No Significant Shift of Warming Trend over the Last Two Decades on the Mid-South of Tibetan Plateau
Abstract
:1. Introduction
2. Data and Methods
2.1. Data Source
2.2. Statistical and Spatial Analyses
2.2.1. Mann–Kendall Test and Sen’s Slope Estimator
2.2.2. Piecewise Linear Regression Model
3. Results
3.1. Trends of Regional Annual Temperature on the Mid-South of Tibetan Plateau
3.2. Regional Annual Temperature Trend Shifts on the Mid-South of Tibetan Plateau
3.3. Regional Temperature Trend Shifts in the Cold and Warm Seasons
3.4. Spatial Patterns of Temperature Trend Shifts on the mid-south of Tibetan Plateau
4. Discussion
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
Appendix A
Number | Station ID | Station Name | Latitude (N) | Longitude (E) | Elevation (m) | Start Year |
---|---|---|---|---|---|---|
1 | 55228 | Shiquanhe | 32°30′ | 80°05′ | 4278 | 1961 |
2 | 55279 | Bange | 31°23′ | 90°01′ | 4700 | 1956 |
3 | 55299 | Naqu | 31°29′ | 92°04′ | 4507 | 1954 |
4 | 55472 | Shenzha | 30°57′ | 88°38′ | 4672 | 1960 |
5 | 55578 | Rikaze | 29°15′ | 88°53′ | 3836 | 1955 |
6 | 55591 | Lhasa | 29°40′ | 91°08′ | 3649 | 1955 |
7 | 55598 | Zedang | 29°15′ | 91°46′ | 3560 | 1956 |
8 | 55664 | Dingri | 28°38′ | 87°05′ | 4300 | 1959 |
9 | 55680 | Jiangzi | 28°55′ | 89°36′ | 4040 | 1956 |
10 | 55696 | Longzi | 28°25′ | 92°28′ | 3860 | 1959 |
11 | 55773 | Pali | 27°44′ | 89°05′ | 4300 | 1956 |
12 | 56106 | Suoxian | 31°53′ | 93°47′ | 4022 | 1956 |
13 | 56116 | Dingqing | 31°25′ | 95°36′ | 3873 | 1954 |
14 | 56137 | Changdu | 31°09′ | 97°10′ | 3315 | 1954 |
15 | 56202 | Jiali | 30°40′ | 93°17′ | 4488 | 1954 |
16 | 56227 | Bomi | 29°52′ | 95°46′ | 2736 | 1955 |
17 | 56312 | Linzhi | 29°40′ | 94°20′ | 2991 | 1954 |
18 | 55294 | Anduo * | 32°21′ | 91°06′ | 4800 | 1965 |
19 | 55493 | Dangxiong * | 30°29′ | 91°06′ | 4200 | 1962 |
20 | 55655 | Nielaer * | 28°11′ | 85°58′ | 3810 | 1966 |
21 | 55690 | Cuona * | 27°59′ | 91°57′ | 4280 | 1967 |
22 | 56434 | Chayu * | 28°39′ | 97°28′ | 2327 | 1969 |
23 | 55248 | Gaize ** | 32°09′ | 84°25′ | 4414 | 1973 |
24 | 55437 | Pulan ** | 30°17′ | 81°15′ | 3900 | 1973 |
25 | 55569 | Lazi ** | 29°05′ | 87°36′ | 4000 | 1977 |
26 | 55585 | Nimu ** | 29°26′ | 90°10′ | 3809 | 1973 |
27 | 56331 | Zuogong ** | 29°40′ | 97°50′ | 3780 | 1978 |
References
- Risbey, J.S.; Lewandowsky, S. Climate science: The ‘pause’ unpacked. Nature 2017, 545, 37–39. [Google Scholar] [CrossRef] [PubMed]
- Wang, S.; Wang, Z.; Piao, S.; Fang, J. Regional differences in the timing of recent air warming during the past four decades in China. Chin. Sci. Bull. 2010, 55, 1968–1973. [Google Scholar] [CrossRef]
- Ying, L.; Shen, Z.; Piao, S. The recent hiatus in global warming of the land surface: Scale-dependent breakpoint occurrences in space and time. Geophys. Res. Lett. 2015, 42, 6471–6478. [Google Scholar] [CrossRef] [Green Version]
- Wang, Q.; Fan, X.; Wang, M. Evidence of high-elevation amplification versus Arctic amplification. Sci. Rep. 2016, 6, 19219. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pepin, N.; Bradley, R.S.; Diaz, H.F.; Baraer, M.; Caceres, E.B.; Forsythe, N.; Fowler, H.; Greenwood, G.; Hashmi, M.Z.; Liu, X.D.; et al. Elevation-dependent warming in mountain regions of the world. Nat. Clim. Chang. 2015, 5, 424–430. [Google Scholar] [CrossRef] [Green Version]
