Global Monitoring and Characterization of Infrasound Signatures by Large Fireballs
Abstract
1. Introduction
2. Data and Methods
3. Results
3.1. Event Overview and Array Processing
3.2. Localization Procedure and Yield Estimation
3.3. Propagation and Characterization of Near-Field, Far-Field, and Global Range Observations
3.3.1. The Greenland Fireball: Short-Range Propagation and Source Mechanism Characterization
- Explosive fragmentation, resembling a point source and corresponding to the brightest observation and largest amplitude signal near the end of the visible/audible trajectory;
- Final descent (and potential meteorite impact) at the very end of the trajectory, observable by low apparent velocities and thus very shallow incident angles relative to the horizontal;
- Atmospheric entry, resembling a line source and observable by backazimuths changing with time due to the incoming signal from different points along the trajectory;
- Air-to-ground coupling, where acoustic energy from the previous effects is converted to seismic (surface) waves, observable by apparent velocities having seismic values.
3.3.2. The Great Australian Bight Fireball: Medium-Range Propagation and Multidirectional Detection
3.3.3. The Bering Sea Fireball: Long-Range Propagation and Global Detectability Estimation
4. Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Le Pichon, A.; Blanc, E.; Hauchecorne, A. Infrasound Monitoring for Atmospheric Studies; Springer: Heidelberg, Germany, 2010. [Google Scholar]
- Le Pichon, A.; Blanc, E.; Hauchecorne, A. Infrasound for Atmospheric Studies—Challenges in Middle Atmosphere Dynamics and Societal Benefits; Springer: Heidelberg, Germany, 2019. [Google Scholar]
- Ceranna, L.; Le Pichon, A.; Green, D.N.; Mialle, P. The Buncefield explosion: A benchmark for infrasound analysis across Central Europe. Geophys. J. Int. 2009, 177, 491–508. [Google Scholar] [CrossRef]
- Green, D.N.; Vergoz, J.; Gibson, R.; Le Pichon, A.; Ceranna, L. Infrasound radiated by the Gerdec and Chelopechene explosions: Propagation along unexpected paths. Geophys. J. Int. 2011, 185, 890–910. [Google Scholar] [CrossRef]
- Blixt, E.M.; Näsholm, S.P.; Gibbons, S.J.; Evers, L.G.; Charlton-Perez, A.J.; Orsolini, Y.J.; Kværna, T. Estimating tropospheric and stratospheric winds using infrasound from explosions. J. Acoust. Soc. Am. 2019, 146, 973–982. [Google Scholar] [CrossRef]
- Brown, P.G.; Whitaker, R.W.; ReVelle, D.O.; Tagliaferri, E. Multi-station infrasonic observations of two large bolides: Signal interpretation and implications for monitoring of atmospheric explosions. Geophys. Res. Lett. 2002, 29, 14-1–14-4. [Google Scholar] [CrossRef]
- Brown, P.G.; Edwards, W.N.; ReVelle, D.O.; Spurny, P. Acoustic analysis of shock production by very high-altitude meteors-I: Infrasonic observations, dynamics and luminosity. J. Atmos. Sol.-Terr. Phys. 2007, 69, 600–620. [Google Scholar] [CrossRef]
- Silber, E.A.; Brown, P.G. Optical observations of meteors generating infrasound-I: Acoustic signal identification and phenomenology. J. Atmos. Sol.-Terr. Phys. 2014, 119, 116–128. [Google Scholar] [CrossRef]
- Ens, T.A.; Brown, P.G.; Edwards, W.N.; Silber, E.A. Infrasound production by bolides: A global statistical study. J. Atmos. Sol.-Terr. Phys. 2012, 80, 208–229. [Google Scholar] [CrossRef]
- Silber, E.A.; Boslough, M.; Hocking, W.K.; Gritsevich, M.; Whitaker, R.W. Physics of meteor generated shock waves in the Earth’s atmosphere—A review. Adv. Space Res. 2018, 62, 489–532. [Google Scholar] [CrossRef]
- CTBTO/IMS (Comprehensive Nuclear-Test-Ban Treaty Organization). Available online: https://www.ctbto.org/verification-regime/ (accessed on 5 December 2019).
