Daytime Evolution of Lower Atmospheric Boundary Layer Structure: Comparative Observations between a 307-m Meteorological Tower and a Rotary-Wing UAV
Abstract
:1. Introduction
2. Methods
2.1. Study Site and Period
2.2. Tower and UAV Observations
2.3. Data Processing of UAV Observation
3. Results and Discussion
3.1. Overview of Meteorological Conditions
3.2. Comparisons between Tower and UAV Observations
3.3. Daytime Evolution of Atmospheric Vertical Profiles
4. Summary and Concluding Remarks
Author Contributions
Funding
Conflicts of Interest
References
- Lee, S.-H.; Baik, J.-J. Evaluation of the vegetated urban canopy model (VUCM) and its impacts on urban boundary layer simulation. Asia-Pac. J. Atmos. Sci. 2011, 47, 151–165. [Google Scholar] [CrossRef]
- Kwak, K.-H.; Baik, J.-J.; Lee, S.-H.; Ryu, Y.-H. Computational fluid dynamics modelling of the diurnal variation of flow in a street canyon. Bound.-Layer Meteorol. 2011, 141, 77–92. [Google Scholar] [CrossRef]
- Park, S.-B.; Baik, J.-J. Characteristics of decaying convective boundary layers revealed by large-eddy simulations. Atmosphere 2020, 11, 434. [Google Scholar] [CrossRef] [Green Version]
- Zheng, X.; Qin, J.; Liang, S.; Yuan, Z.; Mbululo, Y. The development of boundary layer structure index (BLSI) and its relationship with ground air quality. Atmosphere 2019, 10, 3. [Google Scholar] [CrossRef] [Green Version]
- Mbululo, Y.; Qin, J.; Hong, J.; Yuan, Z. Characteristics of atmospheric boundary layer structure during PM2.5 and ozone pollution events in Wuhan, China. Atmosphere 2018, 9, 359. [Google Scholar] [CrossRef] [Green Version]
- Mahrt, L. Stratified atmospheric boundary layers. Bound.-Layer Meteorol. 1999, 90, 375–396. [Google Scholar] [CrossRef]
- Hong, J.; Mathieu, N.; Strachan, I.B.; Pattey, E.; Leclerc, M.Y. Response of ecosystem carbon and water vapor exchanges in evolving nocturnal low-level jects. Asia. J. Atmos. Environ. 2012, 6, 222–233. [Google Scholar] [CrossRef] [Green Version]
- Liu, C.; Huang, J.; Wang, Y.; Tao, X.; Hu, C.; Deng, L.; Xu, J.; Xiao, H.-W.; Luo, L.; Xiao, H.-Y.; et al. Vertical distribution of PM2.5 and interactions with the atmospheric boundary layer during the development stage of a heavy haze pollution event. Sci. Total Environ. 2020, 704, 135329. [Google Scholar] [CrossRef]
- Oh, H.-S.; Lee, S.-H.; Choi, D.-W.; Kwak, K.-H. Comparison of the vertical PM2.5 distributions according to atmospheric stability using a drone during open burning events. J. Korean Soc. Atmos. Environ. 2020, 36, 108–118. [Google Scholar] [CrossRef]
- Han, B.-S.; Baik, J.-J.; Park, S.-B.; Kwak, K.-H. Large-eddy simulations of reactive pollutant dispersion in the convective boundary layer over flat and urban-like surfaces. Bound.-Layer Meteorol. 2019, 172, 271–289. [Google Scholar] [CrossRef]
- Lee, S.-J.; Kim, J.; Cho, C.-H. An automated monitoring of atmospheric mixing height from routine radiosonde profiles over South Korea using a web-based data transfer method. Environ. Monit. Assess. 2014, 186, 3253–3263. [Google Scholar] [CrossRef] [PubMed]
- Choi, W.; Faloona, I.C.; McKay, M.; Goldstein, A.H.; Baker, B. Estimating the atmospheric boundary layer height over sloped, forested terrain from surface spectral analysis during BEARPEX. Atmos. Chem. Phys. 2011, 11, 6837–6853. [Google Scholar] [CrossRef]
- Bisht, D.S.; Tiwari, S.; Dumka, U.C.; Srivastava, A.K.; Safai, P.D.; Ghude, S.D.; Chate, D.M.; Rao, P.S.P.; Ali, K.; Prabhakaran, T.; et al. Tethered balloon-born and ground-based measurements of black carbon and particulate profiles within the lower troposphere during the foggy period in Delhi, India. Sci. Total Environ. 2016, 573, 894–905. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Fu, Q.; Huo, J.; Wang, D.; Yang, W.; Bian, Q.; Duan, Y.; Zhang, Y.; Pan, J.; Lin, Y.; et al. Tethered balloon-based black carbon profiles within the lower troposphere of Shanghai in the 2013 East China smog. Atmos. Environ. 2015, 123, 327–338. [Google Scholar] [CrossRef]
- Kaimal, J.C.; Gaynor, J.E. The Boulder atmospheric observatory. J. Clim. Appl. Meteorol. 1983, 22, 863–880. [Google Scholar] [CrossRef]
- Horiguchi, M.; Hayashi, T.; Adachi, A.; Onogi, S. Large-scale turbulence structures and their contributions to the momentum flux and turbulence in the near-neutral atmospheric boundary layer observed from a 213-m tall meteorological tower. Bound.-Layer Meteorol. 2012, 144, 179–198. [Google Scholar] [CrossRef] [Green Version]
- Guinot, B.; Roger, J.-C.; Cachier, H.; Pucai, W.; Jianhui, B.; Tong, Y. Impact of vertical atmospheric structure on Beijing aerosol distribution. Atmos. Environ. 2006, 40, 5167–5180. [Google Scholar] [CrossRef]
- Korea Meteorological Administration. Application of Boseong Global Standard Observatory (Ⅰ); NIMR-2014-B-11; Korea Meteorological Administration: Seoul, Korea, 2014; pp. 1–128.
