Impact of Urbanization on Precipitation in North Haihe Basin, China
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Data Acuisition
2.3. Methodology
2.3.1. Empirical Orthogonal Function (EOF) Analysis
2.3.2. Local Induced Enhancement of Precipitation
2.3.3. Bivariate Moran’s I
2.3.4. Geographically Weighted Regression, GWR
2.3.5. Pearson Correlation and Cross-Wavelet Analysis
3. Results and Discussion
3.1. The Summer Rainfall Spatial Distribution Characteristics in North Haihe Basin
3.2. Local Induced Enhancement of Precipitation and Urban Distribution
3.3. Identifying the Precipitation Response to Urbanization
3.4. The Spatial Correlation between UIEP and URBI
3.5. Lagged Correlation of UIEP and Climate Anomalies
3.6. Cross-Wavelet Analysis
3.7. Limitation and Uncertainties
4. Conclusions
- By comparing the distribution of LIEP and the urban level, the urbanization effects on summer rainfall in the upstream mountainous area were found to be hidden away by topographic factors.
- From the basin perspective, the highest urbanization level areas have the lowest LIEP, while the suburban areas have the highest LIEP, and the rural areas are in the middle.
- LISA clustering for LIEP and URBI based on bivariate Moran’s I coupled with DEM segmentation could efficiently extract the urban influencing area. The precipitation response is different to URBI in different parts of ROI. The UIEP and the URBI are generally negatively correlated. Precipitation in the inner parts of the ROI is less sensitive to URBI, while precipitation in the edge area of the ROI part is more sensitive to the URBI.
- The low UIEP value centers that happen to be the urban core areas have a weak correlation with ENSO, while the UIEP in the peri-urban-core areas have a stronger correlation with ENSO. UIEP versus Niño3.4 and SOI both show a significant common high-power period at a time scale of 2 years.
Author Contributions
Funding
Conflicts of Interest
References
- Changnon, S.A. Rainfall Changes in Summer Caused by St. Louis. Science 1979, 205, 402–404. [Google Scholar] [CrossRef] [PubMed]
- Lei, M.; Niyogi, D.; Kishtawal, C.; Pielke, R.A.; Beltran-Przekurat, A.; Nobis, T.E.; Vaidya, S.S. Effect of explicit urban land surface representation on the simulation of the 26 July 2005 heavy rain event over Mumbai, India. Atmos. Chem. Phys. 2008, 8, 5975–5995. [Google Scholar] [CrossRef] [Green Version]
- Hu, Q.; Zhang, J.; Wang, Y.; Huang, Y.; Liu, Y.; Li, L. A review of urbanization impact on precipitation. Adv. Water Sci. 2018, 29, 138–150. [Google Scholar]
- Song, X.; Zhang, J.; AghaKouchak, A.; Roy, S.; Xuan, Y.; Wang, G.; He, R.; Wang, X.; Liu, C. Rapid urbanization and changes in spatiotemporal characteristics of precipitation in Beijing metropolitan area. J. Geophys. Res. Atmos. 2014, 119, 11250–11271. [Google Scholar] [CrossRef] [Green Version]
- Li, X.; Zhou, W.; Ouyang, Z. Forty years of urban expansion in Beijing: What is the relative importance of physical, socioeconomic, and neighborhood factors? Appl. Geogr. 2013, 38, 1–10. [Google Scholar] [CrossRef]
- Li, W.; Chen, S.; Chen, G.; Sha, W.; Luo, C.; Feng, Y.; Wen, Z.; Wang, B. Urbanization signatures in strong versus weak precipitation over the Pearl River Delta metropolitan regions of China. Environ. Res. Lett. 2011, 6, 034020. [Google Scholar] [CrossRef] [Green Version]
- Wan, H.; Zhong, Z.; Yang, X.; Li, X. Impact of city belt in Yangtze River Delta in China on a precipitation process in summer: A case study. Atmos. Res. 2013, 125, 63–75. [Google Scholar] [CrossRef]
- Yu, M.; Miao, S.; Zhang, H. Uncertainties in the Impact of Urbanization on Heavy Rainfall: Case Study of a Rainfall Event in Beijing on 7 August 2015. J. Geophys. Res. Atmos. 2018, 123, 6005–6021. [Google Scholar] [CrossRef]
- Chen, X.; Liu, B.; Chen, G. Effects of Urbanization on Precipitation Characteristics. J. Nat. Resour. 2017, 32, 1591–1601. [Google Scholar]
- Zhu, X.; Zhang, Q.; Sun, P. Effects of urbanization on spatio-temporal distribution of precipitations in Beijing and its related causes. Acta Geogr. Sin. 2018, 73, 2086–2104. [Google Scholar]
- Shepherd, J.M.; Burian, S.J. Detection of Urban-Induced Rainfall Anomalies in a Major Coastal City. Earth Interact. 2003, 7, 1–17. [Google Scholar] [CrossRef] [Green Version]
