Modeling Dust Direct Radiative Feedbacks in East Asia During the Last Glacial Maximum
Abstract
:1. Introduction
2. Methods
2.1. Model Description and Numerical Experiment Design
2.2. Atmospheric PBL Mixing Index
3. Results
3.1. The Simulating Dust Climatology in PD and LGM
3.2. Changes in the Dust Cycle Induced by DRF
3.3. Dust Radiative Forcing and Dust Radiative Feedbacks
4. Summary and Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Carslaw, K.S.; Boucher, O.; Spracklen, D.V.; Mann, G.W.; Rae, J.G.L.; Woodward, S.; Kulmala, M. A review of natural aerosol interactions and feedbacks within the Earth system. Atmos. Chem. Phys. 2010, 10, 1701–1737. [Google Scholar] [CrossRef] [Green Version]
- DeMott, P.J.; Prenni, A.J.; Liu, X.; Kreidenweis, S.M.; Petters, M.D.; Twohy, C.H.; Richardson, M.S.; Eidhammer, T.; Rogers, D.C. Predicting global atmospheric ice nuclei distributions and their impacts on climate. Proc. Natl. Acad. Sci. USA 2010, 107, 11217–11222. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mahowald, N.; Albani, S.; Kok, J.F.; Engelstaeder, S.; Scanza, R.; Ward, D.S.; Flanner, M.G. The size distribution of desert dust aerosols and its impact on the Earth system. Aeolian Res. 2014, 15, 53–71. [Google Scholar] [CrossRef] [Green Version]
- Liu, X.; Shi, X.; Zhang, K.; Jensen, E.J.; Gettelman, A.; Barahona, D.; Nenes, A.; Lawson, P. Sensitivity studies of dust ice nuclei effect on cirrus clouds with the Community Atmosphere Model CAM5. Atmos. Chem. Phys. 2012, 12, 12061–12079. [Google Scholar] [CrossRef] [Green Version]
- Lau, K.M.; Kim, K.M.; Sud, Y.C.; Walker, G.K. AGCM study of responses of the atmospheric water cycle of West Africa and the Atlantic to Saharan dust radiative forcing. Ann. Geophys. 2009, 27, 4023–4037. [Google Scholar] [CrossRef]
- Chappell, A.; Webb, N.P.; Butler, H.J.; Strong, C.; Mctainsh, G.H.; Leys, J.; Rossel, R.A.V. Soil organic carbon dust emission: An omitted global source of atmospheric CO2. Glob. Chang. Biol. 2013, 19, 3238–3244. [Google Scholar] [CrossRef] [PubMed]
- Bopp, L.; Kohfeld, K.E.; Le Quere, C.; Aumont, O. Dust impact on marine biota and atmospheric CO2 during glacial periods. Paleoceanography 2003, 18, 1046. [Google Scholar] [CrossRef]
- Shao, Y.; Wyrwoll, K.H.; Chappell, A.; Huang, J.P.; Lin, Z.H.; McTainsh, G.H.; Mikami, M.; Tnaka, T.Y.; Wang, X.L.; Yoon, S. Dust cycle: An emerging core theme in Earth system science. Aeolian Res. 2011, 2, 181–204. [Google Scholar] [CrossRef]
- Kok, J.F.; Ward, D.S.; Mahowald, N.M.; Evan, A.T. Global and regional importance of the direct dust-climate feedback. Nat. Commun. 2018, 9, 241. [Google Scholar] [CrossRef] [Green Version]
- Miller, R.L.; Tegen, I. Climate response to soil dust aerosols. J. Clim. 1998, 11, 3247–3267. [Google Scholar] [CrossRef]
- Yue, X.; Wang, H.; Wang, Z.; Fan, K. Simulation of dust aerosol radiative feedback using the global transport model of dust: 1. Dust cycle and validation. J. Geophys. Res. 2009, 114, D10202. [Google Scholar] [CrossRef]
