Combinatorial Optimization for WRF Physical Parameterization Schemes: A Case Study of Three-Day Typhoon Simulations over the Northwest Pacific Ocean
Abstract
:1. Introduction
2. Data and Methodology
2.1. Data for Scheme Combination Optimization
2.2. WRF Model Configuration for Typhoon Simulations
2.3. Data for the Validation of the Optimal Scheme Combination
2.4. Optimization Method
2.4.1. Tukey’s Test Method
2.4.2. The Tukey-Based Combinatorial Optimization
- Use a uniform sampling method to sample the three-dimensional physics dimensionalities (i.e., MP, CU, and PBL) ensuring that all samples fall on the factor levels (i.e., schemes) for each physics dimensionality as evenly as possible. Note that each sample in the three-dimensional physics dimensionalities represents a set of parameterization scheme combinations. Then, respectively substitute these samples into the WRF model to run for obtaining the corresponding track simulation errors calculated by comparing with the real typhoon tracks.
- For each physics dimensionality, order the population means of the schemes using the Tukey’s test method with the perturbed scheme combinations and the corresponding simulation errors as inputs. Then, remove the schemes of the physics dimensionality which perform the least well (i.e., the worst performing schemes, being the schemes with the maximum population mean error).
- Repeat steps 1 and 2 for the remaining physics schemes until no worst-performing scheme exists. If only one scheme remains for each physics module, an optimal scheme combination has been found; otherwise, an optimal ensemble consisting of the full combinations of the remaining schemes is generated, and an optimal scheme combination is then selected from the ensemble.
3. Results
3.1. Scheme Combinatorial Optimization Process Analysis
3.2. Optimization Efficiency Analyses for Ensemble Simulations
3.3. Validation
4. Discussion
4.1. Comparison to the Default Simulations
4.2. Comparison of the Optimal Configuration with the Literature
4.3. Physical Interpretation and Verification of the Optimal Schemes
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Skamarock, W.C.; Klemp, J.B.; Dudhia, J.; Gill, D.O.; Barker, D.M.; Duda, M.G.; Huang, X.; Wang, W.; Powers, J.G. A Description of the Advanced Research WRF Version 3. NCAR Technical Note, NCAR/TN-475+STR. 2008. Available online: https://opensky.ucar.edu/islandora/object/technotes%3A500/datastream/PDF/view (accessed on 8 June 2008).
- Wang, Y. On the bogussing of tropical cyclones in numerical models: The influence of vertical structure. Meteor. Atmos. Phys. 1998, 65, 153–170. [Google Scholar] [CrossRef]
- Davidson, N.E.; Weber, H.C. The BMRC High-Resolution Tropical Cyclone Prediction System: TC-LAPS. Mon. Wea. Rev. 2000, 128, 1245–1265. [Google Scholar] [CrossRef]
- Ma, S.; Qu, A.; Wang, Y. The performance of the new tropical cyclone track prediction system of the China National Meteorological Center. Meteor. Atmos. Phys. 2007, 97, 29–39. [Google Scholar] [CrossRef]
- Kwon, I.H.; Cheong, H.B. Tropical cyclone initialization with a spherical high-order filter and an idealized three-dimensional bogus vortex. Mon. Wea. Rev. 2010, 138, 1344–1367. [Google Scholar] [CrossRef]
