Present and Future Climate—Tourism Conditions in Milos Island, Greece
Abstract
:1. Introduction
2. Materials and Methods
3. Results and Discussion
3.1. Present and Future Projected Human Thermal Conditions
3.2. Climate–Tourism Information Scheme—Present and Future Projections
4. Summary and Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- de Freitas, C.R. Tourism climatology: Evaluating environmental information for decision making and business planning in the recreation and tourism sector. Int. J. Biometeorol. 2003, 48, 45–54. [Google Scholar] [CrossRef] [PubMed]
- Didaskalou, E.; Nastos, P.; Matzarakis, A. The Development Prospects of Greek Health Tourism and the Role of the Bioclimate Regime of Greece. In Advances in Tourism Climatology; Matzarakis, A., de Freitas, C.R., Scott, D., Eds.; Berichte des Meteorologischen Institutes der Universität Freiburg: Freiburg, Germany, 2004; Volume 12, pp. 149–157. [Google Scholar]
- Scott, D. Why sustainable tourism must address climate change. J. Sustain. Tour. 2011, 19, 17–34. [Google Scholar] [CrossRef]
- Nastos, P.T.; Kapsomenakis, J.; Giannakopoulos, C.; Matzarakis, A.; Zerefos, C.S. Present and future projections of human-bioclimatic conditions over Peloponnese, based on regional climate model simulations. In E-Book of Proceedings, 12th International Conference of Meteorology, Climatology and Physics of the Atmosphere, Heraklion, Greece, 28–31 May 2014; Crete University Press: Rethymnon, Greece, 2014; Volume 2, pp. 293–298. [Google Scholar]
- Didaskalou, E.A.; Nastos, P.T. The role of climatic and bioclimatic conditions in the development of health tourism product. Anatolia 2003, 14, 107–126. [Google Scholar] [CrossRef]
- Nastos, P.T.; Kapsomenakis, J. Regional climate model simulations of extreme air temperature in Greece. Abnormal or common records in the future climate? Atmos. Res. 2014, 152, 43–60. [Google Scholar] [CrossRef]
- IPCC. Climate Change 2007: The Scientific Basis. Contribution of the Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change; Solomon, S., Qin, D., Manning, M., Chen, Z., Marquis, M., Avery, K.B., Tignor, M., Miller, H.L., Eds.; Cambridge University Press: Cambridge, UK, 2007. [Google Scholar]
- Kozak, M. Comparative analysis of tourist motivations by nationality and destinations. Tour. Manag. 2002, 23, 221–232. [Google Scholar] [CrossRef]
- Amelung, B.; Nicholls, S.; Viner, D. Implications of Global Climate Change for Tourism Flows and Seasonality. J. Travel Res. 2007, 45, 285–296. [Google Scholar] [CrossRef]
- Smith, K. The influence of weather and climate on recreation and tourism. Weather 1993, 48, 398–404. [Google Scholar] [CrossRef]
- Rutty, M.; Scott, D. Will the Mediterranean become too hot for tourism? A reassessment. Tour. Hosp. Plan. Dev. 2010, 7, 267–281. [Google Scholar] [CrossRef]
- Scott, D.; Lemieux, C. Weather and climate information for tourism. Procedia Environ. Sci. 2010, 1, 146–183. [Google Scholar] [CrossRef]
- Matzarakis, A. Assessment method for climate and tourism based on daily data. In Developments in Tourism Climatology; Matzarakis, A., de Freitas, C.R., Scott, D., Eds.; University of Freiburg: Freiburg, Germany, 2007; pp. 52–58. [Google Scholar]
- Matzarakis, A. Weather and climate related information for tourism. Tour. Hosp. Plan. Dev. 2006, 3, 99–115. [Google Scholar] [CrossRef]
- Mieczkowski, Z. The tourism climate index: A method for evaluating world climates for tourism. Can. Geogr. 1985, 29, 220–233. [Google Scholar] [CrossRef]
- de Freitas, C.R.; Scott, D.; McBoyle, G. A second generation climate index for tourism (CIT): Specification and verification. Int. J. Biometeorol. 2008, 52, 399–407. [Google Scholar] [CrossRef]
- Lin, T.P.; Matzarakis, A. Tourism climate and thermal comfort in Sun Moon Lake, Taiwan. Int. J. Biometeorol. 2008, 52, 281–290. [Google Scholar] [CrossRef]
