Impact of Lightning NOx Emissions on Atmospheric Composition and Meteorology in Africa and Europe
Abstract
:1. Introduction
2. Materials and Methods
2.1. The WRF and CHIMERE Models
2.2. The Lighning No Emissions
2.3. The Studied Region and Period
3. Discussion
3.1. Impact on Ozone Concentrations
3.2. Impact on Other Variables at the Surface
3.3. Vertical Cross Section of Impact on Ozone Concentrations
3.4. Comparison of Time Series
3.4.1. Ozone and Nitrogen Oxide
3.4.2. AOD and PM
3.5. Statistical Scores
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Appendix A. Definition of Statistical Scores
Appendix B. The Mann–Whitney–Wilcoxon Test
References
- Schumann, U.; Huntrieser, H. The global lightning-induced nitrogen oxides source. Atmos. Chem. Phys. 2007, 7, 3823–3907. [Google Scholar] [CrossRef] [Green Version]
- Price, C.G. Lightning Applications in Weather and Climate Research. Surv. Geophys. 2013, 34, 755–767. [Google Scholar] [CrossRef]
- Murray, L.T. Lightning NOx and Impacts on Air Quality. Curr. Pollut. Rep. 2016, 2, 115–133. [Google Scholar] [CrossRef] [Green Version]
- Albrecht, R.I.; Goodman, S.J.; Buechler, D.E.; Blakeslee, R.J.; Christian, H.J. Where Are the Lightning Hotspots on Earth? Bull. Am. Meteorol. Soc. 2016, 97, 2051–2068. [Google Scholar] [CrossRef]
- Price, C.; Penner, J.; Prather, M. NOx from lightning: 1. Global distribution based on lightning physics. J. Geophys. Res. Atmos. 1997, 102, 5929–5941. [Google Scholar] [CrossRef] [Green Version]
- DeCaria, A.J.; Pickering, K.E.; Stenchikov, G.L.; Scala, J.R.; Stith, J.L.; Dye, J.E.; Ridley, B.A.; Laroche, P. A cloud-scale model study of lightning-generated NOx in an individual thunderstorm during STERAO-A. J. Geophys. Res. Atmos. 2000, 105, 11601–11616. [Google Scholar] [CrossRef] [Green Version]
- Kang, D.; Pickering, K.E.; Allen, D.J.; Foley, K.M.; Wong, D.C.; Mathur, R.; Roselle, S.J. Simulating lightning NO production in CMAQv5.2: Evolution of scientific updates. Geosci. Model Dev. 2019, 12, 3071–3083. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Price, C.; Rind, D. A simple lightning parameterization for calculating global lightning distributions. J. Geophys. Res. 1992, 97, 9919–9933. [Google Scholar] [CrossRef]
- Meijer, E.; van Velthoven, P.; Brunner, D.; Huntrieser, H.; Kelder, H. Improvement and evaluation of the parameterisation of nitrogen oxide production by lightning. Phys. Chem. Earth Part C Sol. Terr. Planet. Sci. 2001, 26, 577–583. [Google Scholar] [CrossRef]
- Allen, D.J.; Pickering, K.E.; Pinder, R.W.; Henderson, B.H.; Appel, K.W.; Prados, A. Impact of lightning-NO on eastern United States photochemistry during the summer of 2006 as determined using the CMAQ model. Atmos. Chem. Phys. 2012, 12, 1737–1758. [Google Scholar] [CrossRef] [Green Version]
- Kang, D.; Foley, K.M.; Mathur, R.; Roselle, S.J.; Pickering, K.E.; Allen, D.J. Simulating lightning NO production in CMAQv5.2: Performance evaluations. Geosci. Model Dev. 2019, 12, 4409–4424. [Google Scholar] [CrossRef] [PubMed]