- Zou, X.; Xiao, Q. Studies on the initialization and simulation of a mature hurricane using a variational bogus data assimilation scheme. J. Atmos. Sci. 2000, 57, 836–860. [Google Scholar] [CrossRef]
- Zhang, X.; Xiao, Q.; Fitzpatrick, P.J. The impact of multisatellite data on the initialization and simulation of Hurricane Lili’s (2002) rapid weakening phase. Mon. Wea. Rev. 2007, 135, 526–548. [Google Scholar] [CrossRef]
- Liu, Y.; Zhang, W. Improved hurricane forecasting from a variational bogus and ozone data assimilation (BODA) scheme: Case study. Meteorol. Atmos. Phys. 2016, 128, 1–18. [Google Scholar] [CrossRef]
- Lu, X.; Wang, X.; Li, Y.; Tong, M.; Ma, X. GSI-based, continuously cycled, dual-resolution hybrid- variational data assimilation system for HWRF: System description and experiments with Edouard (2014). Mon. Wea. Rev. 2017, 145, 4877–4898. [Google Scholar] [CrossRef]
- Lin, K.; Yang, S.; Chen, S. Reducing TC position uncertainty in an ensemble data assimilation and prediction system: A case study of Typhoon Fanapi (2010). Weather Forecast 2018, 33, 561–582. [Google Scholar] [CrossRef]
- Van Nguyen, H.; Chen, Y.L. High-resolution initialization and simulations of Typhoon Morakot (2009). Mon. Wea. Rev. 2011, 139, 1463–1491. [Google Scholar] [CrossRef]
- Cha, D.H.; Wang, Y. A dynamical initialization scheme for real-time forecasts of tropical cyclones using the WRF Model. Mon. Wea. Rev. 2013, 141, 964–986. [Google Scholar] [CrossRef]
- Xu, J.; Wang, Y. A statistical analysis on the dependence of tropical cyclone intensification rate on the storm intensity and size in the North Atlantic. Weather Forecast 2015, 30, 692–701. [Google Scholar] [CrossRef]
- Donelan, M.A.; Haus, B.K.; Reul, N.; Plant, W.J.; Stiassnie, M.; Graber, H.C.; Brown, O.B.; Saltzman, E.S. On the limiting aerodynamic roughness of the ocean in very strong winds. Geophys. Res. Lett. 2004, 31, L18306. [Google Scholar] [CrossRef]
- Zeng, Z.; Wang, Y.; Duan, Y.; Chen, L.; Gao, Z. On sea surface roughness parameterization and its effect on tropical cyclone structure and intensity. Adv. Atmos. Sci. 2010, 27, 337–355. [Google Scholar] [CrossRef]
- Kim, T. Evaluation of wave-dependent surface roughness parameterization using a coupled atmosphere-wave model. American Geophysical Union, Ocean Sciences Meeting 2016, abstract# A54C-2733. Available online: http://adsabs.harvard.edu/abs/2016AGUOS.A54C2733K (accessed on 21 March 2019).
- Ma, L.M.; Tan, Z.M. Improving the behavior of the cumulus parameterization for tropical cyclone prediction: Convection trigger. Atmos. Res. 2009, 92, 190–211. [Google Scholar] [CrossRef]
- Emanuel, K.; Desautels, C.; Holloway, C.; Korty, R. Environmental control of tropical cyclone intensity. J. Atmos. Sci. 2004, 61, 843–858. [Google Scholar] [CrossRef]
- Davis, C.; Wang, W.; Chen, S.S.; Chen, Y.; Corbosiero, K.; Demaria, M.; Dudhia, J.; Holland, G.; Klemp, J.; Michalakes, J.; et al. Prediction of landfalling hurricanes with the advanced hurricane WRF model. Mon. Wea. Rev. 2008, 136, 1990–2005. [Google Scholar] [CrossRef]
- Raju, P.V.S.; Potty, J.; Mohanty, U.C. Sensitivity of physical parameterizations on prediction of tropical cyclone Nargis over the Bay of Bengal using WRF model. Meteorol. Atmos. Phys. 2011, 113, 125–137. [Google Scholar] [CrossRef]
- Chandrasekar, R.; Balaji, C. Sensitivity of tropical cyclone Jal simulations to physics parameterizations. J. Earth Syst. Sci. 2012, 121, 923–946. [Google Scholar] [CrossRef]
