Volatile Organic Compound Emissions from Prescribed Burning in Tallgrass Prairie Ecosystems
Abstract
:1. Introduction
2. Materials and Methods
2.1. Sample Collection and Analysis
2.2. Data Reduction and Calculations
3. Results
3.1. Major Carbon Species (CO, CO2, and CH4), and MCE
3.2. Volatile Organic Compound Emission Ratios
3.3. VOC Emission Factors for Tallgrass Prairie Burns
4. Discussion
4.1. Comparison with Literature Emission Factors
4.2. VOC Reactivity in Fresh Plumes
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Collins, S.L. Interaction of disturbances in tallgrass prairie: A field experiment. Ecology 1987, 68, 1243–1250. [Google Scholar] [CrossRef]
- Collins, S.L. Introduction: Fire as a natural disturbance in tallgrass prairie ecosystems. In Fire in North American Tallgrass Prairies; University of Oklahoma Press: Norman, OK, USA, 1990; pp. 3–7. [Google Scholar]
- Reichman, O.J. Konza Prairie: A Tallgrass Natural History; University Press of Kansas: Lawrence, KS, USA, 1988. [Google Scholar]
- Baker, K.; Koplitz, S.; Foley, K.; Avey, L.; Hawkins, A. Characterizing grassland fire activity in the Flint Hills region and air quality using satellite and routine surface monitor data. Sci. Total Environ. 2019, 659, 1555–1566. [Google Scholar] [CrossRef] [PubMed]
- Ratajczak, Z.; Briggs, J.M.; Goodin, D.G.; Luo, L.; Mohler, R.L.; Nippert, J.B.; Obermeyer, B. Assessing the Potential for Transitions from Tallgrass Prairie to Woodlands: Are We Operating Beyond Critical Fire Thresholds? Rangel. Ecol. Manag. 2016, 69, 280–287. [Google Scholar] [CrossRef]
- Towne, E.G.; Craine, J.M. A Critical Examination of Timing of Burning in the Kansas Flint Hills. Rangel. Ecol. Manag. 2016, 69, 28–34. [Google Scholar] [CrossRef]
- Weir, J.R.; Scasta, J.D. Vegetation Responses to Season of Fire in Tallgrass Prairie: A 13-Year Case Study. Fire Ecol. 2017, 13, 137–142. [Google Scholar] [CrossRef]
- Briggs, J.M.; Gibson, D.J. Effect of fire on tree spatial patterns in a tallgrass prairie landscape. Bull. Torrey Bot. Club 1992, 119, 300–307. [Google Scholar] [CrossRef]
- Briggs, J.M.; Hoch, G.A.; Johnson, L.C. Assessing the rate, mechanisms, and consequences of the conversion of tallgrass prairie to Juniperus virginiana forest. Ecosystems 2002, 5, 578–586. [Google Scholar] [CrossRef]
- Liu, Z.; Liu, Y.; Maghirang, R.; Devlin, D.; Blocksome, C. Estimating Contributions of Prescribed Rangeland Burning in Kansas to Ambient PM2.5 through Source Apportionment with the Unmix Receptor Model. Trans. ASABE 2016, 59, 1267–1275. [Google Scholar] [CrossRef]
- Liu, Z.; Liu, Y.; Murphy, J.P.; Maghirang, R. Contributions of Kansas rangeland burning to ambient O3: Analysis of data from 2001 to 2016. Sci. Total Environ. 2018, 618, 1024–1031. [Google Scholar] [CrossRef] [PubMed]
- United States Environmental Protection Agency. Integrated Science Assessment (ISA) for Particulate Matter; Final Report; United States Environmental Protection Agency: Washington, DC, USA, 2009.
- United States Environmental Protection Agency. Integrated Science Assessment (ISA) of Ozone and Related Photochemical Oxidants; Final Report; United States Environmental Protection Agency: Washington, DC, USA, 2015.
