han, Y.; Kim, H.; Cho, S.; Kim, P.; Kim, W. Metallic elements in PM2.5 in different functional areas of Korea: Concentrations and source identification. Atmos. Res. 2015, 153, 416–428. [Google Scholar] [CrossRef]
- Vellingiri, K.; Kim, K.; Ma, C.; Kang, C.; Lee, J.; Kim, I.; Brown, R.J. Ambient particulate matter in a central urban area of Seoul, Korea. Chemosphere 2015, 119, 812–819. [Google Scholar] [CrossRef]
- Park, J.M. Fine Particulate Organic Carbon in Chuncheon, Korea: Concentrations and Source Identification. Master’s Thesis, Kangwon National University, Gangwon-do, Korea, 2017. [Google Scholar]
- Center for Environmental Research Information Office of Research and Development US; Environmental Protection Agency. Compendium of Methods for the Determination of Inorganic Compounds in Ambient Air; EPA: Washington, DC, USA, 1999. [Google Scholar]
- Birch, M.E.; Cary, R.A. Elemental carbon-based method for monitoring occupational exposures to particulate diesel exhaust. Aerosol Sci. Technol. 1996, 25, 221–241. [Google Scholar] [CrossRef]
- Birch, M.E. Occupational monitoring of particulate diesel exhaust by NIOSH method 5040. Appl. Occup. Environ. Hyg. 2002, 17, 400–405. [Google Scholar] [CrossRef]
- Park, S.S.; Schauer, J.J.; Cho, S.Y. Sources and their contribution to two water-soluble organic carbon fractions at a roadway site. Atmos. Environ. 2013, 77, 348–357. [Google Scholar] [CrossRef]
- Ministry of Environment. Available online: https://www.airkorea.or.kr/web/board/3/267/?pMENU_NO=145 (accessed on 10 October 2019).
- Hussain, F.; Nabi, G.; Boota, M.W. Rainfall trend analysis by using the Mann-Kendall test & Sen’s slope estimates: A case study of district Chakwal rain gauge, Barani area, Northern Punjab province, Pakistan. Sci. Int. (Lahore) 2015, 27, 3159–3165. [Google Scholar]
- Heo, J.H.; Oh, S.W. Characterization of annual PM2.5 and PM10 concentrations by real-time measurements in Cheonan, Chungnam. J. Korea Acad. Ind. Coop. Soc. 2012, 13, 445–450. [Google Scholar] [CrossRef]
- Ming, J.; Zhang, D.; Kang, S.; Tian, W. Aerosol and fresh snow chemistry in the East Rongbuk Glacier on the northern slope of Mt. Qomolangma (Everest). J. Geophys. Res. 2007, 112, 1–11. [Google Scholar] [CrossRef] [Green Version]
- Cho, S.H.; Kim, P.R.; Han, Y.J.; Kim, H.W. Characteristics of ionic and carbonaceous compounds in PM2.5 and high concentration episodes in Chuncheon, Korea. J. Korean Soc. Atmos. Environ. 2016, 32, 435–447. [Google Scholar] [CrossRef] [Green Version]
- Chu, S.H. PM2.5 episodes as observed in the speciation trends network. Atmos. Environ. 2004, 38, 5237–5246. [Google Scholar] [CrossRef]
- Park, J.; Ryoo, J.; Lee, J.; Song, M. Origins and distributions of atmospheric ammonia in Jeonju during 2019–2020. J. Korean Soc. Atmos. Environ. 2020, 36, 262–274. [Google Scholar] [CrossRef]
- Du, H.; Kong, L.; Cheng, T.; Chen, J.; Yang, X.; Zhang, R.; Han, Z.; Yan, Z.; Ma, Y. Insights into ammonium particle-to-gas conversion: Non-sulfate ammonium coupling with nitrate and chloride. Aerosol Air Qual. Res. 2010, 10, 589–595. [Google Scholar] [CrossRef]