- Osuri, K.K.; Mohanty, U.C.; Routray, A.; Kulkarni, M.A.; Mohapatra, M. Customization of WRF-ARW model with physical parameterization schemes for the simulation of tropical cyclones over North Indian Ocean. Nat. Hazards 2012, 63, 1337–1359. [Google Scholar] [CrossRef]
- Nasrollahi, N.; Aghakouchak, A.; Li, J.; Gao, X.; Hsu, K.; Sorooshian, S. Assessing the impacts of different WRF precipitation physics in hurricane simulations. Weather Forecast 2012, 27, 1003–1016. [Google Scholar] [CrossRef]
- Efstathiou, G.A.; Zoumakis, N.M.; Melas, D.; Lolis, C.J.; Kassomenos, P. Sensitivity of WRF to boundary layer parameterizations in simulating a heavy rainfall event using different microphysical schemes. Effect on large-scale processes. Atmos. Res. 2013, 132–133, 125–143. [Google Scholar] [CrossRef]
- Li, X. Sensitivity of WRF simulated typhoon track and intensity over the Northwest Pacific Ocean to cumulus schemes. Sci. China Earth Sci. 2013, 56, 270–281. [Google Scholar] [CrossRef]
- Srinivas, C.V.; Rao, D.B.; Yesubabu, V.; Baskaran, R.; Venkatraman, B. Tropical cyclone predictions over the Bay of Bengal using the high-resolution Advanced Research Weather Research and Forecasting (ARW) model. Q. J. Roy. Meteor. Soc. 2013, 139, 1810–1825. [Google Scholar] [CrossRef]
- Kanase, R.D.; Salvekar, P.S. Impact of physical parameterization schemes on track and intensity of severe cyclonic storms in Bay of Bengal. Meteorol. Atmos. Phys. 2015, 127, 537–559. [Google Scholar] [CrossRef]
- Chen, S.; Qian, Y.K.; Peng, S. Effects of various combinations of boundary layer schemes and microphysics schemes on the track forecasts of tropical cyclones over the South China Sea. Nat. Hazards 2015, 78, 61–74. [Google Scholar] [CrossRef] [Green Version]
- Islam, T.; Srivastava, P.K.; Rico-Ramirez, M.A.; Dai, Q.; Gupta, M.; Singh, S.K. Tracking a tropical cyclone through WRF–ARW simulation and sensitivity of model physics. Nat. Hazards 2015, 76, 1473–1495. [Google Scholar] [CrossRef]
- Zhang, G.; Chen, F.; Gan, Y. Assessing uncertainties in the Noah-MP ensemble simulations of a cropland site during the Tibet Joint International Cooperation program field campaign. J. Geophys. Res. Atmos. 2016, 121, 9576–9596. [Google Scholar] [CrossRef]
- Ying, M.; Zhang, W.; Yu, H.; Lu, X.; Feng, J.; Fan, Y.; Zhu, Y.; Chen, D. An overview of the China Meteorological Administration tropical cyclone database. J. Atmos. Ocean. Techn. 2014, 31, 287–301. [Google Scholar] [CrossRef]
- WRF User’s Guide. User’s Guide for the Advanced Research WRF (ARW) Modeling System Version 3.6. Available online: http://www2.mmm.ucar.edu/wrf/users/docs/user_guide_V3/ARWUsersGuideV3.pdf (accessed on 18 September 2014).
- Xu, X.; Lu, C.; Xu, H.; Chen, L. A possible mechanism responsible for exceptional rainfall over Taiwan from Typhoon Morakot. Atmos. Sci. Lett. 2011, 12, 294–299. [Google Scholar] [CrossRef] [Green Version]
- Liou, K.N.; Chou, M.D. Recent Progress in Atmospheric Science: Applications to the Asia-Pacific Region; World Scientific Publishing: Paleo Faliro, Greece, 2008; p. 486. [Google Scholar]
- NCEP. NCEP FNL Operational Model Global Tropospheric Analyses, Continuing from July 1999. Available online: https://doi.org/10.5065/D6M043C6 (accessed on 21 March 2019).