- Mote, T.L.; Lacke, M.C.; Shepherd, J.M. Radar signatures of the urban effect on precipitation distribution: A case study for Atlanta, Georgia. Geophys. Res. Lett. 2007, 34, L20710. [Google Scholar] [CrossRef]
- Yan, Z.; Wang, J.; Xia, J.-J.; Feng, J. Review of recent studies of the climatic effects of urbanization in China. Adv. Clim. Chang. Res. 2016, 7, 154–168. [Google Scholar] [CrossRef]
- Li, J.; Zheng, X.; Zhang, C.; Chen, Y. Impact of Land-Use and Land-Cover Change on Meteorology in the Beijing-Tianjin-Hebei Region from 1990 to 2010. Sustainability 2018, 10, 176. [Google Scholar] [CrossRef] [Green Version]
- Wang, Y.; Sabatino, S.D.; Martilli, A.; Li, Y.; Wong, M.S.; Gutiérrez, E.; Chan, P.W. Impact of land surface heterogeneity on urban heat island circulation and sea-land breeze circulation in Hong Kong. J. Geophys. Res. Atmos. 2017, 122, 4332–4352. [Google Scholar] [CrossRef]
- Wai, K.M.; Wang, X.M.; Lin, T.H.; Wong, M.S.; Zeng, S.K.; He, N.; Ng, E.; Lau, K.; Wang, D.H. Observational evidence of a long-term increase in precipitation due to urbanization effects and its implications for sustainable urban living. Sci. Total Environ. 2017, 599, 647–654. [Google Scholar] [CrossRef]
- Salvadore, E.; Bronders, J.; Batelaan, O. Hydrological modelling of urbanized catchments: A review and future directions. J. Hydrol. 2015, 529, 62–81. [Google Scholar] [CrossRef]
- Debbage, N.; Shepherd, J.M. Urban Influences on the Spatiotemporal Characteristics of Runoff and Precipitation during the 2009 Atlanta Flood. J. Hydrometeorol. 2019, 20, 3–21. [Google Scholar] [CrossRef]
- McLeod, J.; Shepherd, M.; Konrad, C.E. Spatio-temporal rainfall patterns around Atlanta, Georgia and possible relationships to urban land cover. Urban Clim. 2017, 21, 27–42. [Google Scholar] [CrossRef]
- Zhang, S.; Huang, G.; Wang, J.; Liu, Y.; Jia, G.; Ren, G. Impact of Urban Surface Characteristics on Summer Rainfall in the Beijing-Tianjin-Hebei Area. Chinese J. Atmos. Sci. 2015, 39, 911–925. [Google Scholar]
- Li, S.; Ma, J. Impact of urbanization on precipitation in Beijing area. J. Meteorol. Sci. 2011, 31, 414–421. [Google Scholar]
- Yu, X.; Yang, G.; Zhou, Z.; Wang, J.; Qin, D. Variation of summer precipitation in Tianjin region and its urbanization effect. Prog. Geogr. 2008, 27, 43–48. [Google Scholar]
- Mitra, C.; Shepherd, J.M.; Jordan, T. On the relationship between the premonsoonal rainfall climatology and urban land cover dynamics in Kolkata city, India. Int. J. Climatol. 2012, 32, 1443–1454. [Google Scholar] [CrossRef]
- Li, W.; He, X.; Scaioni, M.; Yao, D.; Mi, C.; Zhao, J.; Chen, Y.; Zhang, K.; Gao, J.; Li, X. Annual precipitation and daily extreme precipitation distribution: Possible trends from 1960 to 2010 in urban areas of China. Geomat. Nat. Hazards Risk 2019, 10, 1694–1711. [Google Scholar] [CrossRef]
- Zhang, S.; Huang, G.; Qi, Y.; Jia, G. Impact of urbanization on summer rainfall in Beijing–Tianjin–Hebei metropolis under different climate backgrounds. Theor. Appl. Climatol. 2018, 133, 1093–1106. [Google Scholar] [CrossRef]
- Pachauri, R.K.; Mayer, L.; Intergovernmental Panel on Climate Change (Eds.) Climate Change 2014: Synthesis Report; Intergovernmental Panel on Climate Change: Geneva, Switzerland, 2015; ISBN 978-92-9169-143-2. [Google Scholar]
- Chu, J.T.; Xia, J.; Xu, C.-Y.; Singh, V.P. Statistical downscaling of daily mean temperature, pan evaporation and precipitation for climate change scenarios in Haihe River, China. Theor. Appl. Climatol. 2010, 99, 149–161. [Google Scholar] [CrossRef]
- Chang, C.; Feng, P.; Li, F.; Gao, Y. Long-term variation of water vapor content and precipitation in the Haihe river basin. J. Water Clim. Chang. 2015, 6, 341–351. [Google Scholar] [CrossRef]
- Wang, Z.; Luo, Y.; Liu, C.; Xia, J.; Zhang, M. Spatial and temporal variations of precipitation in Haihe River Basin, China: Six decades of measurements. Hydrol. Process. 2011, 25, 2916–2923. [Google Scholar] [CrossRef]
- Huffman, G.J.; Adler, R.F.; Bolvin, D.T.; Nelkin, E.J. The TRMM Multi-Satellite Precipitation Analysis (TMPA). In Satellite Rainfall Applications for Surface Hydrology; Gebremichael, M., Hossain, F., Eds.; Springer: Dordrecht, The Netherlands, 2010; pp. 3–22. ISBN 978-90-481-2915-7. [Google Scholar]
- Precipitation Measurement Missions | An international partnership to understand precipitation and its impact on humankind. Available online: https://pmm.nasa.gov/ (accessed on 20 November 2019).