- Li, L.; Lu, C.; Chan, P.-W.; Zhang, X.; Yang, H.-L.; Lan, Z.-J.; Zhang, W.-H.; Liu, Y.-W.; Pan, L.; Zhang, L. Tower observed vertical distribution of PM2.5, O3 and NOx in the Pearl River Delta. Atmos. Environ. 2020, 220, 117083. [Google Scholar] [CrossRef]
- Schuyler, T.J.; Guzman, M.I. Unmanned aerial systems for monitoring trace tropospheric gases. Atmosphere 2017, 8, 206. [Google Scholar] [CrossRef] [Green Version]
- Schuyler, T.J.; Bailey, S.C.C.; Guzman, M.I. Monitoring tropospheric gases with small unmanned aerial systems (sUAS) during the second CLOUDMAP flight campaign. Atmosphere 2019, 10, 434. [Google Scholar] [CrossRef] [Green Version]
- Reuder, J.; Brisset, P.; Jonassen, M.; Müller, M.; Mayer, S. The small unmanned meteorological observer SUMO: A new tool for atmospheric boundary layer research. Meteorol. Z. 2009, 18, 141–147. [Google Scholar] [CrossRef]
- Chen, Y.-C.; Chang, C.-C.; Chen, W.-N.; Tsai, Y.-J.; Chang, S.-Y. Determination of the vertical profile of aerosol chemical species in the microscale urban environment. Environ. Pollut. 2018, 243, 1360–1367. [Google Scholar] [CrossRef] [PubMed]
- Zhu, Y.; Wu, Z.; Park, Y.; Fan, X.; Bai, D.; Zong, P.; Qin, B.; Cai, X.; Ahn, K.-H. Measurements of atmospheric aerosol vertical distribution above North China Plain using hexacopter. Sci. Total Environ. 2019, 665, 1095–1102. [Google Scholar] [CrossRef] [PubMed]
- Liu, B.; Wu, C.; Ma, N.; Chen, Q.; Li, Y.; Ye, J.; Martin, S.T.; Li, Y.J. Vertical profiling of fine particulate matter and black carbon by using unmanned aerial vehicle in Macau, China. Sci. Total Environ. 2020, 709, 136109. [Google Scholar] [CrossRef]
- Jacob, J.D.; Chilson, P.B.; Houston, A.L.; Smith, S.W. Considerations for atmospheric measurements with small unmanned aircraft systems. Atmosphere 2018, 9, 252. [Google Scholar] [CrossRef] [Green Version]
- Bonin, T.; Chilson, P.; Zielke, B.; Fedorovich, E. Observations of the early evening boundary-layer transition using a small unmanned aerial system. Bound.-Layer Meteorol. 2013, 146, 119–132. [Google Scholar] [CrossRef]
- Cook, D.E.; Strong, P.A.; Garrett, S.A.; Marchall, R.E. A small unmanned aerial system (UAS) for coastal atmospheric research: Preliminary results from New Zealand. J. R. Soc. N. Z. 2013, 43, 108–115. [Google Scholar] [CrossRef] [Green Version]
- Barbieri, L.; Kral, S.T.; Bailey, S.C.C.; Frazier, A.E.; Jacob, J.D.; Reuder, J.; Brus, D.; Chilson, P.B.; Crick, C.; Detweiler, C.; et al. Intercomparison of small unmanned aircraft system (sUAS) measurements for atmospheric science during the LAPSE-RATE campaign. Sensors 2019, 19, 2179. [Google Scholar] [CrossRef] [Green Version]
- Greene, B.R.; Segales, A.R.; Bell, T.M.; Pillar-Little, E.A.; Chilson, P.B. Environmental and sensor integration influences on temperature measurements by rotary-wing unmanned aircraft systems. Sensors 2019, 19, 1470. [Google Scholar] [CrossRef] [Green Version]
- Kimball, S.K.; Montalvo, C.J.; Mulekar, M.S. Assessing iMET-XQ performance and optimal placement on a small off-the-shelf, rotary-wing UAV, as a function of atmospheric conditions. Atmosphere 2020, 11, 660. [Google Scholar] [CrossRef]