- McMurry, P.H.; Takano, H.; Anderson, G.R. Study of the ammonia (gas)—Sulphuric acid (aerosol) reaction rate. Environ. Sci. Technol. 1983, 17, 347–352. [Google Scholar] [CrossRef]
- Wang, Y.; Zhuang, G.S.; Tang, A.; Yuan, H.; Sun, Y.L.; Chen, S.; Zhang, A. The ion chemistry of PM2.5 aerosol in Beijing. Atmos. Environ. 2005, 39, 3771–3784. [Google Scholar] [CrossRef]
- Bray, C.D.; Battye, W.; Aneja, V.P.; Tong, D.Q.; Lee, P.; Tang, Y. Ammonia emissions from biomass burning in the continental United States. Atmos. Environ. 2018, 187, 50–61. [Google Scholar] [CrossRef]
- Byun, J.Y. Source Estimation Based on Chemical Characteristics and Size Distribution of Fine Particle in Chuncheon, Korea. Master’s Thesis, Kangwon National University, Gangwon-do, Korea, 2018. [Google Scholar]
- Park, J.M.; Han, Y.J.; Cho, S.H.; Kim, H.W. Characteristics of carbonaceous PM2.5 in a small residential city in Korea. Atmosphere 2018, 9, 490. [Google Scholar] [CrossRef] [Green Version]
- Ming, J.; Xiao, C.; Sun, J. Carbonaceous particles in the atmosphere and precipitation of the Nam Co region, central Tibet. J. Environ. Sci. 2010, 22, 1748–1756. [Google Scholar] [CrossRef]
- Schauer, J.J.; Kleeman, M.J.; Cass, G.R.; Simoneit, B.R. Measurement of emissions from air pollution sources. 5. C1–C32 organic compounds from gasoline-powered motor vehicles. Environ. Sci. Technol. 2002, 36, 1169–1180. [Google Scholar] [CrossRef]
- Schauer, J.J.; Kleeman, M.J.; Cass, G.R.; Simoneit, B.R. Measurement of emissions from air pollution sources. 3. C1–C29 organic compounds from fireplace combustion of wood. Environ. Sci. Technol. 2001, 35, 1716–1728. [Google Scholar] [CrossRef]
- Chen, Y.; Zhi, G.; Feng, Y.; Fu, J.; Feng, J.; Sheng, G.; Simoneit, B.R. Measurements of emission factors for primary carbonaceous particles from residential raw-coal combustion in China. Geophys. Res. Lett. 2006, 33. [Google Scholar] [CrossRef]
- He, L.; Hu, M.; Huang, X.; Yu, B.; Zhang, Y.; Liu, D. Measurement of emissions of fine particulate organic matter from Chinese cooking. Atmos. Environ. 2004, 38, 6557–6564. [Google Scholar] [CrossRef]
- Turpin, B.J.; Huntzicker, J.J. Identification of secondary organic aerosol episodes and quantitation of primary and secondary organic aerosol concentrations during SCAQS. Atmos. Environ. 1995, 29, 3527–3544. [Google Scholar] [CrossRef]
- Zhao, M.; Wang, S.; Tan, J.; Hua, Y.; Wu, D.; Hao, J. Variation of urban atmospheric ammonia pollution and its relation with PM2.5 chemical property in winter of Beijing, China. Aerosol Air Qual. Res. 2016, 16, 1378–1389. [Google Scholar] [CrossRef] [Green Version]
- Jang, M.; Czoschke, N.M.; Lee, S.; Kamens, R.M. Heterogeneous atmospheric aerosol production by acid-catalyzed particle-phase reactions. Science 2002, 298, 814–817. [Google Scholar] [CrossRef] [PubMed]
- Galon-Negru, A.G.; Olariu, R.; Arsene, C. Chemical characteristics of size-resolved atmospheric aerosols I Iasi, north-eastern Romani: Nitrogen-containing inorganic compounds control aerosol chemistry in the area. Atmos. Chem. Phys. 2018, 18, 5879–5904. [Google Scholar] [CrossRef] [Green Version]