- Geospatial Data Cloud. Available online: http://www.gscloud.cn/ (accessed on 20 November 2019).
- Earth Observation Group—Defense Meteorological Satellite Program, Boulder | ngdc.noaa.gov. Available online: https://www.ngdc.noaa.gov/eog/dmsp/downloadV4composites.html (accessed on 20 November 2019).
- Croft, T. Nighttime Images of the Earth from Space. Sci. Am. 1978, 239, 86–98. [Google Scholar] [CrossRef]
- Wang, L.; Li, W.; Wang, P.; Liu, X.; Yang, F.; Qu, J.J. Spatiotemporal characterization of the urban sprawl and its impacts on urban island in China with DMSP/OLS and MODIS measurements. Theor. Appl. Climatol. 2019, 138, 293–303. [Google Scholar] [CrossRef]
- Cong, Z.; Shen, Q.; Zhou, L.; Sun, T.; Liu, J. Evapotranspiration estimation considering anthropogenic heat based on remote sensing in urban area. Sci. China Earth Sci. 2017, 60, 659–671. [Google Scholar] [CrossRef]
- Wang, S.; Fang, C.; Sun, L.; Su, Y.; Chen, X.; Zhou, C.; Feng, K.; Hubacek, K. Decarbonizing China’s Urban Agglomerations. Ann. Am. Assoc. Geogr. 2019, 109, 266–285. [Google Scholar] [CrossRef]
- Wang, S.; Liu, X. China’s city-level energy-related CO2 emissions: Spatiotemporal patterns and driving forces. Appl. Energy 2017, 200, 204–214. [Google Scholar] [CrossRef]
- ESRL: PSD: PSD/Climate Diagnostics Branch, Data: NCEP Reanalysis Surface. Available online: https://www.esrl.noaa.gov/psd/data/gridded/data.ncep.reanalysis.surface.html (accessed on 20 November 2019).
- Peixoto, J.P.; Oort, A.H. Physics of Climate; AIP-Press: College Park, MD, USA, 1992; ISBN 978-0-88318-712-8. [Google Scholar]
- Kim, B.S.; Hossein, S.Z.; Choi, G. Evaluation of temporal-spatial precipitation variability and prediction using seasonal ARIMA model in Mongolia. KSCE J. Civ. Eng. 2011, 15, 917–925. [Google Scholar] [CrossRef]
- North, G.R.; Bell, T.L.; Cahalan, R.F.; Moeng, F.J. Sampling Errors in the Estimation of Empirical Orthogonal Functions. Mon. Weather Rev. 1982, 110, 699–706. [Google Scholar] [CrossRef]
- Kong, F.; Wang, Y.; Fang, J.; Lu, L. Spatial Pattern of Summer Extreme Precipitation and Its Response to Urbanization in China (1961–2010). Resour. Environ. Yangtze Basin 2018, 27, 996–1010. [Google Scholar]
- Zha, Y.; Ni, S.; Yang, S. An Effective Approach to Automatically Extract Urban Land-use from TM Imagery. J. Remote Sens. 2003, 7, 37–40. [Google Scholar]
- Greene, C.S.; Robinson, P.J.; Millward, A.A. Canopy of advantage: Who benefits most from city trees? J. Environ. Manag. 2018, 208, 24–35. [Google Scholar] [CrossRef]
- Anselin, L.; Syabri, I.; Smirnov, O. Visualizing multivariate spatial correlation with dynamically linked windows. In Proceedings of the New Tools for Spatial Data Analysis, Proceedings of the Specialist Meeting, Santa Barbara, CA, USA, 10–11 May 2002. [Google Scholar]
- Anselin, L.; Syabri, I.; Kho, Y. GeoDa: An Introduction to Spatial Data Analysis. In Handbook of Applied Spatial Analysis: Software Tools, Methods and Applications; Fischer, M.M., Getis, A., Eds.; Springer: Berlin/Heidelberg, Germany, 2010; pp. 73–89. ISBN 978-3-642-03647-7. [Google Scholar]
- GeoDa on Github. Available online: http://geodacenter.github.io/ (accessed on 20 November 2019).
