Global Monitoring and Characterization of Infrasound Signatures by Large Fireballs
Abstract
:1. Introduction
2. Data and Methods
3. Results
3.1. Event Overview and Array Processing
3.2. Localization Procedure and Yield Estimation
3.3. Propagation and Characterization of Near-Field, Far-Field, and Global Range Observations
3.3.1. The Greenland Fireball: Short-Range Propagation and Source Mechanism Characterization
- Explosive fragmentation, resembling a point source and corresponding to the brightest observation and largest amplitude signal near the end of the visible/audible trajectory;
- Final descent (and potential meteorite impact) at the very end of the trajectory, observable by low apparent velocities and thus very shallow incident angles relative to the horizontal;
- Atmospheric entry, resembling a line source and observable by backazimuths changing with time due to the incoming signal from different points along the trajectory;
- Air-to-ground coupling, where acoustic energy from the previous effects is converted to seismic (surface) waves, observable by apparent velocities having seismic values.
3.3.2. The Great Australian Bight Fireball: Medium-Range Propagation and Multidirectional Detection
3.3.3. The Bering Sea Fireball: Long-Range Propagation and Global Detectability Estimation
4. Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Le Pichon, A.; Blanc, E.; Hauchecorne, A. Infrasound Monitoring for Atmospheric Studies; Springer: Heidelberg, Germany, 2010. [Google Scholar]
- Le Pichon, A.; Blanc, E.; Hauchecorne, A. Infrasound for Atmospheric Studies—Challenges in Middle Atmosphere Dynamics and Societal Benefits; Springer: Heidelberg, Germany, 2019. [Google Scholar]
- Ceranna, L.; Le Pichon, A.; Green, D.N.; Mialle, P. The Buncefield explosion: A benchmark for infrasound analysis across Central Europe. Geophys. J. Int. 2009, 177, 491–508. [Google Scholar] [CrossRef] [Green Version]
- Green, D.N.; Vergoz, J.; Gibson, R.; Le Pichon, A.; Ceranna, L. Infrasound radiated by the Gerdec and Chelopechene explosions: Propagation along unexpected paths. Geophys. J. Int. 2011, 185, 890–910. [Google Scholar] [CrossRef] [Green Version]
- Blixt, E.M.; Näsholm, S.P.; Gibbons, S.J.; Evers, L.G.; Charlton-Perez, A.J.; Orsolini, Y.J.; Kværna, T. Estimating tropospheric and stratospheric winds using infrasound from explosions. J. Acoust. Soc. Am. 2019, 146, 973–982. [Google Scholar] [CrossRef]
- Brown, P.G.; Whitaker, R.W.; ReVelle, D.O.; Tagliaferri, E. Multi-station infrasonic observations of two large bolides: Signal interpretation and implications for monitoring of atmospheric explosions. Geophys. Res. Lett. 2002, 29, 14-1–14-4. [Google Scholar] [CrossRef] [Green Version]
- Brown, P.G.; Edwards, W.N.; ReVelle, D.O.; Spurny, P. Acoustic analysis of shock production by very high-altitude meteors-I: Infrasonic observations, dynamics and luminosity. J. Atmos. Sol.-Terr. Phys. 2007, 69, 600–620. [Google Scholar] [CrossRef]
- Silber, E.A.; Brown, P.G. Optical observations of meteors generating infrasound-I: Acoustic signal identification and phenomenology. J. Atmos. Sol.-Terr. Phys. 2014, 119, 116–128. [Google Scholar] [CrossRef] [Green Version]
- Ens, T.A.; Brown, P.G.; Edwards, W.N.; Silber, E.A. Infrasound production by bolides: A global statistical study. J. Atmos. Sol.-Terr. Phys. 2012, 80, 208–229. [Google Scholar] [CrossRef]
- Silber, E.A.; Boslough, M.; Hocking, W.K.; Gritsevich, M.; Whitaker, R.W. Physics of meteor generated shock waves in the Earth’s atmosphere—A review. Adv. Space Res. 2018, 62, 489–532. [Google Scholar] [CrossRef] [Green Version]
- CTBTO/IMS (Comprehensive Nuclear-Test-Ban Treaty Organization). Available online: https://www.ctbto.org/verification-regime/ (accessed on 5 December 2019).