- Palazzi, E.; Mortarini, L.; Terzago, S.; von Hardenberg, J. Elevation-dependent warming in global climate model simulations at high spatial resolution. Clim. Dyn. 2018. [Google Scholar] [CrossRef]
- Rangwala, I.; Miller, J.R. Climate change in mountains: A review of elevation-dependent warming and its possible causes. Clim. Chang. 2012, 114, 527–547. [Google Scholar] [CrossRef]
- Kang, S.; Xu, Y.; You, Q.; Flügel, W.; Pepin, N.; Yao, T. Review of climate and cryospheric change in the Tibetan Plateau. Environ. Res. Lett. 2010, 5, 15101. [Google Scholar] [CrossRef]
- Yao, T.; Zhu, L. The Response of Environmental Changes on Tibetan Plateau to Global Changes and Adaptation Strategy. Adv. Earth Sci. 2006, 21, 459–464. [Google Scholar] [CrossRef]
- Kuang, X.; Jiao, J.J. Review on climate change on the Tibetan Plateau during the last half century. J. Geophys. Res. Atmos. 2016, 121, 3979–4007. [Google Scholar] [CrossRef]
- Liu, X.; Chen, B. Climatic warming in the Tibetan Plateau during recent decades. Int. J. Climatol. 2000, 20, 1729–1742. [Google Scholar] [CrossRef]
- Yan, L.; Liu, X. Has Climatic Warming over the Tibetan Plateau Paused or Continued in Recent Years. J. Earth Ocean Atmos. Sci. 2014, 30, 544–545. [Google Scholar]
- Chen, D.; Xu, B.; Yao, T.; Guo, Z.; Cui, P.; Chen, F.; Zhang, R.; Zhang, X.; Zhang, Y.; Fan, J.; et al. Assessment of past, present and future environmental changes on the Tibetan Plateau. Chin. Sci. Bull. 2015, 60, 3025–3035. [Google Scholar]
- IPCC. Climate Change 2014: Synthesis Report. Contribution of Working Groups I, II and III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change; IPCC: Geneva, Switzerland, 2014. [Google Scholar]
- Bibi, S.; Wang, L.; Li, X.; Zhou, J.; Chen, D.; Yao, T. Climatic and associated cryospheric, biospheric, and hydrological changes on the Tibetan Plateau: A review. Int. J. Climatol. 2018, 38, e1–e17. [Google Scholar] [CrossRef]
- Ying, C.; Dong-liang, L.I.; Mao-cang, T.A.; Chong-yuan, B.A. Decadal temperature changes over Qinghai-Xizang Plateau in recent 50 years. Plateau Meteorol. 2003, 22, 464–470. [Google Scholar]
- Ding, Y.H.; Zhang, L. Intercomparison of the Time for Climate Abrupt Change between the Tibetan Plateau and Other Regions in China. Chin. J. Atmos. Sci. 2008, 32, 794–805. [Google Scholar]
- Easterling, D.R.; Wehner, M.F. Is the climate warming or cooling? Geophys. Res. Lett. 2009, 36, L8706. [Google Scholar] [CrossRef]
- Trenberth, K.E. Has there been a hiatus? Science 2015, 349, 691–692. [Google Scholar] [CrossRef] [Green Version]
- Duan, A.; Xiao, Z. Does the climate warming hiatus exist over the Tibetan Plateau? Sci. Rep. 2015, 5, 13711. [Google Scholar] [CrossRef]
- Liu, Y.; Zhang, Y.; Zhu, J.; Huang, K.; Zu, J.; Chen, N.; Cong, N.; Stegehuis, A.I. Warming slowdown over the Tibetan plateau in recent decades. Theor. Appl. Climatol. 2018. [Google Scholar] [CrossRef]
