SWAT-Based Runoff Simulation and Runoff Responses to Climate Change in the Headwaters of the Yellow River, China
Abstract
:1. Introduction
2. Study Area and Data Sources
3. Methodology
3.1. The Mann-Kendall Test for Abrupt Change Analysis
3.2. The Soil and Water Assessment Tool (SWAT) Model
3.2.1. Basic Introduction to SWAT
3.2.2. Snowmelt Processes in the SWAT Model
3.2.3. Elevation Bands in the SWAT Model
3.3. SWAT Model Setup
3.3.1. Model Sensitivity Analysis and Calibration
3.3.2. Model Performance Evaluation
3.4. Quantifying the Effects of Climate Variables on Runoff Variation
4. Results and Discussion
4.1. Temporal Pattern of Long-Term Observed Variables
4.2. Evaluation of Effects of Elevation Bands on Monthly Runoff Simulation
4.3. Impact of Climate Change on Runoff in the HRYR
4.4. Limitations and Uncertainties
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Huntington, T.G. Evidence for intensification of the global water cycle: Review and synthesis. J. Hydrol. 2006, 319, 83–95. [Google Scholar] [CrossRef]
- Hansen, J.; Sato, M.; Ruedy, R.; Lo, K.; Lea, D.W.; Medina-Elizade, M. Global temperature change. Proc. Natl. Acad. Sci. USA 2006, 103, 14288–14293. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Beniston, M. Climatic change in mountain regions: A review of possible impacts. Clim. Change 2003, 59, 5–31. [Google Scholar] [CrossRef]
- Jiang, T.; Chen, Y.Q.D.; Xu, C.Y.Y.; Chen, X.H.; Chen, X.; Singh, V.P. Comparison of hydrological impacts of climate change simulated by six hydrological models in the Dongjiang Basin, South China. J. Hydrol. 2007, 336, 316–333. [Google Scholar] [CrossRef]
- Lin, Y.P.; Chen, C.J.; Lien, W.Y.; Chang, W.H.; Petway, J.R.; Chiang, L.C. Landscape Conservation Planning to Sustain Ecosystem Services under Climate Change. Sustainability 2019, 11, 1393. [Google Scholar] [CrossRef]
- Ahn, K.H.; Merwade, V. Quantifying the relative impact of climate and human activities on streamflow. J. Hydrol. 2014, 515, 257–266. [Google Scholar] [CrossRef]
- Wu, J.W.; Miao, C.Y.; Wang, Y.M.; Duan, Q.Y.; Zhang, X.M. Contribution analysis of the long-term changes in seasonal runoff on the Loess Plateau, China, using eight Budyko-based methods. J. Hydrol. 2017, 545, 263–275. [Google Scholar] [CrossRef]
- Grusson, Y.; Sun, X.L.; Gascoin, S.; Sauvage, S.; Raghavan, S.; Anctil, F.; Sachez-Perez, J.M. Assessing the capability of the SWAT model to simulate snow, snow melt and streamflow dynamics over an alpine watershed. J. Hydrol. 2015, 531, 574–588. [Google Scholar] [CrossRef]
- Yen, H.; Sharifi, A.; Kalin, L.; Mirhosseini, G.; Arnold, J.G. Assessment of model predictions and parameter transferability by alternative land use data on watershed modeling. J. Hydrol. 2015, 527, 458–470. [Google Scholar] [CrossRef]
- Malago, A.; Efstathiou, D.; Bouraoui, F.; Nikolaidis, N.P.; Franchini, M.; Bidoglio, G.; Kritsotakis, M. Regional scale hydrologic modeling of a karst-dominant geomorphology: The case study of the Island of Crete. J. Hydrol. 2016, 540, 64–81. [Google Scholar] [CrossRef]
- Zhang, A.J.; Zhang, C.; Fu, G.B.; Wang, B.D.; Bao, Z.X.; Zheng, H.X. Assessments of Impacts of Climate Change and Human Activities on Runoff with SWAT for the Huifa River Basin, Northeast China. Water Resour. Manag. 2012, 26, 2199–2217. [Google Scholar] [CrossRef]
- Githui, F.; Gitau, W.; Mutua, F.; Bauwens, W. Climate change impact on SWAT simulated streamflow in western Kenya. Int. J. Climatol. 2009, 29, 1823–1834. [Google Scholar] [CrossRef]
- Yin, J.; He, F.; Xiong, Y.J.; Qiu, G.Y. Effects of land use/land cover and climate changes on surface runoff in a semi-humid and semi-arid transition zone in northwest China. Hydrol. Earth Syst. Sci. 2017, 21, 183–196. [Google Scholar] [CrossRef] [Green Version]
- Zhang, X.S.; Srinivasan, R.; Debele, B.; Hao, F.H. Runoff simulation of the headwaters of the Yellow River using the SWAT model with three snowmelt algorithms. J. Am. Water Resour. Assoc. 2008, 44, 48–61. [Google Scholar] [CrossRef]