- Richter, D.; Gill, T. Challenges and opportunities in atmospheric dust emission, chemistry, and transport. Bull. Am. Meteorol. Soc. 2018, 99, es115–es118. [Google Scholar] [CrossRef]
- Intergovernmental Panel on Climate Change (IPCC). The physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change; Cambridge Univ. Press: Cambridge, UK; New York, NY, USA, 2013; Chapter 5; p. 51. [Google Scholar]
- Huneeus, N.; Schulz, M.; Balkanski, Y.; Griesfeller, J.; Prospero, J.; Kinne, S.; Zender, C.S. Global dust model intercomparison in AeroCom phase I. Atmos. Chem. Phys. 2011, 11, 7781–7816. [Google Scholar] [CrossRef] [Green Version]
- Mahowald, N.M.; Kloster, S.; Engelstaedter, S.; Moore, J.K.; Mukhopadhyay, S.; McConnell, J.R.; Albani, S.; Doney, S.C.; Bhattacharya, A.; Curran, M.A.J. Observed 20th century desert dust variability: Impact on climate and biogeochemistry. Atmos. Chem. Phys. 2010, 10, 10875–10893. [Google Scholar] [CrossRef]
- Miller, R.L.; Perlwitz, J.; Tegen, I. Feedback upon dust emission by dust radiative forcing through the planetary boundary layer. J. Geophys. Res. Atmos. 2004, 109, D24209. [Google Scholar] [CrossRef]
- Pérez, C.; Nickovic, S.; Pejanovic, G.; Baldasano, J.M.; Ozsoy, E. Interactive dust-radiation modeling: A step to improve weather forecasts. J. Geophys. Res. Atmos. 2006, 111, D16206. [Google Scholar] [CrossRef]
- Xie, X.N.; Liu, X.D.; Che, H.Z.; Xie, X.X.; Wang, H.L.; Li, J.D.; Shi, Z.G.; Liu, Y.G. Modeling East Asian dust and its radiative feedbacks in CAM4-BAM. J. Geophys. Res. Atmos. 2018, 123, 1079–1096. [Google Scholar] [CrossRef]
- Gu, Y.; Xue, Y.; De Sales, F.; Liou, K.N. A GCM investigation of dust aerosol impact on the regional climate of North Africa and South/East Asia. Clim. Dynam. 2016, 46, 2353–2370. [Google Scholar] [CrossRef]
- Guo, J.; Yin, Y. Mineral dust impacts on regional precipitation and summer circulation in East Asia using a regional coupled climate system model. J. Geophys. Res. Atmos. 2015, 120, 10378–10398. [Google Scholar] [CrossRef]
- Han, Z.W.; Li, J.W.; Xia, X.G.; Zhang, R.J. Investigation of direct radiative effects of aerosols in dust storm season over East Asia with an online coupled regional climate-chemistry-aerosol model. Atmos. Environ. 2012, 54, 688–699. [Google Scholar] [CrossRef]
- Zhang, D.F.; Zakey, A.S.; Gao, X.J.; Giorgi, F.; Solmon, F. Simulation of dust aerosol and its regional feedbacks over East Asia using a regional climate model. Atmos. Chem. Phys. 2009, 9, 1095–1110. [Google Scholar] [CrossRef] [Green Version]
- Petit, J.R.; Jouzel, J.; Raynaud, D.; Barkov, N.I.; Barnola, J.M.; Basile, I.; Bender, M.; Chappellaz, J.; Davis, M.; Delaygue, G.; et al. Climate and atmospheric history of the past 420,000 years from the Vostok ice core, Antarctica. Nature 1999, 399, 429. [Google Scholar] [CrossRef]
- Albani, S.; Balkanski, Y.; Mahowald, N.; Winckler, G.; Maggi, V.; Delmonte, B. Aerosol-climate interactions during the last glacial maximum. Curr. Clim. Chang. Rep. 2018, 4, 99–114. [Google Scholar] [CrossRef]
- Petit, J.R.; Mourner, L.; Jouzel, J.; Korotkevich, Y.S.; Kotlyakov, V.I.; Lorius, C. Palaeoclimatological and chronological implications of the Vostok core dust record. Nature 1990, 343, 56–58. [Google Scholar] [CrossRef]