- Hong, S.Y.; Lim, J.O.J. The WRF single-moment 6-class microphysics scheme (WSM6). J. Korean Meteor. Soc. 2006, 42, 129–151. [Google Scholar]
- Kain, J.S. The Kain-Fritsch convective parameterization: An update. J. Appl. Meteor. Clim. 2004, 43, 170–181. [Google Scholar] [CrossRef]
- Hong, S.Y.; Noh, Y.; Dudhia, J. A new vertical diffusion package with an explicit treatment of entrainment processes. Mon. Wea. Rev. 2006, 134, 2318–2341. [Google Scholar] [CrossRef]
- Jiménez, P.A.; Dudhia, J.; González-Rouco, J.F.; Navarro, J.; Montávez, J.P.; García-Bustamante, E. A revised scheme for the WRF surface layer formulation. Mon. Wea. Rev. 2012, 140, 898–918. [Google Scholar] [CrossRef]
- Dudhia, J. Numerical study of convection observed during the winter monsoon experiment using a mesoscale two-dimensional model. J. Atmos. Sci. 1989, 46, 3077–3107. [Google Scholar] [CrossRef]
- Mlawer, E.J.; Taubman, S.J.; Brown, P.D.; Iacono, M.J.; Clough, S.A. Radiative transfer for inhomogeneous atmospheres: RRTM, a validated correlated-k model for the longwave. J. Geophys. Res. 1997, 102, 16663–16682. [Google Scholar] [CrossRef] [Green Version]
- Chen, F.; Dudhia, J. Coupling an advanced land surface–hydrology model with the Penn State–NCAR MM5 modeling system. Part I: Model implementation and sensitivity. Mon. Wea. Rev. 2001, 129, 569–585. [Google Scholar] [CrossRef]
- Milbrandt, J.A.; Yau, M.K. A multimoment bulk microphysics parameterization. Part I: Analysis of the role of the spectral shape parameter. J. Atmos. Sci. 2005, 62, 3051–3064. [Google Scholar] [CrossRef]
- Khain, A.; Pokrovsky, A.; Pinsky, M. Simulation of effects of atmospheric aerosols on deep turbulent convective clouds using a spectral microphysics mixed-phase cumulus cloud model. Part I: Model description and possible applications. J. Atmos. Sci. 2004, 61, 2963–2982. [Google Scholar] [CrossRef]
- Khain, A.; Lynn, B.; Dudhia, J. Aerosol effects on intensity of landfalling hurricanes as seen from simulations with the WRF model with spectral bin microphysics. J. Atmos. Sci. 2010, 67, 365–384. [Google Scholar] [CrossRef]
- Zhang, G.J.; McFarlane, N.A. Sensitivity of climate simulations to the parameterization of cumulus convection in the Canadian Climate Centre general circulation model. Atmos. Ocean. 1995, 33, 407–446. [Google Scholar] [CrossRef]
- Angevine, W.M.; Jiang, H.; Mauritsen, T. Performance of an Eddy Diffusivity-Mass Flux Scheme for Shallow Cumulus Boundary Layers. Mon. Wea. Rev. 2010, 138, 2895–2912. [Google Scholar] [CrossRef]
- Pan, H.L.; Wu, W.S. Implementing a Mass Flux Convective Parameterization Package for the NMC Medium-Range Forecast Model. NMC Office Note 409. 1995. Available online: https://repository.library.noaa.gov/view/noaa/11429 (accessed on 21 March 2019).
- Hong, S.Y.; Pan, H.L. Nonlocal boundary layer vertical diffusion in a Medium-Range Forecast model. Mon. Wea. Rev. 1996, 124, 2322–2339. [Google Scholar] [CrossRef]
- Kessler, E. On the distribution and continuity of water substance in atmospheric circulations. Meteor. Monogr. 1969, 32, 1–84. [Google Scholar]
- Rogers, E.; Black, T.; Ferrier, B.; Lin, Y.; Parrish, D.; DiMego, G. Changes to the NCEP Meso Eta Analysis and Forecast System: Increase in Resolution, New Cloud Microphysics, Modified Precipitation Assimilation, Modified 3DVAR Analysis; NWS Technical Procedures Bulletin 488; NOAA/NWS: Silver Spring, MA, USA, 2001.