- Sharma, M.; Kishore, S.; Tripathi, S.N.; Behera, S.N. Role of atmospheric ammonia in the formation of inorganic secondary particulate matter: A study at Kanpur, India. J. Atmos. Chem. 2007, 58, 1–17. [Google Scholar] [CrossRef]
- Pathak, R.K.; Wu, W.S.; Wang, T. Summertime PM2.5 ionic species in four major cities of China: Nitrate formation in an ammonia-deficient atmosphere. Atmos. Chem. Phys. 2009, 9, 1711–1722. [Google Scholar] [CrossRef] [Green Version]
- Pathak, R.K.; Wang, T.; Wu, W.S. Nighttime enhancement of PM2.5 nitrate in ammonia-poor atmospheric conditions in Beijing and Shanghai: Plausible contributions of heterogeneous hydrolysis of N2O5 and HNO3 partitioning. Atmos. Environ. 2011, 45, 1183–1191. [Google Scholar] [CrossRef]
- Ying, Q.; Wu, L.; Zhang, H. Local and inter-regional contributions to PM2.5 nitrate and sulfate in China. Atmos. Environ. 2014, 94, 582–592. [Google Scholar] [CrossRef]
- Zhou, S.; Wang, T.; Wang, Z.; Li, W.; Xu, Z.; Wang, X.; Yuan, C.; Poon, C.N.; Louie, P.K.K.; Luk, C.W.Y.; et al. Photochemical evolution of organic aerosols observed in urban plumes from Hong Kong and the Pearl River Delta of China. Atmos. Environ. 2014, 88, 219–229. [Google Scholar] [CrossRef]
- Sullivan, A.P.; Weber, R.J. Chemical characterization of the ambient organic aerosol soluble in winter: 2. Isolation of acid, neutral, and basic fractions by modified size-exclusion chromatography. J. Geophys. Res. Atmos. 2006, 111. [Google Scholar] [CrossRef] [Green Version]
- Wber, R.J.; Sullivan, A.P.; Peltier, R.E.; Russell, A.; Yan, B.; Zheng, M.; De Gouw, J.; Warneke, C.; Brock, C.; Holloway, J.S. A study of secondary organic aerosol formation in the anthropogenic-influenced southeastern United States. J. Geophys. Res. Atmos. 2007, 112. [Google Scholar] [CrossRef]
- Yan, B.; Zheng, M.; Hu, Y.; Ding, X.; Sullivan, A.P.; Weber, R.J.; Baek, J.; Edgerton, E.S.; Russell, A.G. Roadside, urban, and rural comparison of primary and secondary organic molecular markers in ambient PM2.5. Environ. Sci. Technol. 2009, 43, 4287–4293. [Google Scholar] [CrossRef]
- Li, J.; Pósfai, M.; Hobbs, P.V.; Buseck, P.R. Individual aerosol particles from biomass burning in southern Africa: 2. Compositions and aging of inorganic particles. J. Geophy. Res. 2003, 108, 8484. [Google Scholar] [CrossRef] [Green Version]
- Liu, X.D.; Van Espen, P.; Adams, F.; Cafmeyer, J.; Maenhaut, W. Biomass burning in southern Africa: Individual particle characterization of atmospheric aerosols and savanna fir samples. J. Atmos. Chem. 2000, 36, 135–155. [Google Scholar] [CrossRef]
- Jing, B.; Peng, C.; Wang, Y.; Liu, Q.; Tong, S.; Zhang, Y.; Ge, M. Hygroscopic properties of potassium chloride and its internal mixtures with organic compounds relevant to biomass burning aerosol particles. Sci. Rep. 2017, 7, 43572. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Report to California Air Resources Board, Contract No. 04–336, Determination of the Spatial and Temporal Variability of Size-Resolved PM2.5 Composition and Mixing State in Multiple Regions in California; University of California: San Diego, CA, USA, 2009; p. 183.