- Zhang, Y.G.; Su, F.G.; Hao, Z.C.; Xu, C.Y.; Yu, Z.B.; Wang, L.; Tong, K. Impact of projected climate change on the hydrology in the headwaters of the Yellow River basin. Hydrol. Process. 2015, 29, 4379–4397. [Google Scholar] [CrossRef]
- Fontaine, T.A.; Cruickshank, T.S.; Arnold, J.G.; Hotchkiss, R.H. Development of a snowfall-snowmelt routine for mountainous terrain for the soil water assessment tool (SWAT). J. Hydrol. 2002, 262, 209–223. [Google Scholar] [CrossRef]
- Pradhanang, S.M.; Anandhi, A.; Mukundan, R.; Zion, M.S.; Pierson, D.C.; Schneiderman, E.M.; Matonse, A.; Frei, A. Application of SWAT model to assess snowpack development and streamflow in the Cannonsville watershed, New York, USA. Hydrol. Process. 2011, 25, 3268–3277. [Google Scholar] [CrossRef]
- Li, L.; Ha, Z.C.; Wang, J.H.; Wang, Z.H.; Yu, Z.B. Impact of future climate change on runoff in the head region of the Yellow River. J. Hydrol. Eng. 2008, 13, 347–354. [Google Scholar] [CrossRef]
- Zhao, F.F.; Xu, Z.X.; Zhang, L.; Zuo, D.P. Streamflow response to climate variability and human activities in the upper catchment of the Yellow River Basin. Sci. China Ser. E 2009, 52, 3249–3256. [Google Scholar] [CrossRef]
- Zheng, H.X.; Zhang, L.; Zhu, R.R.; Liu, C.M.; Sato, Y.; Fukushima, Y. Responses of streamflow to climate and land surface change in the headwaters of the Yellow River Basin. Water Resour. Res. 2009, 45. [Google Scholar] [CrossRef]
- Cuo, L.; Zhang, Y.X.; Gao, Y.H.; Hao, Z.C.; Cairang, L.S. The impacts of climate change and land cover/use transition on the hydrology in the upper Yellow River Basin, China. J. Hydrol. 2013, 502, 37–52. [Google Scholar] [CrossRef]
- Miao, C.Y.; Ni, J.R.; Borthwick, A.G.L. Recent changes of water discharge and sediment load in the Yellow River basin, China. Prog. Phys. Geogr. 2010, 34, 541–561. [Google Scholar] [CrossRef] [Green Version]
- Liu, Y.X.; Wang, Y.L.; Peng, J.; Du, Y.Y.; Liu, X.F.; Li, S.S.; Zhang, D.H. Correlations between Urbanization and Vegetation Degradation across the World’s Metropolises Using DMSP/OLS Nighttime Light Data. Remote Sens. 2015, 7, 2067–2088. [Google Scholar] [CrossRef]
- Miao, C.Y.; Ni, J.R. Variation of Natural Streamflow since 1470 in the Middle Yellow River, China. Int. J. Environ. Res. Public Health 2009, 6, 2849–2864. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Su, L.; Miao, C.Y.; Kong, D.X.; Duan, Q.Y.; Lei, X.H.; Hou, Q.Q.; Li, H. Long-term trends in global river flow and the causal relationships between river flow and ocean signals. J. Hydrol. 2018, 563, 818–833. [Google Scholar] [CrossRef]
- Hamed, K.H. Trend detection in hydrologic data: The Mann-Kendall trend test under the scaling hypothesis. J. Hydrol. 2008, 349, 350–363. [Google Scholar] [CrossRef]
- Arnold, J.G.; Srinivasan, R.; Muttiah, R.S.; Williams, J.R. Large area hydrologic modeling and assessment Part 1: Model development. J. Am. Water Resour. Assoc. 1998, 34, 73–89. [Google Scholar] [CrossRef]
- Abbaspour, K.C.; Johnson, C.A.; van Genuchten, M.T. Estimating uncertain flow and transport parameters using a sequential uncertainty fitting procedure. Vadose Zone J. 2004, 3, 1340–1352. [Google Scholar] [CrossRef]
- Dile, Y.T.; Karlberg, L.; Daggupati, P.; Srinivasan, R.; Wiberg, D.; Rockstrom, J. Assessing the implications of water harvesting intensification on upstream-downstream ecosystem services: A case study in the Lake Tana basin. Sci. Total Environ. 2016, 542, 22–35. [Google Scholar] [CrossRef] [PubMed]
- Lee, J.E.; Heo, J.H.; Lee, J.; Kim, N.W. Assessment of Flood Frequency Alteration by Dam Construction via SWAT Simulation. Water 2017, 9, 264. [Google Scholar] [CrossRef]
- Neitsch, S.L.; Arnold, J.G.; Kiniry, J.R.; Williams, J.R. Soil and Water Assessment Tool Theoretical Documentation Version 2009. Available online: http:// hdl.handle.net/1969.1/128050 (accessed on 24 July 2019).