- Rappold, A.G.; Reyes, J.; Pouliot, G.; Cascio, W.E.; Diaz-Sanchez, D. Community Vulnerability to Health Impacts of Wildland Fire Smoke Exposure. Environ. Sci. Technol. 2017, 51, 6674–6682. [Google Scholar] [CrossRef] [PubMed]
- Aurell, J.; Gullett, B.K.; Tabor, D. Emissions from southeastern U.S. Grasslands and pine savannas: Comparison of aerial and ground field measurements with laboratory burns. Atmos. Environ. 2015, 111, 170–178. [Google Scholar] [CrossRef]
- Christian, T.J.; Kleiss, B.; Yokelson, R.J.; Holzinger, R.; Crutzen, P.J.; Hao, W.M.; Saharjo, B.H.; Ward, D.E. Comprehensive laboratory measurements of biomass-burning emissions: 1. Emissions from Indonesian, African, and other fuels. J. Geophys. Res. Atmos. 2003, 108. [Google Scholar] [CrossRef]
- Christian, T.J.; Yokelson, R.J.; Carvalho, J.A.; Griffith, D.W.; Alvarado, E.C.; Santos, J.C.; Neto, T.G.S.; Veras, C.A.G.; Hao, W.M. The tropical forest and fire emissions experiment: Trace gases emitted by smoldering logs and dung from deforestation and pasture fires in Brazil. J. Geophys. Res. Atmos. 2007, 112. [Google Scholar] [CrossRef] [Green Version]
- Ferek, R.J.; Reid, J.S.; Hobbs, P.V.; Blake, D.R.; Liousse, C. Emission factors of hydrocarbons, halocarbons, trace gases and particles from biomass burning in Brazil. J. Geophys. Res. Atmos. 1998, 103, 32107–32118. [Google Scholar] [CrossRef] [Green Version]
- Goode, J.G.; Yokelson, R.J.; Susott, R.A.; Ward, D.E. Trace gas emissions from laboratory biomass fires measured by open-path Fourier transform infrared spectroscopy: Fires in grass and surface fuels. J. Geophys. Res. Atmos. 1999, 104, 21237–21245. [Google Scholar] [CrossRef]
- Hobbs, P.V.; Sinha, P.; Yokelson, R.J.; Christian, T.J.; Blake, D.R.; Gao, S.; Kirchstetter, T.W.; Novakov, T.; Pilewskie, P. Evolution of gases and particles from a savanna fire in South Africa. J. Geophys. Res. Atmos. 2003, 108. [Google Scholar] [CrossRef]
- Holder, A.L.; Gullett, B.K.; Urbanski, S.P.; Elleman, R.; O’Neill, S.; Tabor, D.; Mitchell, W.; Baker, K.R. Emissions from prescribed burning of agricultural fields in the Pacific Northwest. Atmos. Environ. 2017, 166, 22–33. [Google Scholar] [CrossRef]
- Sinha, P.; Hobbs, P.V.; Yokelson, R.J.; Bertschi, I.T.; Blake, D.R.; Simpson, I.J.; Gao, S.; Kirchstetter, T.W.; Novakov, T. Emissions of trace gases and particles from savanna fires in southern Africa. J. Geophys. Res. Atmos. 2003, 108. [Google Scholar] [CrossRef]
- Yokelson, R.J.; Christian, T.J.; Karl, T.G.; Guenther, A. The tropical forest and fire emissions experiment: Laboratory fire measurements and synthesis of campaign data. Atmos. Chem. Phys. 2008, 8, 3509–3527. [Google Scholar] [CrossRef]
- Yokelson, R.J.; Crounse, J.D.; DeCarlo, P.F.; Karl, T.; Urbanski, S.; Atlas, E.; Campos, T.; Shinozuka, Y.; Kapustin, V.; Clarke, A.D.; et al. Emissions from biomass burning in the Yucatan. Atmos. Chem. Phys. 2009, 9, 5785–5812. [Google Scholar] [CrossRef] [Green Version]
- Yokelson, R.J.; Karl, T.; Artaxo, P.; Blake, D.R.; Christian, T.J.; Griffith, D.W.T.; Guenther, A.; Hao, W.M. The Tropical Forest and Fire Emissions Experiment: Overview and airborne fire emission factor measurements. Atmos. Chem. Phys. 2007, 7, 5175–5196. [Google Scholar] [CrossRef]