- Kim, H.; Zhang, Q.; Heo, J. Influence of intense secondary aerosol formation and long-range transport on aerosol chemistry and properties in the Seoul Metropolitan Area during spring time: Results from KORUS-AQ. Atmos. Chem. Phys. 2018, 18, 7149–7168. [Google Scholar] [CrossRef] [Green Version]
- Choi, J.; Park, R.; Lee, H.; Lee, S.; Jo, D.S.; Jeong, J.I.; Henze, D.K.; Woo, J.; Ban, S.; Lee, M.; et al. Impacts of local vs. trans-boundary emissions from different sectors on PM2.5 exposure in South Korea during the KORUS-AQ campaign. Atmos. Environ 2019, 203, 196–205. [Google Scholar] [CrossRef]
- Jung, J.-H.; Han, Y.-J. Study on characteristics of PM2.5 and its ionic constituents in Chuncheon, Korea. J. Korean Soc. Atmos. Environ. 2008, 24, 682–692. [Google Scholar] [CrossRef] [Green Version]
- Han, Y.-J.; Kim, T.-S.; Kim, H. Ionic constituents and source analysis of PM2.5 in three Korean cities. Atmos. Environ. 2008, 42, 4735–4746. [Google Scholar] [CrossRef]
- Yu, G.-H.; Park, S.-S.; Park, J.S.; Park, S.M.; Song, I.H.; Oh, J.; Shin, H.J.; Lee, M.D.; Lim, H.B.; Kim, H.W.; et al. Pollution characteristics of PM2.5 observed during winter and summer in Baengryeongdo and Seoul. J. Korean Soc. Atmos. Environ. 2018, 34, 38–55. [Google Scholar] [CrossRef]
- Xu, Q.; Wang, S.; Jiang, J.; Bhattarai, N.; Li, X.; Chang, X.; Qiu, X.; Zheng, M.; Hua, Y.; Hao, J. Nitrate dominates the chemical composition of PM2.5 during haze event in Beijing, China. Sci. Total Environ. 2019, 689, 1293–1303. [Google Scholar] [CrossRef]
Gas | Hold Time (s) | Temp.(°C) | Component |
---|---|---|---|
He | 10 | 1 | |
He | 80 | 310 | OC1 |
He | 80 | 475 | OC2 |
He | 80 | 615 | OC3 |
He | 110 | 870 | OC4 |
He | 45 | 550 | PC |
O2 in He | 45 | 550 | EC1 |
O2 in He | 45 | 625 | EC2 |
O2 in He | 45 | 700 | EC3 |
O2 in He | 45 | 775 | EC4 |
O2 in He | 45 | 850 | EC5 |
O2 in He | 110 | 870 | EC6 |
NO3− | SO42− | Na+ | NH4+ | K+ | Mg2+ | Ca2+ | OC | EC | |
---|---|---|---|---|---|---|---|---|---|
F.B. (μg m−3) | 0.13 | 0.26 | 0.11 | 1.05 | 0.03 | 0.02 | 0.04 | 0.38 | 0.04 |
MDL (μg m−3) | 0.28 | 0.18 | 0.13 | 0.25 | 0.04 | 0.01 | 0.01 | 0.53 | 0.09 |
<MDL * (%) | 23.2 | 5.80 | 22.4 | 1.24 | 20.5 | 16.8 | 17.4 | 0.00 | 0.00 |
RPD (%) | 2.04 | 1.39 | 0.89 | 0.38 | 0.31 | 0.20 | 0.70 | 0.44 | 3.70 |
Total | Spring | Summer | Autumn | Winter | |
---|---|---|---|---|---|
N(#) | 141 | 37 | 28 | 38 | 38 |
PM2.5 | 26.9 ± 14.4 | 28.0 ± 14.0 | 21.3 ± 9.2 | 23.2 ± 10.8 | 33.5 ± 18.3 |
NO3− | 2.0 ± 2.7 | 2.0 ± 2.5 | 0.5 ± 0.6 | 1.4 ± 1.5 | 4.3 ± 3.8 |
SO42− | 2.2 ± 1.8 | 2.0 ± 1.8 | 2.6 ± 1.8 | 1.9 ± 1.7 | 2.2 ± 1.9 |
Na+ | 0.45 ± 0.57 | 0.64 ± 0.94 | 0.27 ± 0.17 | 0.33 ± 0.17 | 0.50 ± 0.49 |
NH4+ | 2.9 ± 1.7 | 3.2 ± 2.0 | 2.8 ± 1.6 | 2.4 ± 1.5 | 3.0 ± 1.6 |
K+ | 0.15 ± 0.14 | 0.13 ± 0.12 | 0.06 ± 0.04 | 0.15 ± 0.15 | 0.21 ± 0.13 |
Mg2+ | 0.05 ± 0.07 | 0.06 ± 0.08 | N.D. | 0.06 ± 0.07 | 0.053 ± 0.063 |
Ca2+ | 0.10 ± 0.15 | 0.16 ± 0.21 | 0.01 ± 0.03 | 0.07 ± 0.07 | 0.13 ± 0.15 |