- Arrowsmith, S.J.; ReVelle, D.O.; Edwards, W.; Brown, P. Global detection of infrasonic signals from three large bolides. Earth Moon Planet 2008, 102, 357–363. [Google Scholar] [CrossRef]
- Silber, E.A.; Le Pichon, A.; Brown, P.G. Infrasonic detection of a near-Earth object impact over Indonesia on 8 October 2009. Geophys. Res. Lett. 2011, 38, L12201. [Google Scholar] [CrossRef]
- Pilger, C.; Ceranna, L.; Le Pichon, A.; Brown, P.G. Large meteoroids as global infrasound reference events. In Infrasound for Atmospheric Studies—Challenges in Middle Atmosphere Dynamics and Societal Benefits; Le Pichon, A., Blanc, E., Hauchecorne, A., Eds.; Springer: Heidelberg, Germany, 2019; pp. 451–470. [Google Scholar]
- Le Pichon, A.; Ceranna, L.; Pilger, C.; Mialle, P.; Brown, D.; Herry, P.; Brachet, N. The 2013 Russian fireball largest ever detected by CTBTO infrasound sensors. Geophys. Res. Lett. 2013, 40, 3732–3737. [Google Scholar] [CrossRef]
- Pilger, C.; Ceranna, L.; Ross, J.O.; Le Pichon, A.; Mialle, P.; Garcés, M. CTBT infrasound network performance to detect the 2013 Russian fireball event. Geophys. Res. Lett. 2015, 42, 2523–2531. [Google Scholar] [CrossRef]
- Drolshagen, E.; Ott, T.; Koschny, D.; Drolshagen, G.; Poppe, B. NEMO—Near Real-Time Monitoring System. In Proceedings of the International Meteor Conference, Petnica, Serbia, 21–24 September 2017; pp. 38–41. [Google Scholar]
- Drolshagen, E.; Ott, T.; Koschny, D.; Drolshagen, G.; Mialle, P.; Pilger, C.; Vaubaillon, J.; Poppe, B. NEMO—A Global Near Real-time Fireball Monitoring System. In Proceedings of the 1st NEO and Debris Detection Conference, Darmstadt, Germany, 22–24 January 2019. [Google Scholar]
- Edwards, W.N.; Brown, P.G.; ReVelle, D.O. Estimates of meteoroid kinetic energies from observations of infrasonic airwaves. J. Atmos. Sol.-Terr. Phys. 2006, 68, 1136–1160. [Google Scholar] [CrossRef]
- AMS/IMO (American Meteor Society). Available online: https://www.amsmeteors.org (accessed on 19 November 2019).
- Hankey, M.; Perlerin, V. IMO Fireball Reports. In Proceedings of the International Meteor Conference, Giron, France, 18–21 September 2014; pp. 160–161. [Google Scholar]
- CNEOS/JPL, (Center for Near Earth Object Studies). Available online: https://cneos.jpl.nasa.gov/fireballs/ (accessed on 19 November 2019).
