A Comparative Analysis of Methods for Determining Odour-Related Separation Distances around a Dairy Farm in Beijing, China
Abstract
:1. Introduction
2. Methods
2.1. Site Description and Structure of the Dairy Farm
2.2. Odour Emission Rate
2.3. Emission Focal Point
2.4. Empirical Models
2.5. Atmospheric Dispersion Modelling
2.6. Meteorological Data
2.7. Odour Impact Criterion
2.8. Statistical Analysis
3. Results and Discussion
3.1. Selection of the Surface Meteorological Station
3.2. Separation Distances
3.3. Statistics of the Separation Distances
3.4. Input Requirements
4. Conclusions and Outlook
Author Contributions
Acknowledgments
Conflicts of Interest
References
- Guffanti, P.; Pifferi, V.; Falciola, L.; Ferrante, V. Analyses of odours from concentrated animal feeding operations: A review. Atmos. Environ. 2018, 175, 100–108. [Google Scholar] [CrossRef]
- Douglas, P.; Robertson, S.; Gay, R.; Hansell, A.L.; Gant, T.W. A systematic review of the public health risks of bioaerosols from intensive farming. Int. J. Hyg. Environ. Health 2018, 221, 134–173. [Google Scholar] [CrossRef] [Green Version]
- Keck, M.; Mager, K.; Weber, K.; Keller, M.; Frei, M.; Steiner, B.; Schrade, S. Odour impact from farms with animal husbandry and biogas facilities. Sci. Total Environ. 2018, 645, 1432–1443. [Google Scholar] [CrossRef]
- Blazy, V.; de Guardia, A.; Benoist, J.C.; Daumoin, M.; Guiziou, F.; Lemasle, M.; Wolbert, D.; Barrington, S. Correlation of chemical composition and odor concentration for emissions from pig slaughterhouse sludge composting and storage. Chem. Eng. J. 2015, 276, 398–409. [Google Scholar] [CrossRef] [Green Version]
- Brancher, M.; Griffiths, K.D.; Franco, D.; Lisboa, H.D. A review of odour impact criteria in selected countries around the world. Chemosphere 2017, 168, 1531–1570. [Google Scholar] [CrossRef]
- Parker, D.B.; Gilley, J.; Woodbury, B.; Kim, K.-H.; Galvin, G.; Bartelt-Hunt, S.L.; Li, X.; Snow, D.D. Odorous VOC emission following land application of swine manure slurry. Atmos. Environ. 2013, 66, 91–100. [Google Scholar] [CrossRef] [Green Version]
- Cantuaria, M.L.; Brandt, J.; Løfstrøm, P.; Blanes-Vidal, V. Public perception of rural environmental quality: Moving towards a multi-pollutant approach. Atmos. Environ. 2017, 170, 234–244. [Google Scholar] [CrossRef]
- Blanes-Vidal, V. Air pollution from biodegradable wastes and non-specific health symptoms among residents: Direct or annoyance-mediated associations? Chemosphere 2015, 120, 371–377. [Google Scholar] [CrossRef]
- Piringer, M.; Schauberger, G. Comparison of a Gaussian diffusion model with guidelines for calculating the separation distance between livestock farming and residential areas to avoid odour annoyance. Atmos. Environ. 1999, 33, 2219–2228. [Google Scholar] [CrossRef]
- Badach, J.; Kolasińska, P.; Paciorek, M.; Wojnowski, W.; Dymerski, T.; Gębicki, J.; Dymnicka, M.; Namieśnik, J. A case study of odour nuisance evaluation in the context of integrated urban planning. J. Environ. Manag. 2018, 213, 417–424. [Google Scholar] [CrossRef]
- Capelli, L.; Sironi, S.; Del Rosso, R.; Guillot, J.-M. Measuring odours in the environment vs. dispersion modelling: A review. Atmos. Environ. 2013, 79, 731–743. [Google Scholar] [CrossRef]
- Piringer, M.; Knauder, W.; Petz, E.; Schauberger, G. Factors influencing separation distances against odour annoyance calculated by Gaussian and Lagrangian dispersion models. Atmos. Environ. 2016, 140, 69–83. [Google Scholar] [CrossRef]
- Schauberger, G.; Piringer, M.; Mikovits, C.; Zollitsch, W.; Hörtenhuber, S.J.; Baumgartner, J.; Niebuhr, K.; Anders, I.; Andre, K.; Hennig-Pauka, I.; et al. Impact of global warming on the odour and ammonia emissions of livestock buildings used for, fattening pigs. Biosyst. Eng. 2018, 175, 106–114. [Google Scholar] [CrossRef]
- VDI 3894 Part 2, Emissions and their Impact from Livestock Operations. Method to Determine the Separation Distance for Odour; Verlag des Vereins Deutscher Ingenieure: Düsseldorf, Germany, 2012.