- Mahowald, N.M.; Kohfeld, K.; Hansson, M.; Balkanski, Y.; Harrison, S.P.; Prentice, I.C.; Schulz, M.; Rodhe, H. Dust sources and deposition during the last glacial maximum and current climate: A comparison of model results with paleodata from ice cores and marine sediments. J. Geophys. Res. Atmos. 1999, 104, 15895–15916. [Google Scholar] [CrossRef] [Green Version]
- Mahowald, N.M.; Yoshioka, M.; Collins, W.D.; Conley, A.J.; Fillmore, D.W.; Coleman, D.B. Climate response and radiative forcing from mineral aerosols during the last glacial maximum, pre-industrial, current and doubled-carbon dioxide climates. Geophys. Res. Lett. 2006, 33, L20705. [Google Scholar] [CrossRef]
- Lunt, D.J.; Valdes, P.J. Dust deposition and provenance at the last glacial maximum and present day. Geophys. Res. Lett. 2002, 29, 2085. [Google Scholar] [CrossRef]
- Takemura, T.; Egashira, M.; Matsuzawa, K.; Ichijo, H.; Oishi, R.; Abeouchi, A. A simulation of the global distribution and radiative forcing of soil dust aerosols at the last glacial maximum. Atmos. Chem. Phys. 2009, 9, 3061–3073. [Google Scholar] [CrossRef]
- Yue, X.; Wang, H.J.; Liao, H.; Jiang, D.B. Simulation of the direct radiative effect of mineral dust aerosol on the climate at the Last Glacial Maximum. J. Clim. 2011, 24, 843–858. [Google Scholar] [CrossRef]
- Albani, S.; Mahowald, N.M.; Perry, A.T.; Scanza, R.A.; Zender, C.S.; Heavens, N.G.; Maggi, V.; Kok, J.F.; Otto-Bliesner, B.L. Improved dust representation in the community atmosphere model. J. Adv. Model. Earth Syst. 2014, 6, 541–570. [Google Scholar] [CrossRef]
- Hopcroft, P.O.; Valdes, P.J.; Woodward, S.; Joshi, M.M. Last glacial maximum radiative forcing from mineral dust aerosols in an Earth System model. J. Geophys. Res. Atmos. 2015, 120, 8186–8205. [Google Scholar] [CrossRef]
- Neale, R.B.; Richter, J.H.; Conley, A.J.; Park, S.; Lauritzen, P.H.; Gettelman, A.; Williamson, D.L.; Rasch, P.J.; Vavrus, S.J.; Taylor, M.A.; et al. Description of the NCAR Community Atmosphere Model (CAM 4.0) (NCAR Tech. Note, TN–485); National Center for Atmospheric Research: Boulder, CO, USA, 2010. [Google Scholar]
- Zender, C.S.; Bian, H.; Newman, D. Mineral dust entrainment and deposition (DEAD) model: Description and 1990s dust climatology. J. Geophys. Res. 2003, 108, 4416. [Google Scholar] [CrossRef]
- Tie, X.; Madronich, S.; Walters, S.; Edwards, D.P.; Ginoux, P.; Mahowald, N.; Brasseur, G. Assessment of the global impact of aerosols on tropospheric oxidants. J. Geophys. Res. 2005, 110, D03204. [Google Scholar] [CrossRef]
- Ganopolski, A.; Calov, R.; Claussen, M. Simulation of the last glacial cycle with a coupled climate ice-sheet model of intermediate complexity. Clim. Past 2010, 6, 229–244. [Google Scholar] [CrossRef] [Green Version]
- Mahowald, N.M.; Muhs, D.R.; Levis, S.; Rasch, P.J.; Yoshioka, M.; Zender, C.S.; Luo, C. Change in atmospheric mineral aerosols in response to climate: Last glacial period, preindustrial, modern, and doubled carbon dioxide climates. J. Geophys. Res. 2006, 111, D10202. [Google Scholar] [CrossRef]