OC | 10.2 ± 4.1 | 10.0 ± 4.0 | 9.9 ± 3.1 | 9.0 ± 3.2 | 11.5 ± 5.2 |
EC | 1.2 ± 0.6 | 1.2 ± 0.5 | 0.7 ± 0.3 | 1.1 ± 0.5 | 1.6 ± 0.6 |
WSOC | 4.4 ± 2.4 | 5.1 ± 2.5 | – | 3.1 ± 2.0 | 4.8 ± 2.4 |
Pollutants | S | Var(S) | Z | p-Value | Trend Estimation |
---|---|---|---|---|---|
NO3− | −499 | 166750.3 | −1.22 | 0.223 | – |
SO42− | −667 | 166750.3 | −1.63 | 0.103 | – |
Na+ | −1161 | 224875.0 | −2.45 | 0.014 | decreasing |
NH4+ | −1189 | 224875.0 | −2.51 | 0.012 | decreasing |
K+ | −1125 | 224875.0 | −2.37 | 0.018 | decreasing |
Mg2+ | 461 | 209250.3 | 1.01 | 0.315 | – |
Ca2+ | −171 | 204207.7 | −0.38 | 0.707 | – |
OC | −436 | 42316.0 | −2.11 | 0.034 | decreasing |
EC | −916 | 42316.0 | −4.45 | <0.0001 | decreasing |
WSOC | −367 | 22220.7 | −2.46 | 0.014 | decreasing |
PM2.5 | −704 | 349302.0 | −1.19 | 0.234 | – |
NO3− | SO42− | Na+ | NH4+ | K+ | Mg2+ | Ca2+ | |
NO3− | – | 0.423 ** | 0.293 ** | 0.446 ** | 0.632 ** | 0.333 ** | 0.216 * |
SO42− | 0.423 ** | – | 0.012 | 0.510 ** | 0.230 * | −0.011 | −0.039 |
Na+ | 0.293 ** | 0.012 | – | 0.323 ** | 0.314 ** | 0.147 | 0.393 ** |
NH4+ | 0.446 ** | 0.510 ** | 0.323 ** | 0.334 ** | 0.057 | −0.039 | |
K+ | 0.632 ** | 0.230 * | 0.314 ** | 0.334 ** | 0.189 * | 0.103 | |
Mg2+ | 0.333 ** | −0.011 | 0.147 | 0.057 | 0.189 * | 0.626 ** | |
Ca2+ | 0.216 * | −0.039 | 0.393 ** | −0.039 | 0.103 | 0.626 ** | – |
Location | Study Period | PM2.5 | SO42− | NO3− | NH4+ | K+ | OC | EC | Ref. | |
---|---|---|---|---|---|---|---|---|---|---|
Beijing, China | Clean | Feb.~Nov. 2017 | 32.2 | 4.8 | 6.6 | 3.9 | [63] | |||
Slightly | 91.8 | 13.0 | 23.0 | 12.5 | ||||||
moderately | 167.5 | 17.9 | 44.5 | 20.9 | ||||||
Seoul, Korea | Dec. 2013 | 49.1 | 5.5 | 9.0 | 5.2 | 0.3 | 5.8 | 2.4 | [62] | |
Baengryeong, Korea | Dec. 2013 | 26.9 | 3.5 | 3.3 | 2.2 | 0.2 | 4.2 | 1.2 | [62] | |
This study (whole) | Jan. 2016~Oct. 2017 | 26.9 | 2.2 | 2.0 | 2.9 | 0.2 | 10.2 | 1.2 | ||
This study (HCEs) | 47.9 | 3.3 | 4.8 | 4.3 | 0.3 | 14.8 | 1.9 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Byun, J.-Y.; Kim, H.; Han, Y.-J.; Lee, S.-D.; Park, S.-W. High PM2.5 Concentrations in a Small Residential City with Low Anthropogenic Emissions in South Korea. Atmosphere 2020, 11, 1159. https://doi.org/10.3390/atmos11111159
Byun J-Y, Kim H, Han Y-J, Lee S-D, Park S-W. High PM2.5 Concentrations in a Small Residential City with Low Anthropogenic Emissions in South Korea. Atmosphere. 2020; 11(11):1159. https://doi.org/10.3390/atmos11111159
Chicago/Turabian StyleByun, Jin-Yeo, Hekap Kim, Young-Ji Han, Sang-Deok Lee, and Sung-Won Park. 2020. "High PM2.5 Concentrations in a Small Residential City with Low Anthropogenic Emissions in South Korea" Atmosphere 11, no. 11: 1159. https://doi.org/10.3390/atmos11111159
APA StyleByun, J.-Y., Kim, H., Han, Y.-J., Lee, S.-D., & Park, S.-W. (2020). High PM2.5 Concentrations in a Small Residential City with Low Anthropogenic Emissions in South Korea. Atmosphere, 11(11), 1159. https://doi.org/10.3390/atmos11111159