- Kang, D.; Mathur, R.; Pouliot, G.; Gilliam, R.; Wong, D. Significant ground-level ozone attributed to lightning-induced nitrogen oxides during summertime over the Mountain West States. Nat. Clim. Atmos. Sci. 2020, 3, 7. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Finney, D.L.; Doherty, R.M.; Wild, O.; Huntrieser, H.; Pumphrey, H.C.; Blyth, A.M. Using cloud ice flux to parametrise large-scale lightning. Atmos. Chem. Phys. 2014, 14, 12665–12682. [Google Scholar] [CrossRef] [Green Version]
- Clark, S.K.; Ward, D.S.; Mahowald, N.M. Parameterization-based uncertainty in future lightning flash density. Geophys. Res. Lett. 2017, 44, 2893–2901. [Google Scholar] [CrossRef]
- Gordillo-Vázquez, F.; Pérez-Invernón, F.; Huntrieser, H.; Smith, A. Comparison of six lightning parameterizations in CAM5 and the impact on global atmospheric chemistry. Earth Space Sci. 2019, 6, 2317–2346. [Google Scholar] [CrossRef]
- Beirle, S.; Huntrieser, H.; Wagner, T. Direct satellite observation of lightning-produced NOx. Atmos. Chem. Phys. 2010, 10, 10965–10986. [Google Scholar] [CrossRef] [Green Version]
- Cecil, D.J.; Buechler, D.E.; Blakeslee, R.J. Gridded lightning climatology from TRMM-LIS and OTD: Dataset description. Atmos. Res. 2014, 135–136, 404–414. [Google Scholar] [CrossRef] [Green Version]
- Marchand, M.; Hilburn, K.; Miller, S.D. Geostationary Lightning Mapper and Earth Networks Lightning Detection Over the Contiguous United States and Dependence on Flash Characteristics. J. Geophys. Res. Atmos. 2019, 124, 11552–11567. [Google Scholar] [CrossRef]
- Tost, H. Chemistry–climate interactions of aerosol nitrate from lightning. Atmos. Chem. Phys. 2017, 17, 1125–1142. [Google Scholar] [CrossRef] [Green Version]
- Wang, Q.; Li, Z.; Guo, J.; Zhao, C.; Cribb, M. The climate impact of aerosols on the lightning flash rate: Is it detectable from long-term measurements? Atmos. Chem. Phys. 2018, 18, 12797–12816. [Google Scholar] [CrossRef] [Green Version]
- Mailler, S.; Menut, L.; Khvorostyanov, D.; Valari, M.; Couvidat, F.; Siour, G.; Turquety, S.; Briant, R.; Tuccella, P.; Bessagnet, B.; et al. CHIMERE-2017: From urban to hemispheric chemistry-transport modeling. Geosci. Model Dev. 2017, 10, 2397–2423. [Google Scholar] [CrossRef] [Green Version]
- Powers, J.G.; Klemp, J.B.; Skamarock, W.C.; Davis, C.A.; Dudhia, J.; Gill, D.O.; Coen, J.L.; Gochis, D.J.; Ahmadov, R.; Peckham, S.E.; et al. The Weather Research and Forecasting Model: Overview, System Efforts, and Future Directions. Bull. Am. Meteorol. Soc. 2017, 98, 1717–1737. [Google Scholar] [CrossRef]
- Menut, L.; Siour, G.; Bessagnet, B.; Couvidat, F.; Journet, E.; Balkanski, Y.; Desboeufs, K. Modelling the mineralogical composition and solubility of mineral dust in the Mediterranean area with CHIMERE 2017r4. Geosci. Model Dev. 2020, 13, 2051–2071. [Google Scholar] [CrossRef] [Green Version]
- Briant, R.; Tuccella, P.; Deroubaix, A.; Khvorostyanov, D.; Menut, L.; Mailler, S.; Turquety, S. Aerosol–radiation interaction modelling using online coupling between the WRF 3.7.1 meteorological model and the CHIMERE 2016 chemistry-transport model, through the OASIS3-MCT coupler. Geosci. Model Dev. 2017, 10, 927–944. [Google Scholar] [CrossRef] [Green Version]
- Tuccella, P.; Menut, L.; Briant, R.; Deroubaix, A.; Khvorostyanov, D.; Mailler, S.; Siour, G.; Turquety, S. Implementation of Aerosol-Cloud Interaction within WRF-CHIMERE Online Coupled Model: Evaluation and Investigation of the Indirect Radiative Effect from Anthropogenic Emission Reduction on the Benelux Union. Atmosphere 2019, 10, 20. [Google Scholar] [CrossRef] [Green Version]