- An, W.; Hou, S.; Hu, Y.; Wu, S. Delayed warming hiatus over the Tibetan Plateau. Earth Space Sci. 2017, 4, 128–137. [Google Scholar] [CrossRef]
- You, Q.; Min, J.; Kang, S. Rapid warming in the Tibetan Plateau from observations and CMIP5 models in recent decades. Int. J. Climatol. 2016, 36, 2660–2670. [Google Scholar] [CrossRef]
- You, Q.; Min, J.; Jiao, Y.; Sillanpää, M.; Kang, S. Observed trend of diurnal temperature range in the Tibetan Plateau in recent decades. Int. J. Climatol. 2016, 36, 2633–2643. [Google Scholar] [CrossRef]
- Braganza, K.; Karoly, D.J.; Arblaster, J.M. Diurnal temperature range as an index of global climate change during the twentieth century. Geophys. Res. Lett. 2004, 31. [Google Scholar] [CrossRef]
- You, Q.; Wang, D.; Jiang, Z.; Kang, S. Diurnal temperature range in CMIP5 models and observations on the Tibetan Plateau. Q. J. R. Meteorol. Soc. 2017, 143, 1978–1989. [Google Scholar] [CrossRef]
- Liu, X.; Yin, Z.; Shao, X.; Qin, N. Temporal trends and variability of daily maximum and minimum, extreme temperature events, and growing season length over the eastern and central Tibetan Plateau during 1961–2003. J. Geophys. Res. 2006, 111. [Google Scholar] [CrossRef]
- Oku, Y.; Ishikawa, H.; Haginoya, S.; Ma, Y. Recent Trends in Land Surface Temperature on the Tibetan Plateau. J. Clim. 2006, 19, 2995–3003. [Google Scholar] [CrossRef] [Green Version]
- Xie, H.; Ye, J.; Liu, X.E. Warming and drying trends on the Tibetan Plateau (1971–2005). Theor. Appl. Climatol. 2010, 101, 241–253. [Google Scholar] [CrossRef]
- Liu, Z.; Yang, M.; Wan, G.; Wang, X. The Spatial and Temporal Variation of Temperature in the Qinghai-Xizang (Tibetan) Plateau during 1971–2015. Atmosphere 2017, 8, 214. [Google Scholar] [CrossRef]
- Medhaug, I.; Stolpe, M.B.; Fischer, E.M.; Knutti, R. Reconciling controversies about the ‘global warming hiatus’. Nature 2017, 545, 41–47. [Google Scholar] [CrossRef]
- Rahmstorf, S.; Foster, G.; Cahill, N. Global temperature evolution: Recent trends and some pitfalls. Environ. Res. Lett. 2017, 12, 54001. [Google Scholar] [CrossRef]
- Xu, Y.; Knudby, A.; Ho, H.C.; Shen, Y.; Liu, Y. Warming over the Tibetan Plateau in the last 55 years based on area-weighted average temperature. Reg. Environ. Chang. 2017, 17, 2339–2347. [Google Scholar] [CrossRef]
- Yao, T.; Xue, Y.; Chen, D.; Chen, F. Recent Third Pole’s rapid warming accompanies cryospheric melt and water cycle intensification and interactions between monsoon and environment: Multi-disciplinary approach with observation, modeling and analysis. Bull. Am. Meteorol. Soc. 2019. [Google Scholar] [CrossRef]
- Gao, Y.; Chen, F.; Lettenmaier, D.P.; Xu, J.; Xiao, L.; Li, X. Does elevation-dependent warming hold true above 5000 m elevation? Lessons from the Tibetan Plateau. NPJ Clim. Atmos. Sci. 2018, 1, 19. [Google Scholar] [CrossRef]
- Zhang, X.; He, Y.; Shen, Z. Frontier of the Ecological Construction Support the Sustainable Development in Tibet Autonomous Region. Bull. Chin. Acad. Sci. 2015, 30, 306–312. [Google Scholar]