- Schauberger, G.; Piringer, M.; Jovanovic, O.; Petz, E. A new empirical model to calculate separation distances between livestock buildings and residential areas applied to the Austrian guideline to avoid odour nuisance. Atmos. Environ. 2012, 47, 341–347. [Google Scholar] [CrossRef]
- Schauberger, G.; Schmitzer, R.; Kamp, M.; Sowa, A.; Koch, R.; Eckhof, W.; Eichler, F.; Grimm, E.; Kypke, J.; Hartung, E. Empirical model derived from dispersion calculations to determine separation distances between livestock buildings and residential areas to avoid odour nuisance. Atmos. Environ. 2012, 46, 508–515. [Google Scholar] [CrossRef]
- Nicolas, J.; Delva, J.; Cobut, P.; Romain, A.-C. Development and validating procedure of a formula to calculate a minimum separation distance from piggeries and poultry facilities to sensitive receptors. Atmos. Environ. 2008, 42, 7087–7095. [Google Scholar] [CrossRef] [Green Version]
- Huang, H.; Chen, Y.; Clinton, N.; Wang, J.; Wang, X.; Liu, C.; Gong, P.; Yang, J.; Bai, Y.; Zheng, Y. Mapping major land cover dynamics in Beijing using all Landsat images in Google Earth Engine. Remote Sens. Environ. 2017, 202, 166–176. [Google Scholar] [CrossRef]
- Xiang, Y.; Zhang, T.; Liu, J.; Lv, L.; Dong, Y.; Chen, Z. Atmosphere boundary layer height and its effect on air pollutants in Beijing during winter heavy pollution. Atmos. Res. 2019, 215, 305–316. [Google Scholar] [CrossRef]
- Xu, M.; Sbihi, H.; Pan, X.; Brauer, M. Local variation of PM2.5 and NO2 concentrations within metropolitan Beijing. Atmos. Environ. 2019, 200, 254–263. [Google Scholar] [CrossRef]
- Perry, S.G.; Cimorelli, A.J.; Paine, R.J.; Brode, R.W.; Weil, J.C.; Venkatram, A.; Wilson, R.B.; Lee, R.F.; Peters, W.D. AERMOD: A dispersion model for industrial source applications. Part II: Model performance against 17 field study databases. J. Appl. Meteorol. 2005, 44, 694–708. [Google Scholar] [CrossRef]
- Cimorelli, A.J.; Perry, S.G.; Venkatram, A.; Weil, J.C.; Paine, R.J.; Wilson, R.B.; Lee, R.F.; Peters, W.D.; Brode, R.W. AERMOD: A dispersion model for industrial source applications. Part I: General model formulation and boundary layer characterization. J. Appl. Meteorol. 2005, 44, 682–693. [Google Scholar] [CrossRef]
- US Environmental Protection Agency (US EPA). Revision to the Guideline on Air Quality Models: Enhancements to the AERMOD Dispersion Modeling System and Incorporation of Approaches to Address Ozone and Fine Particulate Matter. Final, 40 CFR part 51; 2017. Available online: https://www.federalregister.gov/documents/2017/01/17/2016-31747/revisions-to-the-guideline-on-air-quality-models-enhancements-to-the-aermod-dispersion-modeling (accessed on 17 January 2017).