- Jenniskens, P.; Albers, J.; Tillier, C.E.; Edgington, S.F.; Longenbaugh, R.S.; Goodman, S.J.; Rudlosky, S.D.; Hildebrand, A.R.; Hanton, L.; Ciceri, F.; et al. Detection of meteoroid impacts by the Geostationary Lightning Mapper on the GOES-16 satellite. Meteorit. Planet. Sci. 2018, 53, 2445–2469. [Google Scholar] [CrossRef]
- Borovička, J.; Charvát, Z. Meteosat observation of the atmospheric entry of 2008 TC3 over Sudan and the associated dust cloud. Astron. Astrophys. 2009, 507, 1015–1022. [Google Scholar] [CrossRef]
- Ott, T.; Drolshagen, E.; Koschny, D.; Mialle, P.; Pilger, C.; Vaubaillon, J.; Drolshagen, G.; Poppe, B. Combination of infrasound signals and complementary data for the analysis of bright fireballs. Planet. Space Sci. 2019, 179, 104715. [Google Scholar] [CrossRef]
- Cansi, Y. An automatic seismic event processing for detection and location: The P.M.C.C. method. Geophys. Res. Lett. 1995, 22, 1021–1024. [Google Scholar] [CrossRef]
- ReVelle, D.O. Historical detection of atmospheric impacts by large bolides using acoustic-gravity waves. In Annals of the New York Academy of Sciences, Near-Earth Objects—The United Nations International Conference; Remo, J.L., Ed.; New York Academy of Sciences: New York, NY, USA, 1997; Volume 822, pp. 284–330. [Google Scholar]
- Brown, P.G.; Assink, J.D.; Astiz, L.; Blaauw, R.; Boslough, M.B.; Borovička, J.; Brachet, N.; Brown, D.; Campbell-Brown, M.; Ceranna, L.; et al. A 500-kiloton Airburst over Chelyabinsk and an Enhanced Hazard from Small Impactors. Nature 2013, 503, 238–241. [Google Scholar] [CrossRef]
- Hupe, P.; Ceranna, L.; Pilger, C.; Le Pichon, A.; Blanc, E.; Rapp, M. Mountain-Associated Waves and their relation to Orographic Gravity Waves. Meteorol. Z. 2019. [Google Scholar] [CrossRef]
- Margrave, G. Consortium for Research in Elastic Wave Exploration Seismology (CREWES) Software Package. Available online: http://www.crewes.org/Reports/2000/2000-09.pdf (accessed on 10 December 2019).
- Waxler, R.; Assink, J.; Hetzer, C.; Velea, D. NCPAprop—A software package for infrasound propagation modeling. J. Acoust. Soc. Am. 2017, 141, 3627. [Google Scholar] [CrossRef]
- ECMWF. European Centre for Medium-Range Weather Forecasts, Integrated Forecast System Analysis Data. Available online: https://www.ecmwf.int (accessed on 13 December 2010).
- Picone, J.M.; Hedin, A.E.; Drob, D.P.; Aikin, A.C. NRLMSISE-00 Empirical Model of the Atmosphere: Statistical Comparisons and Scientific Issues. J. Geophys. Res. 2002, 107, 15-1–15-16. [Google Scholar] [CrossRef]
- Drob, D.P.; Emmert, J.T.; Meriwether, J.W.; Makela, J.J.; Doornbos, E.; Conde, M.; Hernandez, G.; Noto, J.; Zawdie, K.A.; McDonald, S.E.; et al. An update to the Horizontal Wind Model (HWM): The quiet time thermosphere. Earth Space Sci. 2015, 2, 301–319. [Google Scholar] [CrossRef]
- Edwards, W.N.; Eaton, D.W.; Brown, P.G. Seismic observations of meteors: Coupling theory and observations. Rev. Geophys. 2008, 46, RG4007. [Google Scholar] [CrossRef]
- Stevanović, J.; Teanby, N.A.; Wookey, J.; Selby, N.; Daubar, I.J.; Vaubaillon, J.; Garcia, R. Bolide Airbursts as a Seismic Source for the 2018 Mars InSight Mission. Space Sci. Rev. 2017, 211, 525–545. [Google Scholar] [CrossRef]