- Yokelson, R.J.; Susott, R.; Ward, D.E.; Reardon, J.; Griffith, D.W.T. Emissions from smoldering combustion of biomass measured by open-path Fourier transform infrared spectroscopy. J. Geophys. Res. Atmos. 1997, 102, 18865–18877. [Google Scholar] [CrossRef]
- Baker, K.; Woody, M.; Tonnesen, G.; Hutzell, W.; Pye, H.; Beaver, M.; Pouliot, G.; Pierce, T. Contribution of regional-scale fire events to ozone and PM2.5 air quality estimated by photochemical modeling approaches. Atmos. Environ. 2016, 140, 539–554. [Google Scholar] [CrossRef]
- Zhou, L.; Baker, K.R.; Napelenok, S.L.; Pouliot, G.; Elleman, R.; O’Neill, S.M.; Urbanski, S.P.; Wong, D.C. Modeling crop residue burning experiments to evaluate smoke emissions and plume transport. Sci. Total Environ. 2018, 627, 523–533. [Google Scholar] [CrossRef]
- United States Environmental Protection Agency. Air method, compendium method TO-15: Determination of volatile organic compounds (VOCs) in air collected in specially-prepared canisters and analyzed by gas chromatography/mass spectrometery (GC/MS). In Compendium of Methods for the Determination of Toxic Organic Compounds in Ambient Air, 2nd ed.; United States Environmental Protection Agency: Washington, DC, USA, 1999. [Google Scholar]
- George, I.J.; Hays, M.D.; Snow, R.; Faircloth, J.; George, B.J.; Long, T.; Baldauf, R.W. Cold Temperature and Biodiesel Fuel Effects on Speciated Emissions of Volatile Organic Compounds from Diesel Trucks. Environ. Sci. Technol. 2014, 48, 14782–14789. [Google Scholar] [CrossRef]
- Duncan, B.N.; Yoshida, Y.; Olson, J.R.; Sillman, S.; Martin, R.V.; Lamsal, L.; Hu, Y.; Pickering, K.E.; Retscher, C.; Allen, D.J.; et al. Application of OMI observations to a space-based indicator of NOx and VOC controls on surface ozone formation. Atmos. Environ. 2010, 44, 2213–2223. [Google Scholar] [CrossRef] [Green Version]
- Boogaard, H.; Kos, G.P.A.; Weijers, E.P.; Janssen, N.A.H.; Fischer, P.H.; van der Zee, S.C.; de Hartog, J.J.; Hoek, G. Contrast in air pollution components between major streets and background locations: Particulate matter mass, black carbon, elemental composition, nitrogen oxide and ultrafine particle number. Atmos. Environ. 2011, 45, 650–658. [Google Scholar] [CrossRef]
- Hurvich, C.M.; Tsai, C.-L. Regression and time series model selection in small samples. Biometrika 1989, 76, 297–307. [Google Scholar] [CrossRef]
- Yokelson, R.J.; Goode, J.G.; Ward, D.E.; Susott, R.A.; Babbitt, R.E.; Wade, D.D.; Bertschi, I.; Griffith, D.W.T.; Hao, W.M. Emissions of formaldehyde, acetic acid, methanol, and other trace gases from biomass fires in North Carolina measured by airborne Fourier transform infrared spectroscopy. J. Geophys. Res. Atmos. 1999, 104, 30109–30125. [Google Scholar] [CrossRef] [Green Version]
- Gibson, D.J.; Towne, G. Dynamics of big bluestem (Andropogon gerardii) in ungrazed Kansas tallgrass prairie. In Proceedings of the 14th North American Prairie Conference, Manhattan, KS, USA, 12–16 July 1994; pp. 12–16. [Google Scholar]