- Schauberger, G.; Piringer, M.; Schmitzer, R.; Kamp, M.; Sowa, A.; Koch, R.; Eckhof, W.; Grimm, E.; Kypke, J.; Hartung, E. Concept to assess the human perception of odour by estimating short-time peak concentrations from one-hour mean values. Reply to a comment by Janicke et al. Atmos. Environ. 2012, 54, 624–628. [Google Scholar] [CrossRef]
- Bennett, N.D.; Croke, B.F.; Guariso, G.; Guillaume, J.H.; Hamilton, S.H.; Jakeman, A.J.; Marsili-Libelli, S.; Newham, L.T.; Norton, J.P.; Perrin, C. Characterising performance of environmental models. Environ. Model. 2013, 40, 1–20. [Google Scholar] [CrossRef]
- Nash, J.E.; Sutcliffe, J.V. River flow forecasting through conceptual models part I—A discussion of principles. J. Hydrol. 1970, 10, 282–290. [Google Scholar] [CrossRef]
- Wu, C.; Liu, J.; Zhao, P.; Piringer, M.; Schauberger, G. Conversion of the chemical concentration of odorous mixtures into odour concentration and odour intensity: A comparison of methods. Atmos. Environ. 2016, 127, 283–292. [Google Scholar] [CrossRef]
- Miao, Y.; Liu, S.; Zheng, Y.; Wang, S. Modeling the feedback between aerosol and boundary layer processes: A case study in Beijing, China. Environ. Sci. Pollut. Res. Int. 2016, 23, 3342–3357. [Google Scholar] [CrossRef]
- Bei, N.; Zhao, L.; Wu, J.; Li, X.; Feng, T.; Li, G. Impacts of sea-land and mountain-valley circulations on the air pollution in Beijing-Tianjin-Hebei (BTH): A case study. Environ. Pollut. 2018, 234, 429–438. [Google Scholar] [CrossRef]
- Chen, Y.; Zhao, C.; Zhang, Q.; Deng, Z.; Huang, M.; Ma, X. Aircraft study of mountain chimney effect of Beijing, China. J. Geophys. Res. Atmos. 2009, 114. [Google Scholar] [CrossRef]
- Leytem, A.B.; Dungan, R.S.; Bjorneberg, D.L.; Koehn, A.C. Emissions of ammonia, methane, carbon dioxide, and nitrous oxide from dairy cattle housing and manure management systems. J. Environ. Qual. 2011, 40, 1383–1394. [Google Scholar] [CrossRef]
- Liu, S.; Liu, Z.; Li, J.; Wang, Y.; Ma, Y.; Sheng, L.; Liu, H.; Liang, F.; Xin, G.; Wang, J. Numerical simulation for the coupling effect of local atmospheric circulations over the area of Beijing, Tianjin and Hebei Province. Sci. China Ser. D Earth Sci. 2009, 52, 382–392. [Google Scholar] [CrossRef]
- Long, X.; Tie, X.; Cao, J.; Huang, R.; Feng, T.; Li, N.; Zhao, S.; Tian, J.; Li, G.; Zhang, Q. Impact of crop field burning and mountains on heavy haze in the North China Plain: A case study. Atmos. Chem. Phys. 2016, 16, 9675–9691. [Google Scholar] [CrossRef]
- Miao, Y.; Guo, J.; Liu, S.; Liu, H.; Zhang, G.; Yan, Y.; He, J. Relay transport of aerosols to Beijing-Tianjin-Hebei region by multi-scale atmospheric circulations. Atmos. Environ. 2017, 165, 35–45. [Google Scholar] [CrossRef]
- Miao, Y.; Liu, S.; Zheng, Y.; Wang, S.; Chen, B.; Zheng, H.; Zhao, J. Numerical study of the effects of local atmospheric circulations on a pollution event over Beijing–Tianjin–Hebei, China. J. Environ. Sci. 2015, 30, 9–20. [Google Scholar] [CrossRef]
- Zardi, D.; Whiteman, C.D. Diurnal mountain wind systems. In Mountain Weather Research and Forecasting; Springer: Berlin, Germany, 2013; pp. 35–119. [Google Scholar]
- Miao, Y.; Liu, S.; Zheng, Y.; Wang, S.; Chen, B. Numerical study of the effects of topography and urbanization on the local atmospheric circulations over the Beijing-Tianjin-Hebei, China. Adv. Meteorol. 2015, 2015. [Google Scholar] [CrossRef]
- Miao, Y.; Hu, X.M.; Liu, S.; Qian, T.; Xue, M.; Zheng, Y.; Wang, S. Seasonal variation of local atmospheric circulations and boundary layer structure in the Beijing-Tianjin-Hebei region and implications for air quality. J. Adv. Model. Earth Syst. 2015, 7, 1602–1626. [Google Scholar] [CrossRef] [Green Version]
- Pandey, G.; Sharan, M. Accountability of wind variability in AERMOD for computing concentrations in low wind conditions. Atmos. Environ. 2019, 202, 105–116. [Google Scholar] [CrossRef]
- Qian, W.; Venkatram, A. Performance of steady-state dispersion models under low wind-speed conditions. Boundary-Layer Meteorol. 2011, 138, 475–491. [Google Scholar] [CrossRef]
- Brancher, M.; Piringer, M.; Franco, D.; Belli Filho, P.; Lisboa, H.D.M.; Schauberger, G. Assessing the inter-annual variability of separation distances around odour sources to protect the residents from odour annoyance. J. Environ. Sci. 2019, 79, 11–24. [Google Scholar] [CrossRef]
- VDI 3894 Part 1, Emissions and Immissions from Animal Husbandry-Housing Systems and Emissions-Pigs, Cattle, Poultry, Horses; Verlag des Vereins Deutscher Ingenieure: Düsseldorf, Germany, 2011.