- Tao, W.K.; Simpson, J.; McCumber, M. An ice-water saturation adjustment. Mon. Wea. Rev. 1989, 117, 231–235. [Google Scholar] [CrossRef]
- Mansell, E.R.; Ziegler, C.L.; Bruning, E.C. Simulated Electrification of a Small Thunderstorm with Two-Moment Bulk Microphysics. J. Atmos. Sci. 2010, 67, 171–194. [Google Scholar] [CrossRef] [Green Version]
- Grell, G.A.; Dévényi, D. A generalized approach to parameterizing convection combining ensemble and data assimilation techniques. Geophys. Res. Lett. 2002, 29, 381–384. [Google Scholar] [CrossRef]
- Tukey, J.W. Comparing individual means in the analysis of variance. Biometrics 1949, 5, 99–114. [Google Scholar] [CrossRef]
- Hou, Z.; Huang, M.; Leung, L.R.; Lin, G.; Ricciuto, D.M. Sensitivity of surface flux simulations to hydrologic parameters based on an uncertainty quantification framework applied to the Community Land Model. J. Geophys. Res. 2012, 117, D15108. [Google Scholar] [CrossRef]
- Wang, C.; Duan, Q.; Gong, W.; Ye, A.; Di, Z.; Miao, C. An evaluation of adaptive surrogate modeling based optimization with two benchmark problems. Environ. Modell. Softw. 2014, 60, 167–179. [Google Scholar] [CrossRef] [Green Version]
- Gong, W.; Duan, Q.; Li, J.; Wang, C.; Di, Z.; Ye, A.; Miao, C.; Dai, Y. An intercomparison of sampling methods for uncertainty quantification of environmental dynamic models. J. Environ. Inf. 2016, 28, 11–24. [Google Scholar]
- Wang, Y.; Zhou, L.; Hamilton, K. Effect of Convective entrainment/detrainment on the simulation of the tropical precipitation diurnal cycle*. Mon. Weather Rev. 2007, 135, 567–585. [Google Scholar] [CrossRef]
- Yang, W.; Feng, W.; Li, X. Impacts of microphysical processes and cumulus parameterization schemes on simulated rainfall in Autumn over the Hainan Island. Torr. Rain Disas. 2017, 36, 8–17. [Google Scholar]
- Que, L.; Que, W.; Feng, J. Intercomparison of different physics schemes in the WRF model over the Asian summer monsoon region. Atmos. Oceanic Sci. Lett. 2016, 9, 169–177. [Google Scholar] [CrossRef]
- Huang, W.; Shen, X.; Wang, W.; Huang, W. Comparison of the thermal and dynamic structural characteristics in boundary layer with different boundary layer parameterization. Chin. J. Geophys. 2015, 57, 1399–1414. [Google Scholar]
- Qian, Y.; Yan, H.; Berg, L.K.; Hagos, S.; Feng, Z.; Yang, B.; Huang, M. Assessing impacts of PBL and surface layer schemes in simulating the surface–atmosphere interactions and precipitation over the tropical ocean using observations from AMIE/DYNAMO. J. Climate 2016, 29, 8191–8210. [Google Scholar] [CrossRef]
Number | Typhoon Cases | Simulation Periods |
---|---|---|
(1) | 201111 Nanmadol | 2011-08-24_06:00:00–2011-08-27_06:00:00 |
(2) | 201117 Nesat | 2011-09-25_06:00:00–2011-09-28_06:00:00 |
(3) | 201120 Banyan | 2011-10-10_06:00:00–2011-10-13_06:00:00 |
(4) | 201208 Vicente | 2012-07-20_06:00:00–2012-07-23_06:00:00 |
(5) | 201209 Saola | 2012-07-29_06:00:00–2012-08-01_06:00:00 |
(6) | 201213 Kai-tak | 2012-08-14_06:00:00–2012-08-17_06:00:00 |
(7) | 201307 Soulik | 2013-07-08_06:00:00–2013-07-11_06:00:00 |
(8) | 201311 Utor | 2013-08-10_06:00:00–2013-08-13_06:00:00 |
(9) | 201319 Usagi | 2013-09-17_06:00:00–2013-09-20_06:00:00 |
(10) | 201409 Rammasun | 2014-07-14_06:00:00–2014-07-17_06:00:00 |