- Nastan, A.; Garay, M.; Kalashnikova, O.; Boslough, M.; Chodas, P. Observations of the 18 December 2018 Bering Sea bolide by NASA’s Multi-Angle Imaging SpectroRadiometer (MISR) Instrument. In Proceedings of the Planetary Defense Conference Posters, Washington, WA, USA, 29 April–3 May 2019. [Google Scholar]
- Le Pichon, A.; Ceranna, L.; Vergoz, J. Incorporating numerical modeling into estimates of the detection capability of the IMS infrasound network. J. Geophys. Res. 2012, 117, D05121. [Google Scholar] [CrossRef]
- ReVelle, D.O.; Brown, P.G.; Spurný, P. Entry dynamics and acoustics/infrasonic/seismic analysis for the Neuschwanstein meteorite fall. Meteorit. Planet. Sci. 2004, 39, 1605–1626. [Google Scholar] [CrossRef]
- Le Pichon, A.; Guérin, J.M.; Blanc, E.; Reymond, D. Trail in the atmosphere of the 29 December 2000 meteor as recorded in Tahiti: Characteristics and trajectory reconstitution. J. Geophys. Res. 2002, 107, 17-1–17-10. [Google Scholar] [CrossRef]
- Sutherland, L.C.; Bass, H.E. Atmospheric absorption in the atmosphere up to 160 km. J. Acoust. Soc. Am. 2004, 115, 1012–1032. [Google Scholar] [CrossRef]
- Silber, E.A.; Brown, P.G. Infrasound Monitoring as a Tool to Characterize Impacting Near-Earth Objects (NEOs). In Infrasound for Atmospheric Studies—Challenges in Middle Atmosphere Dynamics and Societal Benefits; Le Pichon, A., Blanc, E., Hauchecorne, A., Eds.; Springer: Heidelberg, Germany, 2019; pp. 939–986. [Google Scholar]
Fireball Event | Time (UTC) | IMS Stations | Location/Deviation (°) | Yield/Deviation (kt) | ||
---|---|---|---|---|---|---|
01 Mediterranean Sea | 16 August 2019, 20:36:05 | 5 | 35.13° N, 2.83° E | (5.03) | 0.1 | (+0.01) |
02 Caribbean Sea | 22 June 2019, 21:25:48 | 7 | 15.50° N, 66.66° W | (0.74) | 2.5 | (−3.5) |
03 Great Australian Bight | 21 May 2019, 13:21:35 | 8 | 37.98° S, 137.36° E | (0.82) | 1.4 | (−0.2) |
04 Northern Australia | 19 May 2019, 14:47:03 | 5 | 22.81° S, 132.33° E | (0.90) | 0.06 | (−0.05) |
05 Krasnoyarsk, Siberia | 6 April 2019, 11:59:09 | 3 | 55.78° N, 96.41° E | (1.11) | 0.4 | (+0.18) |
06 Krasnoyarsk, Siberia | 15 March 2019, 12:26:56 | 2 | − | (−) | 0.25 | (+0.1) |
07 Western Cuba | 1 February 2019, 18:17:10 | 2 | − | (−) | 0.02 | (−1.38) |
08 Bering Sea | 18 December 2018, 23:48:20 | 25 | 57.86° N, 173.41° E | (1.11) | 50 | (−123) |
09 Reunion, Indian Ocean | 25 September 2018, 14:10:33 | 3 | 16.03° S, 52.52° E | (8.21) | 0.1 | (−1.8) |
10 Western Greenland | 25 July 2018, 21:55:26 | 3 | 69.29° N, 55.86° W | (8.52) | 0.5 | (−1.6) |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pilger, C.; Gaebler, P.; Hupe, P.; Ott, T.; Drolshagen, E. Global Monitoring and Characterization of Infrasound Signatures by Large Fireballs. Atmosphere 2020, 11, 83. https://doi.org/10.3390/atmos11010083
Pilger C, Gaebler P, Hupe P, Ott T, Drolshagen E. Global Monitoring and Characterization of Infrasound Signatures by Large Fireballs. Atmosphere. 2020; 11(1):83. https://doi.org/10.3390/atmos11010083
Chicago/Turabian StylePilger, Christoph, Peter Gaebler, Patrick Hupe, Theresa Ott, and Esther Drolshagen. 2020. "Global Monitoring and Characterization of Infrasound Signatures by Large Fireballs" Atmosphere 11, no. 1: 83. https://doi.org/10.3390/atmos11010083
APA StylePilger, C., Gaebler, P., Hupe, P., Ott, T., & Drolshagen, E. (2020). Global Monitoring and Characterization of Infrasound Signatures by Large Fireballs. Atmosphere, 11(1), 83. https://doi.org/10.3390/atmos11010083