Odour Sources | Specific Emission Factor | Activity Value | Odour Emission Rate (ouE s−1) |
---|---|---|---|
E1 Barn 1 | |||
Dairy cows N = 100 | 12 ouE s−1 LU−1 | 120 LU | 1440 |
Feed table | 3 ouE s−1 m−2 | 150 m² | 450 |
Sum | - | - | 1890 |
E2 Barn 2 | |||
Dairy cows N = 100 | 12 ouE s−1 LU−1 | 60 LU | 1440 |
Feed table | 3 ouE s−1 m−2 | 150 m² | 450 |
Sum | - | - | 1890 |
E3 Barn 3 | |||
Dairy cows N = 100 | 12 ouE s−1 LU−1 | 60 LU | 1440 |
Feed table | 3 ouE s−1 m−2 | 150 m² | 450 |
Sum | - | - | 1890 |
EF Feed storage (corn silage) | 3 ouE s−1 m−2 | 60 m² | 180 |
MS Manure storage | - | 200 m² | - |
Total sum | 5850 |
Station | Type | Latitude ° N | Longitude ° E | Elevation ASL (m) | Distance from the Farm (km) |
---|---|---|---|---|---|
Haidian | Surface | 39.98 | 116.28 | 46 | 17 |
Changping | Surface | 40.22 | 116.22 | 76 | 13 |
Shunyi | Surface | 40.13 | 116.62 | 29 | 39 |
Beijing Basic | Surface | 39.80 | 116.47 | 31 | 42 |
Beijing Capital Airport | Surface and upper air | 40.08 | 116.60 | 33 | 36 |
Empirical Model | RMSE (m) | RAE | NSE |
---|---|---|---|
German VDI model | 74.10 | 0.53 | 0.62 |
Austrian model | 69.22 | 0.68 | 0.67 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wu, C.; Brancher, M.; Yang, F.; Liu, J.; Qu, C.; Schauberger, G.; Piringer, M. A Comparative Analysis of Methods for Determining Odour-Related Separation Distances around a Dairy Farm in Beijing, China. Atmosphere 2019, 10, 231. https://doi.org/10.3390/atmos10050231
Wu C, Brancher M, Yang F, Liu J, Qu C, Schauberger G, Piringer M. A Comparative Analysis of Methods for Determining Odour-Related Separation Distances around a Dairy Farm in Beijing, China. Atmosphere. 2019; 10(5):231. https://doi.org/10.3390/atmos10050231
Chicago/Turabian StyleWu, Chuandong, Marlon Brancher, Fan Yang, Jiemin Liu, Chen Qu, Günther Schauberger, and Martin Piringer. 2019. "A Comparative Analysis of Methods for Determining Odour-Related Separation Distances around a Dairy Farm in Beijing, China" Atmosphere 10, no. 5: 231. https://doi.org/10.3390/atmos10050231
APA StyleWu, C., Brancher, M., Yang, F., Liu, J., Qu, C., Schauberger, G., & Piringer, M. (2019). A Comparative Analysis of Methods for Determining Odour-Related Separation Distances around a Dairy Farm in Beijing, China. Atmosphere, 10(5), 231. https://doi.org/10.3390/atmos10050231