(11) | 201410 Matmo | 2014-07-19_06:00:00–2014-07-22_06:00:00 |
(12) | 201415 Kalmaegi | 2014-09-12_06:00:00–2014-09-15_06:00:00 |
(13) | 201510 Linfa | 2015-07-05_06:00:00–2015-07-08_06:00:00 |
(14) | 201513 Soudelor | 2015-08-02_06:00:00–2015-08-05_06:00:00 |
(15) | 201522 Mujigae | 2015-10-01_06:00:00–2015-10-04_06:00:00 |
Number | Microphysics (MP) | Number | Cumulus (CU) | Number | Planetary Boundary Layer (PBL) | ||||
---|---|---|---|---|---|---|---|---|---|
Option | Scheme | Option | Scheme | Option | PBL Scheme | Surface (SF) Layer Scheme | |||
1 | 2 | Lin | 1 | 1 | KF | 1 | 1 | YSU | Revised MM5 |
2 | 3 | WSM3 | 2 | 2 | BMJ | 2 | 2 | MYJ | ETA |
3 | 4 | WSM5 | 3 | 3 | GF | 3 | 5(1) | MYNN2 | Revised MM5 |
4 | 6 | WSM6 | 4 | 5 | G3 | 4 | 5(2) | MYNN2 | ETA |
5 | 8 | Thompson | 5 | 6 | Tiedtke | 5 | 5(3) | MYNN2 | MYNN |
6 | 10 | Morrison | 6 | 14 | NSAS | 6 | 6 | MYNN3 | MYNN |
7 | 11 | CAM5.1 | 7 | 99 | OLD-KF | 7 | 7 | ACM2 | Revised MM5 |
8 | 13 | SBU-YLin | 8 | 9(1) | UW | Revised MM5 | |||
9 | 14 | WDM5 | 9 | 9(2) | UW | ETA | |||
10 | 16 | WDM6 | 10 | 12 | GBM | Revised MM5 |
Number | MP | Number | CU | Number | PBL | ||||
---|---|---|---|---|---|---|---|---|---|
Option | Scheme | Option | Scheme | Option | PBL Scheme | SF Scheme | |||
1 | 2 | Lin | 1 | 1 | KF | 1 | 9(2) | UW | ETA |
2 | 4 | WSM5 | 2 | 6 | Tiedtke | 2 | 12 | GBM | Revised MM5 |
3 | 6 | WSM6 | 3 | 14 | NSAS | ||||
4 | 8 | Thompson | |||||||
5 | 10 | Morrison | |||||||
6 | 16 | WDM6 |
Variables | MP | CU | PBL | ||||
---|---|---|---|---|---|---|---|
Option | Scheme | Option | Scheme | Option | PBL Scheme | SF Scheme | |
Track | 8 | Thompson | 6 | Tiedtke | 9(2) | UW | ETA |
CSLP | 4 | WSM5 | 6 | Tiedtke | 9(2) | UW | ETA |
10-m Wind | 2 | Lin | 6 | Tiedtke | 9(2) | UW | ETA |
Scheme Options | RMSE | |||||
---|---|---|---|---|---|---|
MP | CU | PBL | SF | Track (km) | CSLP (hPa) | 10-m Wind (m s−1) |
2 | 6 | 9 | 2 | 128.01 | 10.44 | 5.96 |
4 | 6 | 9 | 2 | 131.28 | 9.55 | 6.21 |
6 | 6 | 9 | 2 | 127.80 | 10.05 | 6.29 |
8 | 6 | 9 | 2 | 126.13 | 10.29 | 6.67 |
10 | 6 | 9 | 2 | 130.79 | 10.43 | 7.10 |
16 | 6 | 9 | 2 | 128.94 | 10.11 | 6.09 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Di, Z.; Gong, W.; Gan, Y.; Shen, C.; Duan, Q. Combinatorial Optimization for WRF Physical Parameterization Schemes: A Case Study of Three-Day Typhoon Simulations over the Northwest Pacific Ocean. Atmosphere 2019, 10, 233. https://doi.org/10.3390/atmos10050233
Di Z, Gong W, Gan Y, Shen C, Duan Q. Combinatorial Optimization for WRF Physical Parameterization Schemes: A Case Study of Three-Day Typhoon Simulations over the Northwest Pacific Ocean. Atmosphere. 2019; 10(5):233. https://doi.org/10.3390/atmos10050233
Chicago/Turabian StyleDi, Zhenhua, Wei Gong, Yanjun Gan, Chenwei Shen, and Qingyun Duan. 2019. "Combinatorial Optimization for WRF Physical Parameterization Schemes: A Case Study of Three-Day Typhoon Simulations over the Northwest Pacific Ocean" Atmosphere 10, no. 5: 233. https://doi.org/10.3390/atmos10050233
APA StyleDi, Z., Gong, W., Gan, Y., Shen, C., & Duan, Q. (2019). Combinatorial Optimization for WRF Physical Parameterization Schemes: A Case Study of Three-Day Typhoon Simulations over the Northwest Pacific Ocean. Atmosphere, 10(5), 233. https://doi.org/10.3390/atmos10050233