- Neitsch, S.L.; Arnold, J.G.; Kiniry, J.R.; Srinivasan, R.; Williams, J.R. Soil and water assessment tool user’s manual version 2000. GSWRL Rep. 2002, 202, 1–438. [Google Scholar]
- Neitsch, S.L.; Arnold, J.G.; Kiniry, J.R.; Williams, J.R. Soil and Water Assessment Tool (SWAT) Theoretical Documentation; Blackland Research Center, Texas Agricultural Experiment Station and Grassland, Soil and Water Research Laboratory: Temple, TX, USA, 2005. [Google Scholar]
- Arnold, J.G.; Moriasi, D.N.; Gassman, P.W.; Abbaspour, K.C.; White, M.J.; Srinivasan, R.; Santhi, C.; Harmel, R.D.; van Griensven, A.; Van Liew, M.W.; et al. Swat: Model Use, Calibration, and Validation. Trans. ASABE 2012, 55, 1491–1508. [Google Scholar] [CrossRef]
- Abbaspour, K.C. SWAT-CUP 2012: SWAT Calibration and Uncertainty Programs–A User Manual; Swiss Federal Institute of Aquatic Science and Technology: Dübendorf, Switzerland, 2014. [Google Scholar]
- Yang, J.; Reichert, P.; Abbaspour, K.C.; Xia, J.; Yang, H. Comparing uncertainty analysis techniques for a SWAT application to the Chaohe Basin in China. J. Hydrol. 2008, 358, 1–23. [Google Scholar] [CrossRef]
- Tuo, Y.; Duan, Z.; Disse, M.; Chiogna, G. Evaluation of precipitation input for SWAT modeling in Alpine catchment: A case study in the Adige river basin (Italy). Sci. Total Environ. 2016, 573, 66–82. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nash, J.E.; Sutcliffe, J.V. River Flow Forecasting through Conceptual Model. Part 1—A Discussion of Principles. J. Hydrol. 1970, 10, 282–290. [Google Scholar] [CrossRef]
- Legates, D.R.; McCabe, G.J. Evaluating the use of “goodness-of-fit” measures in hydrologic and hydroclimatic model validation. Water Resour. Res. 1999, 35, 233–241. [Google Scholar] [CrossRef]
- Moriasi, D.N.; Arnold, J.G.; Van Liew, M.W.; Bingner, R.L.; Harmel, R.D.; Veith, T.L. Model evaluation guidelines for systematic quantification of accuracy in watershed simulations. Trans. ASABE 2007, 50, 885–900. [Google Scholar] [CrossRef]
- Xi, Y.; Miao, C.Y.; Wu, J.W.; Duan, Q.Y.; Lei, X.H.; Li, H. Spatiotemporal Changes in Extreme Temperature and Precipitation Events in the Three-Rivers Headwater Region, China. J. Geophys. Res. Atmos. 2018, 123, 5827–5844. [Google Scholar] [CrossRef]
- Luo, Y.; Arnold, J.; Allen, P.; Chen, X. Baseflow simulation using SWAT model in an inland river basin in Tianshan Mountains, Northwest China. Hydrol. Earth Syst. Sci. 2012, 16, 1259–1267. [Google Scholar] [CrossRef] [Green Version]
- Miao, C.Y.; Ashouri, H.; Hsu, K.L.; Sorooshian, S.; Duan, Q.Y. Evaluation of the PERSIANN-CDR Daily Rainfall Estimates in Capturing the Behavior of Extreme Precipitation Events over China. J. Hydrometeorol. 2015, 16, 1387–1396. [Google Scholar] [CrossRef] [Green Version]
- Sun, Q.H.; Miao, C.Y.; Duan, Q.Y.; Ashouri, H.; Sorooshian, S.; Hsu, K.L. A Review of Global Precipitation Data Sets: Data Sources, Estimation, and Intercomparisons. Rev. Geophys. 2018, 56, 79–107. [Google Scholar] [CrossRef] [Green Version]