- Xu, W.; Li, Q.; Wang, X.L.; Yang, S.; Cao, L.; Feng, Y. Homogenization of Chinese daily surface air temperatures and analysis of trends in the extreme temperature indices. J. Geophys. Res. Atmos. 2013, 118, 9708–9720. [Google Scholar] [CrossRef]
- Li, Q.; Zhang, H.; Liu, X.; Chen, J.; Li, W.; Jones, P. A Mainland China Homogenized Historical Temperature Dataset of 1951–2004. Bull. Am. Meteorol. Soc. 2009, 90, 1062–1065. [Google Scholar] [CrossRef]
- Duan, J.; Li, L.; Fang, Y. Seasonal spatial heterogeneity of warming rates on the Tibetan Plateau over the past 30 years. Sci. Rep. 2015, 5, 11725. [Google Scholar] [CrossRef]
- Mann, H.B. Non-parametric tests against trend. Econometrica 1945, 13, 245–259. [Google Scholar] [CrossRef]
- You, Q.; Kang, S.; Pepin, N.; Flügel, W.; Yan, Y.; Behrawan, H.; Huang, J. Relationship between temperature trend magnitude, elevation and mean temperature in the Tibetan Plateau from homogenized surface stations and reanalysis data. Glob. Planet. Chang. 2010, 71, 124–133. [Google Scholar] [CrossRef]
- Sen, P.K. Estimates of the regression coefficient based on Kendall’s tau. J. Am. Stat. Assoc. 1968, 63, 1379–1389. [Google Scholar] [CrossRef]
- Muggeo, V.M.R. Segmented: An R Package to Fit Regression Models with Broken-Line Relationships. R News 2008, 1, 20–25. [Google Scholar]
- Muggeo, V.M.R. Estimating regression models with unknown break-points. Stat. Med. 2003, 22, 3055–3071. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; Piao, S.; Ciais, P.; Li, J.; Friedlingstein, P.; Koven, C.; Chen, A. Spring temperature change and its implication in the change of vegetation growth in North America from 1982 to 2006. Proc. Natl. Acad. Sci. USA 2011, 108, 1240–1245. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Muggeo, V.M.R. Testing with a nuisance parameter present only under the alternative: A score-based approach with application to segmented modelling. J. Stat. Comput. Sim. 2016, 86, 3059–3067. [Google Scholar] [CrossRef]
- You, Q.; Jiang, Z.; Moore GW, K.; Bao, Y.; Kong, L.; Kang, S. Revisiting the Relationship between Observed Warming and Surface Pressure in the Tibetan Plateau. J. Clim. 2017, 30, 1721–1737. [Google Scholar] [CrossRef]
- Li, L.; Zhang, Y.; Liu, Q.; Ding, M.; Mondal, P.P. Regional differences in shifts of temperature trends across China between 1980 and 2017. Int. J. Climatol. 2019, 39, 1157–1165. [Google Scholar] [CrossRef]
- Cai, D.; You, Q.; Fraedrich, K.; Guan, Y. Spatiotemporal Temperature Variability over the Tibetan Plateau: Altitudinal Dependence Associated with the Global Warming Hiatus. J. Clim. 2017, 30, 969–984. [Google Scholar] [CrossRef]
- Duan, A.; Wu, G. Change of cloud amount and the climate warming on the Tibetan Plateau. Geophys. Res. Lett. 2006, 33, 33. [Google Scholar] [CrossRef]
- Hua, S.; Liu, Y.; Jia, R.; Chang, S.; Wu, C.; Zhu, Q.; Shao, T.; Wang, B. Role of clouds in accelerating cold-season warming during 2000–2015 over the Tibetan Plateau. Int. J. Climatol. 2018. [Google Scholar] [CrossRef]
- You, Q.L.; Kang, S.C.; Pepin, N.; Flugel, W.A.; Sanchez-Lorenzo, A.; Yan, Y.P.; Zhang, Y.J. Climate warming and associated changes in atmospheric circulation in the eastern and central Tibetan Plateau from a homogenized dataset. Glob. Planet. Chang. 2010, 72, 11–24. [Google Scholar] [CrossRef]