- Bauer, E.; Ganopolski, A. Sensitivity simulations with direct shortwave radiative forcing by aeolian dust during glacial cycles. Clim. Past 2014, 10, 1333–1348. [Google Scholar] [CrossRef] [Green Version]
- Albani, S.; Mahowald, N.M.; Murphy, L.N.; Raiswell, R.; Moore, J.K.; Anderson, R.F.; McGee, D.; Bradtmiller, L.I.; Delmonte, B.; Hesse, P.P. Paleodust variability since the Last Glacial Maximum and implications for iron inputs to the ocean. Geophys. Res. Lett. 2016, 43, 3944–3954. [Google Scholar] [CrossRef] [Green Version]
- Brady, E.C.; Otto-Bliesner, B.L.; Kay, J.E.; Rosenbloom, N. Sensitivity to glacial forcing in the CCSM4. J. Clim. 2013, 26, 1901–1925. [Google Scholar] [CrossRef]
- Peltier, W.R. Global glacial isostasy and the surface of the ice-age Earth: The ICE-5G (VM2) model and GRACE. Annu. Rev. Earth Planet Sci. 2004, 32, 111–149. [Google Scholar] [CrossRef]
- Maher, B.A.; Prospero, J.M.; Mackie, D.; Gaiero, D.; Hesse, P.P.; Balkanski, Y. Global connections between aeolian dust, climate and ocean biogeochemistry at the present day and at the last glacial maximum. Earth Sci. Rev. 2010, 99, 61–97. [Google Scholar] [CrossRef]
- Kalplan, J.O.; Bigelow, N.H.; Prentice, I.C.; Harrison, S.P.; Bartlein, P.J.; Christensen, T.R.; Cramer, W.; Matveyeva, N.V.; McGuire, A.D.; Murray, D.F.; et al. Climate change and Arctic ecosystems: 2. Modeling, paleodata-model comparisons, and future projections. J. Geophys. Res. Atmos. 2003, 108, 8171. [Google Scholar] [CrossRef]
- Xie, X.N.; Liu, X.D.; Che, H.Z.; Xie, X.X.; Li, X.Z.; Shi, Z.G.; Wang, H.L.; Zhao, T.L.; Liu, Y.G. Radiative feedbacks of dust-in-snow over eastern Asia in CAM4-BAM. Atmos. Chem. Phys. 2018, 18, 12683–12698. [Google Scholar] [CrossRef]
- Stull, R. An Introduction to Boundary Layer Meteorology; Kluwer Academic Publishers: Dordrecht, The Netherlands, 1988; pp. 405–440. [Google Scholar]
- Garratt, J. The Atmospheric Boundary Layer; Cambridge University Press: Cambridge, UK, 1994; p. 316. [Google Scholar]
- JAMSTEC; AORI; NIES. MIROC-ESM Model Output Prepared for CMIP5 lgm, Served by ESGF. World Data Center for Climate (WDCC) at DKRZ. 2015. Available online: https://doi.org/10.1594/WDCC/CMIP5.MIMElg (accessed on 15 March 2019).
- Colarco, P.R.; Nowottnick, E.P.; Randles, C.A.; Yi, B.Q.; Yang, P.; Kim, K.M.; Smith, J.A.; Bardeen, C.G. Impact of radiatively interactive dust aerosols in the NASA GEOS-5 climate model: Sensitivity to dust particle shape and refractive index. J. Geophys. Res. Atmos. 2014, 119, 753–786. [Google Scholar] [CrossRef] [Green Version]
- Heinold, B.; Tegen, I.; Schepanski, K.; Hellmuth, O. Dust radiative feedback on Saharan boundary layer dynamics and dust mobilization. Geophys. Res. Lett. 2008, 35, L20817. [Google Scholar] [CrossRef]
- Zhao, T.L.; Gong, S.L.; Zhang, X.Y.; Blanchet, J.P.; Mckendry, I.G.; Zhou, Z.J. A simulated climatology of Asian dust aerosol and its trans-Pacific transport. Part I: Mean climate and validation. J. Clim. 2006, 19, 88–103. [Google Scholar] [CrossRef]