- Arrowsmith, S.J.; ReVelle, D.O.; Edwards, W.; Brown, P. Global detection of infrasonic signals from three large bolides. Earth Moon Planet 2008, 102, 357–363. [Google Scholar] [CrossRef] [Green Version]
- Silber, E.A.; Le Pichon, A.; Brown, P.G. Infrasonic detection of a near-Earth object impact over Indonesia on 8 October 2009. Geophys. Res. Lett. 2011, 38, L12201. [Google Scholar] [CrossRef]
- Pilger, C.; Ceranna, L.; Le Pichon, A.; Brown, P.G. Large meteoroids as global infrasound reference events. In Infrasound for Atmospheric Studies—Challenges in Middle Atmosphere Dynamics and Societal Benefits; Le Pichon, A., Blanc, E., Hauchecorne, A., Eds.; Springer: Heidelberg, Germany, 2019; pp. 451–470. [Google Scholar]
- Le Pichon, A.; Ceranna, L.; Pilger, C.; Mialle, P.; Brown, D.; Herry, P.; Brachet, N. The 2013 Russian fireball largest ever detected by CTBTO infrasound sensors. Geophys. Res. Lett. 2013, 40, 3732–3737. [Google Scholar] [CrossRef]
- Pilger, C.; Ceranna, L.; Ross, J.O.; Le Pichon, A.; Mialle, P.; Garcés, M. CTBT infrasound network performance to detect the 2013 Russian fireball event. Geophys. Res. Lett. 2015, 42, 2523–2531. [Google Scholar] [CrossRef]
- Drolshagen, E.; Ott, T.; Koschny, D.; Drolshagen, G.; Poppe, B. NEMO—Near Real-Time Monitoring System. In Proceedings of the International Meteor Conference, Petnica, Serbia, 21–24 September 2017; pp. 38–41. [Google Scholar]
- Drolshagen, E.; Ott, T.; Koschny, D.; Drolshagen, G.; Mialle, P.; Pilger, C.; Vaubaillon, J.; Poppe, B. NEMO—A Global Near Real-time Fireball Monitoring System. In Proceedings of the 1st NEO and Debris Detection Conference, Darmstadt, Germany, 22–24 January 2019. [Google Scholar]
- Edwards, W.N.; Brown, P.G.; ReVelle, D.O. Estimates of meteoroid kinetic energies from observations of infrasonic airwaves. J. Atmos. Sol.-Terr. Phys. 2006, 68, 1136–1160. [Google Scholar] [CrossRef]
- AMS/IMO (American Meteor Society). Available online: https://www.amsmeteors.org (accessed on 19 November 2019).
- Hankey, M.; Perlerin, V. IMO Fireball Reports. In Proceedings of the International Meteor Conference, Giron, France, 18–21 September 2014; pp. 160–161. [Google Scholar]
- CNEOS/JPL, (Center for Near Earth Object Studies). Available online: https://cneos.jpl.nasa.gov/fireballs/ (accessed on 19 November 2019).