- Menut, L.; Tuccella, P.; Flamant, C.; Deroubaix, A.; Gaetani, M. The role of aerosol–radiation–cloud interactions in linking anthropogenic pollution over southern west Africa and dust emission over the Sahara. Atmos. Chem. Phys. 2019, 19, 14657–14676. [Google Scholar] [CrossRef] [Green Version]
- Menut, L.; Bessagnet, B.; Khvorostyanov, D.; Beekmann, M.; Blond, N.; Colette, A.; Coll, I.; Curci, G.; Foret, F.; Hodzic, A.; et al. CHIMERE 2013: A model for regional atmospheric composition modelling. Geosci. Model Dev. 2013, 6, 981–1028. [Google Scholar] [CrossRef] [Green Version]
- Wild, O.; Zhu, X.; Prather, M.J. Fast-J: Accurate Simulation of In- and Below-Cloud Photolysis in Tropospheric Chemical Models. J. Atmos. Chem. 2000, 37, 245–282. [Google Scholar] [CrossRef]
- Bessagnet, B.; Hodzic, A.; Vautard, R.; Beekmann, M.; Cheinet, S.; Honoré, C.; Liousse, C.; Rouil, L. Aerosol modeling with CHIMERE: Preliminary evaluation at the continental scale. Atmos. Environ. 2004, 38, 2803–2817. [Google Scholar] [CrossRef]
- Nenes, A.; Pilinis, C.; Pandis, S. ISORROPIA: A new thermodynamic model for inorganic multicomponent atmospheric aerosols. Aquat. Geochem. 1998, 4, 123–152. [Google Scholar] [CrossRef]
- Szopa, S.; Foret, G.; Menut, L.; Cozic, A. Impact of large scale circulation on European summer surface ozone: Consequences for modeling. Atmos Env. 2009, 43, 1189–1195. [Google Scholar] [CrossRef]
- Ginoux, P.; Chin, M.; Tegen, I.; Prospero, J.M.; Holben, B.; Dubovik, O.; Lin, S.J. Sources and distributions of dust aerosols simulated with the GOCART model. J. Geophys. Res. 2001, 106, 20255–20273. [Google Scholar] [CrossRef]
- Lynn, B.; Yair, Y. Prediction of lightning flash density with the WRF model. Adv. Geosci. 2010, 23, 11–16. [Google Scholar] [CrossRef] [Green Version]
- Price, C.; Rind, D. What determines the cloud-to-ground lightning fraction in thunderstorms? Geophys. Res. Lett. 1993, 20, 463–466. [Google Scholar] [CrossRef]
- Wong, J.; Barth, M.C.; Noone, D. Evaluating a lightning parameterization based on cloud-top height for mesoscale numerical model simulations. Geosci. Model Dev. 2013, 6, 429–443. [Google Scholar] [CrossRef] [Green Version]
- Banerjee, A.; Archibald, A.T.; Maycock, A.C.; Telford, P.; Abraham, N.L.; Yang, X.; Braesicke, P.; Pyle, J.A. Lightning NOx, a key chemistry-climate interaction: Impacts of future climate change and consequences for tropospheric oxidising capacity. Atmos. Chem. Phys. 2014, 14, 9871–9881. [Google Scholar] [CrossRef] [Green Version]
- Price, C.; Rind, D. Modeling Global Lightning Distributions in a General Circulation Model. Mon. Weather. Rev. 1994, 122, 1930–1939. [Google Scholar] [CrossRef] [Green Version]
- Ott, L.E.; Pickering, K.E.; Stenchikov, G.L.; Allen, D.J.; DeCaria, A.J.; Ridley, B.; Lin, R.F.; Lang, S.; Tao, W.K. Production of lightning NOx and its vertical distribution calculated from three-dimensional cloud-scale chemical transport model simulations. J. Geophys. Res. Atmos. 2010, 115. [Google Scholar] [CrossRef] [Green Version]
- Allen, D.J.; Pickering, K.E. Evaluation of lightning flash rate parameterizations for use in a global chemical transport model. J. Geophys. Res. Atmos. 2002, 107, ACH 15-1–ACH 15-21. [Google Scholar] [CrossRef]