- Ma, J.; Guan, X.; Guo, R.; Gan, Z.; Xie, Y. Mechanism of non-appearance of hiatus in Tibetan Plateau. Sci. Rep. 2017, 7, 4421. [Google Scholar] [CrossRef] [PubMed]
- Yao, T.; Thompson, L.; Yang, W.; Yu, W.; Gao, Y.; Guo, X.; Yang, X.; Duan, K.; Zhao, H.; Xu, B.; et al. Different glacier status with atmospheric circulations in Tibetan Plateau and surroundings. Nat. Clim. Chang. 2012, 2, 663–667. [Google Scholar] [CrossRef]
- Li, X.; Fowler, H.J.; Yu, J.; Forsythe, N.; Blenkinsop, S.; Pritchard, D. Thermodynamic controls of the Western Tibetan Vortex on Tibetan air temperature. Clim. Dyn. 2019. [Google Scholar] [CrossRef]
- Li, X.; Fowler, H.J.; Forsythe, N.; Blenkinsop, S.; Pritchard, D. The Karakoram/Western Tibetan vortex: Seasonal and year-to-year variability. Clim. Dyn. 2018, 51, 3883–3906. [Google Scholar] [CrossRef]
- Forsythe, N.; Fowler, H.J.; Li, X.; Blenkinsop, S.; Pritchard, D. Karakoram temperature and glacial melt driven by regional atmospheric circulation variability. Nat. Clim. Chang. 2017, 7, 664–670. [Google Scholar] [CrossRef]
Number of Stations | ||||||
---|---|---|---|---|---|---|
17 | 22 | 27 | 17 | 22 | 27 | |
Time Period | Trend in Tmean | Trend in Tmax | ||||
1961–2017 | 0.34*** | 0.31*** | ||||
1970–2017 | 0.34*** | 0.33*** | 0.33*** | 0.32*** | ||
1980–2017 | 0.42*** | 0.42*** | 0.42*** | 0.42*** | 0.43*** | 0.44*** |
Time Period | Trend in Tmin | Trend in DTR | ||||
1961–2017 | 0.43*** | –0.12*** | ||||
1970–2017 | 0.43*** | 0.42*** | –0.10** | –0.10* | ||
1980–2017 | 0.48*** | 0.47*** | 0.49*** | –0.05 | –0.03 | –0.05 |
Indices | Cold Season (°C/Decade) | Warm Season (°C/Decade) | |||||
---|---|---|---|---|---|---|---|
Year of Change-Point | Trend Before Change-Point | Trend After Change-Point | Year of Change-Point | Trend Before Change-Point | Trend After Change-Point | ||
Tmean | 1992 | 0.31 | 0.55 | 1965* | −1.72 | 0.31 | |
Tmax | 1994* | 0.16 | 0.76 | 2001* | 0.14 | 0.53 | |
Tmin | 1973 | 0.73 | 0.46 | 1967*** | −1.67 | 0.41 | |
DTR | 1995*** | −0.34 | 0.30 | 1967 | 0.79 | −0.15 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, L.; Zhang, Y.; Qi, W.; Wang, Z.; Liu, Y.; Ding, M. No Significant Shift of Warming Trend over the Last Two Decades on the Mid-South of Tibetan Plateau. Atmosphere 2019, 10, 416. https://doi.org/10.3390/atmos10070416
Li L, Zhang Y, Qi W, Wang Z, Liu Y, Ding M. No Significant Shift of Warming Trend over the Last Two Decades on the Mid-South of Tibetan Plateau. Atmosphere. 2019; 10(7):416. https://doi.org/10.3390/atmos10070416
Chicago/Turabian StyleLi, Lanhui, Yili Zhang, Wei Qi, Zhaofeng Wang, Yaojie Liu, and Mingjun Ding. 2019. "No Significant Shift of Warming Trend over the Last Two Decades on the Mid-South of Tibetan Plateau" Atmosphere 10, no. 7: 416. https://doi.org/10.3390/atmos10070416
APA StyleLi, L., Zhang, Y., Qi, W., Wang, Z., Liu, Y., & Ding, M. (2019). No Significant Shift of Warming Trend over the Last Two Decades on the Mid-South of Tibetan Plateau. Atmosphere, 10(7), 416. https://doi.org/10.3390/atmos10070416