- Jenniskens, P.; Albers, J.; Tillier, C.E.; Edgington, S.F.; Longenbaugh, R.S.; Goodman, S.J.; Rudlosky, S.D.; Hildebrand, A.R.; Hanton, L.; Ciceri, F.; et al. Detection of meteoroid impacts by the Geostationary Lightning Mapper on the GOES-16 satellite. Meteorit. Planet. Sci. 2018, 53, 2445–2469. [Google Scholar] [CrossRef]
- Borovička, J.; Charvát, Z. Meteosat observation of the atmospheric entry of 2008 TC3 over Sudan and the associated dust cloud. Astron. Astrophys. 2009, 507, 1015–1022. [Google Scholar] [CrossRef] [Green Version]
- Ott, T.; Drolshagen, E.; Koschny, D.; Mialle, P.; Pilger, C.; Vaubaillon, J.; Drolshagen, G.; Poppe, B. Combination of infrasound signals and complementary data for the analysis of bright fireballs. Planet. Space Sci. 2019, 179, 104715. [Google Scholar] [CrossRef]
- Cansi, Y. An automatic seismic event processing for detection and location: The P.M.C.C. method. Geophys. Res. Lett. 1995, 22, 1021–1024. [Google Scholar] [CrossRef]
- ReVelle, D.O. Historical detection of atmospheric impacts by large bolides using acoustic-gravity waves. In Annals of the New York Academy of Sciences, Near-Earth Objects—The United Nations International Conference; Remo, J.L., Ed.; New York Academy of Sciences: New York, NY, USA, 1997; Volume 822, pp. 284–330. [Google Scholar]
- Brown, P.G.; Assink, J.D.; Astiz, L.; Blaauw, R.; Boslough, M.B.; Borovička, J.; Brachet, N.; Brown, D.; Campbell-Brown, M.; Ceranna, L.; et al. A 500-kiloton Airburst over Chelyabinsk and an Enhanced Hazard from Small Impactors. Nature 2013, 503, 238–241. [Google Scholar] [CrossRef]
- Hupe, P.; Ceranna, L.; Pilger, C.; Le Pichon, A.; Blanc, E.; Rapp, M. Mountain-Associated Waves and their relation to Orographic Gravity Waves. Meteorol. Z. 2019. [Google Scholar] [CrossRef]
- Margrave, G. Consortium for Research in Elastic Wave Exploration Seismology (CREWES) Software Package. Available online: http://www.crewes.org/Reports/2000/2000-09.pdf (accessed on 10 December 2019).
- Waxler, R.; Assink, J.; Hetzer, C.; Velea, D. NCPAprop—A software package for infrasound propagation modeling. J. Acoust. Soc. Am. 2017, 141, 3627. [Google Scholar] [CrossRef]
- ECMWF. European Centre for Medium-Range Weather Forecasts, Integrated Forecast System Analysis Data. Available online: https://www.ecmwf.int (accessed on 13 December 2010).
- Picone, J.M.; Hedin, A.E.; Drob, D.P.; Aikin, A.C. NRLMSISE-00 Empirical Model of the Atmosphere: Statistical Comparisons and Scientific Issues. J. Geophys. Res. 2002, 107, 15-1–15-16. [Google Scholar] [CrossRef]
- Drob, D.P.; Emmert, J.T.; Meriwether, J.W.; Makela, J.J.; Doornbos, E.; Conde, M.; Hernandez, G.; Noto, J.; Zawdie, K.A.; McDonald, S.E.; et al. An update to the Horizontal Wind Model (HWM): The quiet time thermosphere. Earth Space Sci. 2015, 2, 301–319. [Google Scholar] [CrossRef]
- Edwards, W.N.; Eaton, D.W.; Brown, P.G. Seismic observations of meteors: Coupling theory and observations. Rev. Geophys. 2008, 46, RG4007. [Google Scholar] [CrossRef] [Green Version]
- Stevanović, J.; Teanby, N.A.; Wookey, J.; Selby, N.; Daubar, I.J.; Vaubaillon, J.; Garcia, R. Bolide Airbursts as a Seismic Source for the 2018 Mars InSight Mission. Space Sci. Rev. 2017, 211, 525–545. [Google Scholar] [CrossRef] [Green Version]