- Gong, S.L.; Zhang, X.Y.; Zhao, T.L.; Zhang, X.B.; Barrie, L.A.; Mckendry, I.G.; Zhao, C.S. A simulated climatology of Asian dust aerosol and its trans-Pacific transport. Part II: Interannual variability and climate connections. J. Clim. 2006, 19, 104–122. [Google Scholar] [CrossRef]
- Wang, N.; Jiang, D.; Lang, X. Northern westerlies during the Last Glacial Maximum: Results from CMIP5 simulations. J. Clim. 2018, 31, 1135–1153. [Google Scholar] [CrossRef]
- Heinold, B.; Helmert, J.; Hellmuth, O.; Wolke, R.; Ansmann, A.; Marticorena, B.; Laurent, B.; Tegen, I. Regional modeling of Saharan dust events using LM-MUSCAT: Model description and case studies. J. Geophys. Res. Atmos. 2007, 112, D11204. [Google Scholar] [CrossRef]
Experiments | Simulated Time | DRF |
---|---|---|
Present-day Active | 21 years (1st year spin-up) | Yes |
Present-day Passive | 21 years (1st year spin-up | No |
LGM Active | 21 years (1st year spin-up) | Yes |
LGM Passive | 21 years (1st year spin-up) | No |
Model/Study | Emission | Loading | AOD |
---|---|---|---|
Mahowald et al. [27] | 10,880 | 62 | 0.096 |
Takemura et al. [29] | 6200 | 31 | - |
Yue et al. [30] | 4579 | 67 | 0.077 |
MIROC-ESM (CMIP5) [47] | 7781 | 34 | - |
Albani et al. [31] (c4fn-lgm-s2) | 6705 | 42 | 0.045 |
This work (LGM Active) | 6700 | 42 | 0.040 |
Dust Cycle | Active | Passive | Difference (Ratio) |
---|---|---|---|
Emission (Tg season−1) | 652.2 | 730.4 | −78.2 (−10.7%) |
Dry deposition (Tg season−1) | 370.8 | 396.6 | −25.8 (−6.5%) |
Wet deposition (Tg season−1) | 95.2 | 111.6 | −16.4 (−14.6%) |
Loading (g m−2) | 1.6 | 1.8 | −0.2 (−10.2%) |
Clear-Sky Forcing | All-Sky Forcing | |
---|---|---|
Surface SW | −29.0 | −24.5 |
Surface LW | 17.1 | 14.5 |
Surface NET | −11.8 | −10.0 |
TOA SW | −7.0 | −4.7 |
TOA LW | 4.4 | 3.3 |
TOA NET | −2.7 | −1.4 |
ATMOS SW | 21.9 | 19.8 |
ATMOS LW | −12.7 | −11.2 |
ATMOS NET | 9.1 | 8.7 |
Dust Cycle | Active | Passive | Difference (Ratio) |
---|---|---|---|
Emission (Tg season−1) | 83.4 | 90.3 | −6.8 (−7.5%) |
Dry deposition (Tg season−1) | 41.2 | 43.9 | −2.7 (−6.6%) |
Wet deposition (Tg season−1) | 15.0 | 15.5 | −0.5 (−3.0 %) |
Loading (mg m−2) | 260.5 | 273.3 | −12.8 (−3.7%) |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cheng, X.; Xie, X.; Shi, Z.; Li, X.; Zhao, T.; Liu, X. Modeling Dust Direct Radiative Feedbacks in East Asia During the Last Glacial Maximum. Atmosphere 2019, 10, 146. https://doi.org/10.3390/atmos10030146
Cheng X, Xie X, Shi Z, Li X, Zhao T, Liu X. Modeling Dust Direct Radiative Feedbacks in East Asia During the Last Glacial Maximum. Atmosphere. 2019; 10(3):146. https://doi.org/10.3390/atmos10030146
Chicago/Turabian StyleCheng, Xugeng, Xiaoning Xie, Zhengguo Shi, Xinzhou Li, Tianliang Zhao, and Xiaodong Liu. 2019. "Modeling Dust Direct Radiative Feedbacks in East Asia During the Last Glacial Maximum" Atmosphere 10, no. 3: 146. https://doi.org/10.3390/atmos10030146
APA StyleCheng, X., Xie, X., Shi, Z., Li, X., Zhao, T., & Liu, X. (2019). Modeling Dust Direct Radiative Feedbacks in East Asia During the Last Glacial Maximum. Atmosphere, 10(3), 146. https://doi.org/10.3390/atmos10030146