- Bachle, S.; Griffith, D.M.; Nippert, J.B. Intraspecific Trait Variability in Andropogon gerardii, a Dominant Grass Species in the US Great Plains. Front. Ecol. Evol. 2018, 6. [Google Scholar] [CrossRef]
- Zhang, K.; Johnson, L.; Nelson, R.; Yuan, W.; Pei, Z.; Wang, D. Chemical and elemental composition of big bluestem as affected by ecotype and planting location along the precipitation gradient of the Great Plains. Ind. Crop. Prod. 2012, 40, 210–218. [Google Scholar] [CrossRef] [Green Version]
- Kleindienst, T.E.; Hudgens, E.E.; Smith, D.F.; McElroy, F.F.; Bufalini, J.J. Comparison of chemiluminescence and ultraviolet ozone monitor responses in the presence of humidity and photochemical pollutants. Air Waste 1993, 43, 213–222. [Google Scholar] [CrossRef]
- Briggs, J.M.; Fahnestock, J.; Fisher, L.; Knapp, A.K. Aboveground biomass in tallgrass prairie: Effect of time since fire. In Proceedings of the Thirteenth North American Prairie Conference: Spirit of the Land: Our Prairie Legacy, Windsor, ON, Canada, 6–9 August 1992; Preney Print and Litho Inc.: Windsor, ON, Canada, 1992; pp. 165–169. [Google Scholar]
- Urbanski, S.P.; Hao, W.M.; Baker, S. Chemical Composition of Wildland Fire Emissions. In Developments in Environmental Science; Bytnerowicz, A., Arbaugh, M.J., Riebau, A.R., Andersen, C., Eds.; Elsevier: Amsterdam, The Netherlands, 2008; Volume 8, pp. 79–107. [Google Scholar]
- Akagi, S.; Yokelson, R.J.; Wiedinmyer, C.; Alvarado, M.; Reid, J.; Karl, T.; Crounse, J.; Wennberg, P. Emission factors for open and domestic biomass burning for use in atmospheric models. Atmos. Chem. Phys. 2011, 11, 4039–4072. [Google Scholar] [CrossRef] [Green Version]
- Burling, I.; Yokelson, R.J.; Akagi, S.; Urbanski, S.; Wold, C.E.; Griffith, D.W.; Johnson, T.J.; Reardon, J.; Weise, D. Airborne and ground-based measurements of the trace gases and particles emitted by prescribed fires in the United States. Atmos. Chem. Phys. 2011, 11, 12197–12216. [Google Scholar] [CrossRef] [Green Version]
- Dunlea, E.; Herndon, S.; Nelson, D.; Volkamer, R.; Lamb, B.; Allwine, E.; Grutter, M.; Ramos Villegas, C.; Marquez, C.; Blanco, S. Evaluation of standard ultraviolet absorption ozone monitors in a polluted urban environment. Atmos. Chem. Phys. 2006, 6, 3163–3180. [Google Scholar] [CrossRef]
- Fiedrich, M.; Kurtenbach, R.; Wiesen, P.; Kleffmann, J. Artificial O3 formation during fireworks. Atmos. Environ. 2017, 165, 57–61. [Google Scholar] [CrossRef]
- Huntzicker, J.J.; Johnson, R.L. Investigation of an ambient interference in the measurement of ozone by ultraviolet absorption photometry. Environ. Sci. Technol. 1979, 13, 1414–1416. [Google Scholar] [CrossRef]
- Landis, M.S.; Edgerton, E.S.; White, E.M.; Wentworth, G.R.; Sullivan, A.P.; Dillner, A.M. The impact of the 2016 Fort McMurray Horse River Wildfire on ambient air pollution levels in the Athabasca Oil Sands Region, Alberta, Canada. Sci. Total Environ. 2018, 618, 1665–1676. [Google Scholar] [CrossRef]
- Department of Health and Environment Division of Environment Bureau of Air. State of Kansas Exceptional Event Demonstration Package April 6, 12, 13, and 29, 2011; Department of Health and Environment Division of Environment Bureau of Air: Topeka, KS, USA, 2012.