- Debele, B.; Srinivasan, R.; Gosain, A.K. Comparison of Process-Based and Temperature-Index Snowmelt Modeling in SWAT. Water Resour. Manag. 2010, 24, 1065–1088. [Google Scholar] [CrossRef]
- Miao, C.Y.; Duan, Q.Y.; Sun, Q.H.; Lei, X.H.; Li, H. Non-uniform changes in different categories of precipitation intensity across China and the associated large-scale circulations. Environ. Res. Lett. 2019, 14, 2. [Google Scholar] [CrossRef]
- Tang, Y.; Tang, Q.; Tian, F.; Zhang, Z.; Liu, G. Responses of natural runoff to recent climatic variations in the Yellow River basin, China. Hydrol. Earth Syst. Sci. 2013, 17, 4471–4480. [Google Scholar] [CrossRef] [Green Version]
- Zheng, Y.T.; Huang, Y.F.; Zhou, S.; Wang, K.Y.; Wang, G.Q. Effect partition of climate and catchment changes on runoff variation at the headwater region of the Yellow River based on the Budyko complementary relationship. Sci. Total Environ. 2018, 643, 1166–1177. [Google Scholar] [CrossRef] [PubMed]
- Hu, J.H.; Jiang, Z.G. Climate Change Hastens the Conservation Urgency of an Endangered Ungulate. PLoS ONE 2011, 6, e22873. [Google Scholar] [CrossRef] [PubMed]
- Lan, Y.C.; Zhao, G.H.; Zhang, Y.N.; Wen, J.; Hu, X.L.; Liu, J.Q.; Gu, M.L.; Chang, J.J.; Ma, J.H. Response of runoff in the headwater region of the Yellow River to climate change and its sensitivity analysis. J. Geogr. Sci. 2010, 20, 848–860. [Google Scholar] [CrossRef]
- Kong, D.X.; Miao, C.Y.; Wu, J.W.; Borthwick, A.G.L.; Duan, Q.Y.; Zhang, X.M. Environmental impact assessments of the Xiaolangdi Reservoir on the most hyperconcentrated laden river, Yellow River, China. Environ. Sci. Pollut. Res. Int. 2017, 24, 4337–4351. [Google Scholar] [CrossRef] [PubMed]
- Miao, C.Y.; Ni, J.R.; Borthwick, A.G.L.; Yang, L. A preliminary estimate of human and natural contributions to the changes in water discharge and sediment load in the Yellow River. Global Planet. Change 2011, 76, 196–205. [Google Scholar] [CrossRef] [Green Version]
- Sun, Q.H.; Miao, C.Y.; Duan, Q.Y. Changes in the Spatial Heterogeneity and Annual Distribution of Observed Precipitation across China. J. Climate 2017, 30, 9399–9416. [Google Scholar] [CrossRef]
- Sun, Q.H.; Miao, C.Y.; Duan, Q.Y.; Wang, Y.F. Temperature and precipitation changes over the Loess Plateau between 1961 and 2011, based on high-density gauge observations. Global Planet. Change 2015, 132, 1–10. [Google Scholar] [CrossRef]
- Leta, O.T.; Nossent, J.; Velez, C.; Shrestha, N.K.; van Griensven, A.; Bauwens, W. Assessment of the different sources of uncertainty in a SWAT model of the River Senne (Belgium). Environ. Modell. Softw. 2015, 68, 129–146. [Google Scholar] [CrossRef]
- Efthimiou, N. Performance of the RUSLE in Mediterranean Mountainous Catchments. Environ. Process. 2016, 3, 1001–1019. [Google Scholar] [CrossRef]