- Menut, L.; Rea, G.; Mailler, S.; Khvorostyanov, D.; Turquety, S. Aerosol forecast over the Mediterranean area during July 2013 (ADRIMED/CHARMEX). Atmos. Chem. Phys. 2015, 15, 7897–7911. [Google Scholar] [CrossRef] [Green Version]
- Menut, L.; Siour, G.; Mailler, S.; Couvidat, F.; Bessagnet, B. Observations and regional modeling of aerosol optical properties, speciation and size distribution over Northern Africa and western Europe. Atmos. Chem. Phys. 2016, 16, 12961–12982. [Google Scholar] [CrossRef] [Green Version]
- Blakeslee, R.J. Lightning Imaging Sensor (LIS) on TRMM Science Data (All data); NASA EOSDIS Global Hydrology Resource Center Distributed Active Archive Center: Huntsville, AL, USA, 1998. [Google Scholar] [CrossRef]
- Blakeslee, R.J. Lightning Imaging Sensor (LIS) on TRMM Backgrounds (All data); NASA Global Hydrology Resource Center DAAC: Huntsville, AL, USA, 2010. [Google Scholar] [CrossRef]
- Beirle, S.; Koshak, W.; Blakeslee, R.; Wagner, T. Global patterns of lightning properties derived by OTD and LIS. Nat. Hazards Earth Syst. Sci. 2014, 14, 2715–2726. [Google Scholar] [CrossRef] [Green Version]
- Gressent, A.; Sauvage, B.; Cariolle, D.; Evans, M.; Leriche, M.; Mari, C.; Thouret, V. Modeling lightning-NOx chemistry on a sub-grid scale in a global chemical transport model. Atmos. Chem. Phys. 2016, 16, 5867–5889. [Google Scholar] [CrossRef] [Green Version]
- Von Storch, H.; Zwiers, F. Statistical Analysis in Climate Research; Cambridge University Press: Cambridge, UK, 2001. [Google Scholar]
Station | Network | Longitude | Latitude |
---|---|---|---|
Name | (° E) | (° N) | |
Banizoumbou | AERONET | 2.66 | 13.54 |
Barcarrola | EMEP | −6.92 | 38.47 |
Campisabalos | EMEP | −3.14 | 41.28 |
Dakar | AERONET | −16.95 | 14.39 |
Variable | Run | R | R | RMSE | Bias |
---|---|---|---|---|---|
O | noLiNOx | 0.61 | 0.64 | 1.29 | −2.22 |
LiNOx | 0.62 | 0.64 | 1.31 | −1.84 | |
NO | noLiNOx | 0.75 | 0.28 | 3.43 | −0.52 |
LiNOx | 0.74 | 0.31 | 3.43 | −0.53 | |
PM | noLiNOx | 0.87 | 0.27 | 3.32 | −4.23 |
LiNOx | 0.86 | 0.26 | 3.98 | −3.93 | |
AOD | noLiNOx | 0.81 | 0.30 | 1.18 | −0.08 |
LiNOx | 0.81 | 0.31 | 1.14 | −0.08 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Menut, L.; Bessagnet, B.; Mailler, S.; Pennel, R.; Siour, G. Impact of Lightning NOx Emissions on Atmospheric Composition and Meteorology in Africa and Europe. Atmosphere 2020, 11, 1128. https://doi.org/10.3390/atmos11101128
Menut L, Bessagnet B, Mailler S, Pennel R, Siour G. Impact of Lightning NOx Emissions on Atmospheric Composition and Meteorology in Africa and Europe. Atmosphere. 2020; 11(10):1128. https://doi.org/10.3390/atmos11101128
Chicago/Turabian StyleMenut, Laurent, Bertrand Bessagnet, Sylvain Mailler, Romain Pennel, and Guillaume Siour. 2020. "Impact of Lightning NOx Emissions on Atmospheric Composition and Meteorology in Africa and Europe" Atmosphere 11, no. 10: 1128. https://doi.org/10.3390/atmos11101128
APA StyleMenut, L., Bessagnet, B., Mailler, S., Pennel, R., & Siour, G. (2020). Impact of Lightning NOx Emissions on Atmospheric Composition and Meteorology in Africa and Europe. Atmosphere, 11(10), 1128. https://doi.org/10.3390/atmos11101128