- Fotheringham, A.S.; Charlton, M.E.; Brunsdon, C. Geographically Weighted Regression: A Natural Evolution of the Expansion Method for Spatial Data Analysis. Environ. Plan. A 1998, 30, 1905–1927. [Google Scholar] [CrossRef]
- Fotheringham, A.; Brunsdon, C.; Charlton, M. Geographically Weighted Regression: The Analysis of Spatially Varying Relationships; John Wiley & Sons: Hoboken, NJ, USA, 2002; Volume 13. [Google Scholar]
- Lu, B.; Charlton, M.; Harris, P.; Fotheringham, A.S. Geographically weighted regression with a non-Euclidean distance metric: A case study using hedonic house price data. Int. J. Geogr. Inf. Sci. 2014, 28, 660–681. [Google Scholar] [CrossRef]
- Akaike, H. Information Theory and an Extension of the Maximum Likelihood Principle. In Breakthroughs in Statistics: Foundations and Basic Theory; Kotz, S., Johnson, N.L., Eds.; Springer Series in Statistics; Springer: New York, NY, USA, 1992; pp. 610–624. ISBN 978-1-4612-0919-5. [Google Scholar]
- Mohammadi, F.; Fakheri Fard, A.; Ghorbani, M.A. Application of cross-wavelet–linear programming–Kalman filter and GIUH methods in rainfall–runoff modeling. Environ. Earth Sci. 2019, 78, 168. [Google Scholar] [CrossRef]
- Zhao, D.; Wu, J. Changes in urban-related precipitation in the summer over three city clusters in China. Theor. Appl. Climatol. 2018, 134, 83–93. [Google Scholar] [CrossRef]
- Huang, R.H.; Lei, G.U.; Yu-Hong, X.U.; Zhang, Q.L. Characteristics of the Interannual Variations of Onset and Advance of the East Asian Summer Monsoon and Their Associations with Thermal States of the Tropical Western Pacific. Chin. J. Atmos. Sci. 2005, 29, 20–36. [Google Scholar]
- Hao, L.; Ding, Y. Progress of Precipitation Research in North China. Prog. Geogr. 2012, 31, 593–601. [Google Scholar]
- Jiang, R.; Wang, Y.; Xie, J.; Zhao, Y.; Li, F.; Wang, X. Assessment of extreme precipitation events and their teleconnections to El Niño Southern Oscillation, a case study in the Wei River Basin of China. Atmos. Res. 2019, 218, 372–384. [Google Scholar] [CrossRef]
- Messer, H.; Zinevich, A.; Alpert, P. Environmental monitoring by wireless communication networks. Science 2006, 312, 713. [Google Scholar] [CrossRef] [Green Version]
- Zinevich, A.; Alpert, P.; Messer, H. Estimation of rainfall fields using commercial microwave communication networks of variable density. Adv. Water Resour. 2008, 31, 1470–1480. [Google Scholar] [CrossRef]
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cao, R.; Li, F.; Feng, P. Impact of Urbanization on Precipitation in North Haihe Basin, China. Atmosphere 2020, 11, 16. https://doi.org/10.3390/atmos11010016
Cao R, Li F, Feng P. Impact of Urbanization on Precipitation in North Haihe Basin, China. Atmosphere. 2020; 11(1):16. https://doi.org/10.3390/atmos11010016
Chicago/Turabian StyleCao, Runxiang, Fawen Li, and Ping Feng. 2020. "Impact of Urbanization on Precipitation in North Haihe Basin, China" Atmosphere 11, no. 1: 16. https://doi.org/10.3390/atmos11010016
APA StyleCao, R., Li, F., & Feng, P. (2020). Impact of Urbanization on Precipitation in North Haihe Basin, China. Atmosphere, 11(1), 16. https://doi.org/10.3390/atmos11010016