- Yen, H.; Ahmadi, M.; White, M.J.; Wang, X.Y.; Arnold, J.G. C-SWAT: The Soil and Water Assessment Tool with consolidated input files in alleviating computational burden of recursive simulations. Comput. Geosci. UK 2014, 72, 221–232. [Google Scholar] [CrossRef]
Parameters | Definitions | Range | Default |
---|---|---|---|
Hydrology | |||
CN2 | SCS runoff curve number II | 35–98 | HRU-Based |
ALPHA_BF | Baseflow alpha factor [days] | 0–1 | 0.048 |
GW_DELAY | Groundwater delay | 0–500 | 31 |
GWQMN | Threshold depth of water in the shallow aquifer required for return flow to occur [mm] | 0–5000 | 1000 |
GW_REVAP | Groundwater “revap” coefficient | 0.02–0.2 | 0.02 |
ESCO | Soil evaporation compensation factor | 0–1 | 0.95 |
EPCO | Plant uptake compensation factor | 0–1 | 1 |
CH_N2 | Manning’s “n” value for the main channel | 0–0.3 | 0.014 |
CH_K2 | Effective hydraulic conductivity in main channel alluvium [mm/hr] | 0–400 | 0 |
SOL_AWC() | Available water capacity of the soil layer [mm/mm] | 0–1 | Soil layer |
SOL_K() | Saturated hydraulic conductivity [mm/hr] | 0–100 | Soil layer |
SOL_Z() | Depth from soil surface to bottom of layer [mm] | 0–3000 | Soil layer |
SOL_BD() | Moist bulk density [g/cm3] | 0.9–2.5 | Soil layer |
OV_N | Manning’s “n” value for overland flow | 0.01–30 | HRU-based |
GWHT | Initial groundwater height [mm] | 0–25 | 1 |
GW_SPYLD | Specific yield of the shallow aquifer [m3/m3] | 0–0.4 | 0.003 |
SHALLST | Initial depth of water in the shallow aquifer [mm] | 0–5000 | 1000 |
DEEPST | Initial depth of water in the deep aquifer [mm] | 0–10000 | 2000 |
RCHRG_DP | Deep aquifer percolation fraction | 0–1 | 0.05 |
REVAPMN | Threshold depth of water in shallow aquifer for “revap” to occur [mm] | 0–1000 | 750 |
CANMX | Maximum canopy storage [mm] | 0–100 | 0 |
EVRCH | Reach evaporation adjustment factor | 0.5–1 | 1 |
SURLAG | Surface runoff lag time [days] | 1–24 | 4 |
EVLAI | Leaf area index at which no evaporation occurs from water surface [m²/m²] | 0–10 | 3 |
Snow | |||
SFTMP | Snowfall temperature [°C] | −5–5 | 1 |
SMTMP | Snowmelt base temperature [°C] | −5–5 | 0.5 |
SMFMX | Maximum melt rate for snow during year (occurs on summer solstice) [mm/(°C∙day)] | 0–10 | 4.5 |
SMFMN | Minimum melt rate for snow during the year (occurs on winter solstice) [mm/(°C∙day)] | 0–10 | 4.5 |
TIMP | Snowpack temperature lag factor | 0–1 | 1 |
SNOCOVMX | Minimum snow water content that corresponds to 100% snow cover [mm] | 0–500 | 1 |
SNO50COV | Snow water equivalent that corresponds to 50% snow cover [mm] | 0–1 | 0.5 |
Elevation Band | |||
TLAPS | Temperature lapse rate [°C/km] | −50–50 | 0 |
PLAPS | Precipitation lapse rate [mm/km] | −500–500 | 0 |
Parameters | Best Parameter Estimate (Huangheyan) | Best Parameter Estimate (Maqu and Tangnaihai) | Calibrated Range |
---|---|---|---|
r__CN2.mgt | −0.18 | 0.03 | −0.2 to 0.2 |
v__ALPHA_BF.gw | 0.71 | 0.55 | 0 to 1 |
v__GW_DELAY.gw | 163.22 | 233.76 | 30 to 450 |
v__GW_REVAP.gw | 0.09 | 0.10 | 0.02 to 0.2 |