- Nastan, A.; Garay, M.; Kalashnikova, O.; Boslough, M.; Chodas, P. Observations of the 18 December 2018 Bering Sea bolide by NASA’s Multi-Angle Imaging SpectroRadiometer (MISR) Instrument. In Proceedings of the Planetary Defense Conference Posters, Washington, WA, USA, 29 April–3 May 2019. [Google Scholar]
- Le Pichon, A.; Ceranna, L.; Vergoz, J. Incorporating numerical modeling into estimates of the detection capability of the IMS infrasound network. J. Geophys. Res. 2012, 117, D05121. [Google Scholar] [CrossRef]
- ReVelle, D.O.; Brown, P.G.; Spurný, P. Entry dynamics and acoustics/infrasonic/seismic analysis for the Neuschwanstein meteorite fall. Meteorit. Planet. Sci. 2004, 39, 1605–1626. [Google Scholar] [CrossRef]
- Le Pichon, A.; Guérin, J.M.; Blanc, E.; Reymond, D. Trail in the atmosphere of the 29 December 2000 meteor as recorded in Tahiti: Characteristics and trajectory reconstitution. J. Geophys. Res. 2002, 107, 17-1–17-10. [Google Scholar] [CrossRef]
- Sutherland, L.C.; Bass, H.E. Atmospheric absorption in the atmosphere up to 160 km. J. Acoust. Soc. Am. 2004, 115, 1012–1032. [Google Scholar] [CrossRef]
- Silber, E.A.; Brown, P.G. Infrasound Monitoring as a Tool to Characterize Impacting Near-Earth Objects (NEOs). In Infrasound for Atmospheric Studies—Challenges in Middle Atmosphere Dynamics and Societal Benefits; Le Pichon, A., Blanc, E., Hauchecorne, A., Eds.; Springer: Heidelberg, Germany, 2019; pp. 939–986. [Google Scholar]
Fireball Event | Time (UTC) | IMS Stations | Location/Deviation (°) | Yield/Deviation (kt) | ||
---|---|---|---|---|---|---|
01 Mediterranean Sea | 16 August 2019, 20:36:05 | 5 | 35.13° N, 2.83° E | (5.03) | 0.1 | (+0.01) |
02 Caribbean Sea | 22 June 2019, 21:25:48 | 7 | 15.50° N, 66.66° W | (0.74) | 2.5 | (−3.5) |
03 Great Australian Bight | 21 May 2019, 13:21:35 | 8 | 37.98° S, 137.36° E | (0.82) | 1.4 | (−0.2) |
04 Northern Australia | 19 May 2019, 14:47:03 | 5 | 22.81° S, 132.33° E | (0.90) | 0.06 | (−0.05) |
05 Krasnoyarsk, Siberia | 6 April 2019, 11:59:09 | 3 | 55.78° N, 96.41° E | (1.11) | 0.4 | (+0.18) |
06 Krasnoyarsk, Siberia | 15 March 2019, 12:26:56 | 2 | − | (−) | 0.25 | (+0.1) |
07 Western Cuba | 1 February 2019, 18:17:10 | 2 | − | (−) | 0.02 | (−1.38) |
08 Bering Sea | 18 December 2018, 23:48:20 | 25 | 57.86° N, 173.41° E | (1.11) | 50 | (−123) |
09 Reunion, Indian Ocean | 25 September 2018, 14:10:33 | 3 | 16.03° S, 52.52° E | (8.21) | 0.1 | (−1.8) |
10 Western Greenland | 25 July 2018, 21:55:26 | 3 | 69.29° N, 55.86° W | (8.52) | 0.5 | (−1.6) |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pilger, C.; Gaebler, P.; Hupe, P.; Ott, T.; Drolshagen, E. Global Monitoring and Characterization of Infrasound Signatures by Large Fireballs. Atmosphere 2020, 11, 83. https://doi.org/10.3390/atmos11010083
Pilger C, Gaebler P, Hupe P, Ott T, Drolshagen E. Global Monitoring and Characterization of Infrasound Signatures by Large Fireballs. Atmosphere. 2020; 11(1):83. https://doi.org/10.3390/atmos11010083
Chicago/Turabian StylePilger, Christoph, Peter Gaebler, Patrick Hupe, Theresa Ott, and Esther Drolshagen. 2020. "Global Monitoring and Characterization of Infrasound Signatures by Large Fireballs" Atmosphere 11, no. 1: 83. https://doi.org/10.3390/atmos11010083
APA StylePilger, C., Gaebler, P., Hupe, P., Ott, T., & Drolshagen, E. (2020). Global Monitoring and Characterization of Infrasound Signatures by Large Fireballs. Atmosphere, 11(1), 83. https://doi.org/10.3390/atmos11010083