- Wang, T.; Han, W.; Zhang, M.; Yao, X.; Zhang, L.; Peng, X.; Li, C.; Dan, X. Unmanned aerial vehicle-borne sensor system for atmospheric-particulate-matter measurement: Design and experiments. Sensors 2020, 20, 57. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Villa, T.F.; Salimi, F.; Morton, K.; Morawska, L.; Gonzalez, F. Development and validation of a UAV based system for air pollution measurements. Sensors 2016, 16, 2202. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chong, J.; Lee, S.; Shin, S.; Hwang, S.E.; Lee, Y.-T.; Kim, J.; Kim, S. Research on the meteorological technology development using drones in the fourth industrial revolution. J. Korea Cont. Assoc. 2019, 19, 12–21. [Google Scholar]
- Kim, M.-S.; Kwon, B.H. Estimation of sensible heat flux and atmospheric boundary layer height using an unmanned aerial vehicle. Atmosphere 2019, 10, 363. [Google Scholar] [CrossRef] [Green Version]
- Lim, H.-J.; Lee, Y.-H. Characteristics of sea breezes at coastal area in Boseong. Atmosphere 2019, 29, 41–51. [Google Scholar]
- Lee, T.R.; Buban, M.; Dumas, E.; Baker, C.B. One the use of rotary-wing aircraft to sample near-surface thermodynamic fields: Results from recent field campaigns. Sensors 2019, 19, 10. [Google Scholar] [CrossRef] [Green Version]
- Alvarado, M.; Gonzalez, F.; Erskine, P.; Cliff, D.; Heuff, D. A methodology to monitor airborne PM10 dust particles using a small umanned aerial vehicle. Sensors 2017, 17, 343. [Google Scholar] [CrossRef]
- Lee, S.-H.; Kwak, K.-H. Assessing 3-D spatial extent of near-road air pollution around a signalized intersection using drone monitoring and WRF-CFD modeling. Int. J. Environ. Res. Public Health 2020, 17, 6915. [Google Scholar] [CrossRef]
Variable | Model and Manufacturer | Measurement Resolution | Accuracy | Time Interval |
---|---|---|---|---|
Air temperature Relative humidity | bmp085, BOSCH | 0.01 °C 0.1% | ±0.5%± 4.5% | 1 s |
BC | AE51, Aethlab | 0.001 μg m−3 | ±0.1 μg m−3 | 10 s |
O3 | Aeroqual 500, Aeroqual | 0.001 ppm | ±0.008 ppm | 1 min |
06–07 LT | 08–09 LT | 10–11 LT | 12–15 LT | 16–19 LT | |
---|---|---|---|---|---|
Potential Temperature | 0.95 | 0.83 | 0.73 | 0.55 | 0.72 |
Relative Humidity | 0.60 | 0.66 | 0.42 | 0.76 | 0.73 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kwak, K.-H.; Lee, S.-H.; Kim, A.-Y.; Park, K.-C.; Lee, S.-E.; Han, B.-S.; Lee, J.; Park, Y.-S. Daytime Evolution of Lower Atmospheric Boundary Layer Structure: Comparative Observations between a 307-m Meteorological Tower and a Rotary-Wing UAV. Atmosphere 2020, 11, 1142. https://doi.org/10.3390/atmos11111142
Kwak K-H, Lee S-H, Kim A-Y, Park K-C, Lee S-E, Han B-S, Lee J, Park Y-S. Daytime Evolution of Lower Atmospheric Boundary Layer Structure: Comparative Observations between a 307-m Meteorological Tower and a Rotary-Wing UAV. Atmosphere. 2020; 11(11):1142. https://doi.org/10.3390/atmos11111142
Chicago/Turabian StyleKwak, Kyung-Hwan, Seung-Hyeop Lee, A-Young Kim, Kwon-Chan Park, Sang-Eun Lee, Beom-Soon Han, Joohyun Lee, and Young-San Park. 2020. "Daytime Evolution of Lower Atmospheric Boundary Layer Structure: Comparative Observations between a 307-m Meteorological Tower and a Rotary-Wing UAV" Atmosphere 11, no. 11: 1142. https://doi.org/10.3390/atmos11111142
APA StyleKwak, K.-H., Lee, S.-H., Kim, A.-Y., Park, K.-C., Lee, S.-E., Han, B.-S., Lee, J., & Park, Y.-S. (2020). Daytime Evolution of Lower Atmospheric Boundary Layer Structure: Comparative Observations between a 307-m Meteorological Tower and a Rotary-Wing UAV. Atmosphere, 11(11), 1142. https://doi.org/10.3390/atmos11111142