- Atkinson, R. Kinetics and mechanisms of the gas-phase reactions of the hydroxyl radical with organic compounds under atmospheric conditions. Chem. Rev. 1986, 86, 69–201. [Google Scholar] [CrossRef]
- Gilman, J.B.; Lerner, B.M.; Kuster, W.C.; Goldan, P.D.; Warneke, C.; Veres, P.R.; Roberts, J.M.; de Gouw, J.A.; Burling, I.R.; Yokelson, R.J. Biomass burning emissions and potential air quality impacts of volatile organic compounds and other trace gases from fuels common in the US. Atmos. Chem. Phys. 2015, 15, 13915–13938. [Google Scholar] [CrossRef] [Green Version]
- Koss, A.R.; Sekimoto, K.; Gilman, J.B.; Selimovic, V.; Coggon, M.M.; Zarzana, K.J.; Yuan, B.; Lerner, B.M.; Brown, S.S.; Jimenez, J.L.; et al. Non-methane organic gas emissions from biomass burning: Identification, quantification, and emission factors from PTR-ToF during the FIREX 2016 laboratory experiment. Atmos. Chem. Phys. 2018, 18, 3299–3319. [Google Scholar] [CrossRef]
- Mason, S.A.; Field, R.J.; Yokelson, R.J.; Kochivar, M.A.; Tinsley, M.R.; Ward, D.E.; Hao, W.M. Complex effects arising in smoke plume simulations due to inclusion of direct emissions of oxygenated organic species from biomass combustion. J. Geophys. Res. Atmos. 2001, 106, 12527–12539. [Google Scholar] [CrossRef] [Green Version]
- Akagi, S.; Yokelson, R.J.; Burling, I.; Meinardi, S.; Simpson, I.; Blake, D.R.; McMeeking, G.; Sullivan, A.; Lee, T.; Kreidenweis, S. Measurements of reactive trace gases and variable O 3 formation rates in some South Carolina biomass burning plumes. Atmos. Chem. Phys. 2013, 13, 1141–1165. [Google Scholar] [CrossRef]
Species (Name) | Species Number | Emission Factor (g/kg) | 95% CI (g/kg) | 103∙XERCO | 95% CI | Emissions (kg/ha) |
---|---|---|---|---|---|---|
Carbon Monoxide | 1 | 102.6 | 1 | 432.81 | ||
Carbon Dioxide | 2 | 1611.5 | 6800.36 | |||
Methane | 3 | 4.070 | (2.848,5.298) | 69.3 | (48.5,90.2) | 17.18 |
Propylene | 4 | 0.713 | (0.654,0.773) | 4.630 | (4.242,5.018) | 3.01 |
Propane | 5 | 0.270 | (0.230,0.310) | 1.672 | (1.426,1.918) | 1.14 |
Isobutane | 6 | 0.027 | (0.014,0.040) | 0.127 | (0.065,0.189) | 0.11 |
1-Butene | 7 | 0.363 | (0.328,0.398) | 1.767 | (1.598,1.936) | 1.53 |
1,3-Butadiene | 8 | 0.207 | (0.187,0.227) | 1.046 | (0.947,1.146) | 0.87 |
Butane | 9 | 0.141 | (0.066,0.216) | 0.662 | (0.311,1.014) | 0.59 |
trans-2-butene | 10 | 0.076 | (0.067,0.085) | 0.370 | (0.328,0.413) | 0.32 |
cis-2-butene | 11 | 0.054 | (0.048,0.061) | 0.264 | (0.232,0.295) | 0.23 |