v__GWQMN.gw | 1.50 | 1.43 | 0 to 2 |
v__CH_N2.rte | 0.23 | 0.25 | 0.0 to 0.3 |
v__CH_K2.rte | 12.37 | 13.73 | 5 to 130 |
r__SOL_AWC(1).so | −0.01 | 0.05 | −0.2 to 0.4 |
r__SOL_BD(1).sol | −0.06 | 0.23 | −0.5 to 0.6 |
v__OV_N.hru | 13.67 | 12.79 | 0.01 to 30 |
v__RCHRG_DP.gw | 0.40 | 0.50 | 0 to 1 |
v__REVAPMN.gw | 401.86 | 417.48 | 0 to 500 |
v__ESCO.hru | 0.59 | 0.59 | 0.8 to 1 |
v__EPCO.hru | 0.29 | 0.28 | 0 to 1 |
v__EVRCH.bsn | 0.69 | 0.68 | 0.5 to 1 |
v__EVLAI.bsn | 5.48 | 5.50 | 0 to 10 |
v__SFTMP.bsn | 6.94 | 6.27 | 0 to 10 |
v__SMTMP.bsn | 6.75 | 7.71 | 0 to 10 |
v__TIMP.bsn | 0.14 | 0.24 | 0 to 1 |
v__SNOCOVMX.bsn | 136.03 | 156.99 | 0 to 500 |
v__SNO50COV.bsn | 0.11 | 0.3 | 0.05 to 0.8 |
v__TLAPS.sub | 5.38 | 6.11 | 0 to 10 |
v__PLAPS.sub | 27.81 | 3.01 | −100 to 500 |
Model Performance Statistics for Gauging Stations | ||||||
---|---|---|---|---|---|---|
Elevation bands | Huangheyan | Tangnaihai | Maqu | |||
R2 | NS | R2 | NS | R2 | NS | |
1 | 0.31(0.55) | 0.13(0.46) | 0.84(0.86) | 0.58(0.62) | 0.81(0.82) | 0.65(0.71) |
2 | 0.53(0.55) | 0.47(0.46) | 0.82(0.86) | 0.40(0.62) | 0.80(0.82) | 0.48(0.71) |
3 | 0.54(0.56) | 0.48(0.46) | 0.82(0.86) | 0.40(0.62) | 0.80(0.82) | 0.40(0.71) |
4 | 0.53(0.56) | 0.47(0.46) | 0.82(0.86) | 0.40(0.62) | 0.80(0.82) | 0.48(0.71) |
5 | 0.76(0.59) | 0.66(0.57) | 0.86(0.89) | 0.81(0.71) | 0.86(0.88) | 0.84(0.79) |
6 | 0.41(0.58) | 0.41(0.57) | 0.84(0.86) | 0.48(0.53) | 0.81(0.82) | 0.56(0.63) |
7 | 0.42(0.57) | 0.41(0.57) | 0.84(0.86) | 0.48(0.53) | 0.81(0.82) | 0.56(0.63) |
8 | 0.41(0.57) | 0.41(0.57) | 0.84(0.86) | 0.48(0.53) | 0.81(0.82) | 0.56(0.63) |
9 | 0.53(0.55) | 0.47(0.66) | 0.84(0.86) | 0.48(0.53) | 0.80(0.82) | 0.48(0.71) |
10 | 0.51(0.58) | 0.47(0.41) | 0.79(0.78) | 0.63(0.63) | 0.74(0.72) | 0.65(0.66) |
Huangheyan | Maqu | Tangnaihai (Basin Outlet) | |
---|---|---|---|
(mm) | 36.5 | 367.87 | 456.90 |
(mm) | 29.12 | 307.25 | 391.48 |
(mm) | 0.84 | 37.95 | 42.00 |
(mm) | 5.19 | 19.67 | 16.97 |
(%) | 11.40 | 62.6 | 64.20 |
(%) | 70.30 | 32.40 | 25.93 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wu, J.; Zheng, H.; Xi, Y. SWAT-Based Runoff Simulation and Runoff Responses to Climate Change in the Headwaters of the Yellow River, China. Atmosphere 2019, 10, 509. https://doi.org/10.3390/atmos10090509
Wu J, Zheng H, Xi Y. SWAT-Based Runoff Simulation and Runoff Responses to Climate Change in the Headwaters of the Yellow River, China. Atmosphere. 2019; 10(9):509. https://doi.org/10.3390/atmos10090509
Chicago/Turabian StyleWu, Jingwen, Haiyan Zheng, and Yang Xi. 2019. "SWAT-Based Runoff Simulation and Runoff Responses to Climate Change in the Headwaters of the Yellow River, China" Atmosphere 10, no. 9: 509. https://doi.org/10.3390/atmos10090509
APA StyleWu, J., Zheng, H., & Xi, Y. (2019). SWAT-Based Runoff Simulation and Runoff Responses to Climate Change in the Headwaters of the Yellow River, China. Atmosphere, 10(9), 509. https://doi.org/10.3390/atmos10090509