Ethanol | 12 | 0.160 | (0.114,0.206) | 0.949 | (0.677,1.220) | 0.68 |
Acetonitrile | 13 | 0.669 | (0.559,0.779) | 4.452 | (3.720,5.184) | 2.82 |
Acrolein | 14 | 0.704 | (0.628,0.780) | 3.431 | (3.061,3.802) | 2.97 |
Acetone | 15 | 0.566 | (0.520,0.613) | 2.663 | (2.443,2.882) | 2.39 |
iso-Pentane | 16 | 0.095 | (0.037,0.153) | 0.359 | (0.140,0.577) | 0.40 |
1-Pentene | 17 | 0.093 | (0.079,0.106) | 0.361 | (0.309,0.412) | 0.39 |
Acrylonitrile | 18 | 0.094 | (0.082,0.106) | 0.482 | (0.421,0.543) | 0.40 |
n-Pentane | 19 | 0.060 | (0.036,0.083) | 0.226 | (0.136,0.316) | 0.25 |
Isoprene | 20 | 0.111 | (0.093,0.128) | 0.486 | (0.410,0.562) | 0.47 |
trans-2-pentene | 21 | 0.030 | (0.025,0.035) | 0.117 | (0.098,0.135) | 0.13 |
cis-2-pentene | 22 | 0.017 | (0.014,0.019) | 0.065 | (0.056,0.073) | 0.07 |
Tert-Butanol | 23 | 0.030 | (0.019,0.041) | 0.111 | (0.071,0.151) | 0.13 |
Cyclopentane | 24 | 0.012 | (0.008,0.016) | 0.047 | (0.032,0.062) | 0.05 |
Vinyl Acetate | 25 | 0.324 | (0.260,0.389) | 1.029 | (0.824,1.233) | 1.37 |
2-Butanone | 26 | 0.164 | (0.144,0.185) | 0.622 | (0.544,0.699) | 0.69 |
1-Hexene | 27 | 0.081 | (0.069,0.093) | 0.263 | (0.223,0.302) | 0.34 |
n-Hexane | 28 | 0.025 | (0.016,0.033) | 0.078 | (0.050,0.106) | 0.10 |
Benzene | 29 | 0.457 | (0.439,0.475) | 1.596 | (1.533,1.660) | 1.93 |
Toluene | 30 | 0.297 | (0.253,0.341) | 0.880 | (0.749,1.011) | 1.25 |
Ethylbenzene | 31 | 0.028 | (0.023,0.032) | 0.071 | (0.060,0.083) | 0.12 |
p-Xylene | 32 | 0.021 | (0.016,0.027) | 0.055 | (0.041,0.069) | 0.09 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Whitehill, A.R.; George, I.; Long, R.; Baker, K.R.; Landis, M. Volatile Organic Compound Emissions from Prescribed Burning in Tallgrass Prairie Ecosystems. Atmosphere 2019, 10, 464. https://doi.org/10.3390/atmos10080464
Whitehill AR, George I, Long R, Baker KR, Landis M. Volatile Organic Compound Emissions from Prescribed Burning in Tallgrass Prairie Ecosystems. Atmosphere. 2019; 10(8):464. https://doi.org/10.3390/atmos10080464
Chicago/Turabian StyleWhitehill, Andrew R., Ingrid George, Russell Long, Kirk R. Baker, and Matthew Landis. 2019. "Volatile Organic Compound Emissions from Prescribed Burning in Tallgrass Prairie Ecosystems" Atmosphere 10, no. 8: 464. https://doi.org/10.3390/atmos10080464
APA StyleWhitehill, A. R., George, I., Long, R., Baker, K. R., & Landis, M. (2019). Volatile Organic Compound Emissions from Prescribed Burning in Tallgrass Prairie Ecosystems. Atmosphere, 10(8), 464. https://doi.org/10.3390/atmos10080464