- Matzarakis, A.; Nastos, P. Analysis of tourism potential for Crete Island, Greece. Glob. Nest J. 2011, 13, 142–150. [Google Scholar]
- Błazejczyk, K.; Epstein, Y.; Jendritzky, G.; Staiger, H.; Tinz, B. Comparison of UTCI to selected thermal indices. Int. J. Biometeorol. 2012, 56, 515–535. [Google Scholar] [CrossRef]
- Mayer, H.; Höppe, P.R. Thermal comfort of man in different urban environments. Theor. Appl. Climatol. 1987, 38, 43–49. [Google Scholar] [CrossRef]
- Höppe, P. The physiological equivalent temperature—A universal index for the biometeorological assessment of the thermal environment. Int. J. Biometeorol. 1999, 43, 71–75. [Google Scholar] [CrossRef]
- Matzarakis, A.; Mayer, H.; Iziomon, M.G. Applications of a universal thermal index: Physiologically equivalent temperature. Int. J. Biometeorol. 1999, 43, 76–84. [Google Scholar] [CrossRef]
- Bleta, A.; Nastos, P.T.; Matzarakis, A. Assessment of bioclimatic conditions in Crete Island, Greece. Reg. Environ. Chang. 2013, 14, 1967–1981. [Google Scholar] [CrossRef]
- Nastos, P.T.; Matzarakis, A. Human Bioclimatic Conditions, Trends, and Variability in the Athens University Campus, Greece. Adv. Meteorol. 2013, 2013, 976510. [Google Scholar] [CrossRef]
- Staiger, H.; Laschewski, G.; Matzarakis, A. Selection of Appropriate Thermal Indices for Applications in Human Biometeorological Studies. Atmosphere 2019, 10, 18. [Google Scholar] [CrossRef]
- Jendritzky, G.; de Dear, R.; Havenith, G. UTCI—Why another thermal index? Int. J. Biometeorol. 2012, 56, 421–428. [Google Scholar] [CrossRef]
- Matzarakis, A. Climate Change: Temporal and spatial dimension of adaptation possibilities at regional and local scale. In Tourism and the Implications of Climate Change: Issues and Actions; Schott, C., Ed.; Emerald Group Publishing: Bingley, UK, 2010; pp. 237–259. [Google Scholar]
- Matzarakis, A. Transfer of climate data for tourism applications—The Climate-Tourism/Transfer-Information-Scheme. Sustain. Environ. Res. 2014, 24, 273–280. [Google Scholar]
- Radu, R.; Deque, M.; Somot, S. Spectral nudging in a spectral regional climate model. Tellus A Dyn. Meteorol. Oceanogr. 2008, 60, 898–910. [Google Scholar] [CrossRef] [Green Version]
- Colin, J.; Déqué, M.; Radu, R.; Somot, S. Sensitivity study of heavy precipitations in Limited Area Model climate simulation: Influence of the size of the domain and the use of the spectral nudging technique. Tellus A Dyn. Meteorol. Oceanogr. 2010, 62, 591–604. [Google Scholar] [CrossRef]
- Kuttler, W. Stadtklima, Handbuch der Umweltveranderungen und Okotoxologie, Band 1B: Atmosphäre; Guderian, R., Ed.; Springer: New York, NY, USA, 2000; pp. 420–470. [Google Scholar]
- Troen, I.; Petersen, E. European Wind Atlas; National Laboratory: Roskilde, Denmark, 1989; p. 656. ISBN 87-550-1482-8.
- Zaninovic, K.; Matzarakis, A. The Biometeorological Leaflet as a means conveying climatological information to tourists and the tourism industry. Int. J. Biometeorol. 2009, 53, 369–374. [Google Scholar] [CrossRef]
- Clarke, L.E.; Edmonds, J.A.; Jacoby, H.D.; Pitcher, H.; Reilly, J.M.; Richels, R. Scenarios of greenhouse gas emissions and atmospheric concentrations. In Sub-Report 2.1A of Synthesis and Assessment Product 2.1. Climate Change Science Program and the Subcommittee on Global Change Research; Department of Energy, Office of Biological & Environmental Research: Washington, DC, USA, 2007. [Google Scholar]
- Wise, M.; Calvin, K.; Thomson, A.; Clarke, L.; Bond-Lamberty, B.; Sands, R.; Smith, S.J.; Janetos, A.; Edmonds, J. Implications of limiting CO2 concentrations for land use and energy. Science 2009, 324, 1183–1186. [Google Scholar] [CrossRef]
- Riahi, K.; Grόbler, A.; Nakicenovic, N. Scenarios of long-term socio-economic and environmental development under climate stabilization. Technol. Forecast. Soc. Chang. 2007, 74, 887–935. [Google Scholar] [CrossRef]
- VDI 3787. Part I: Environmental Meteorology, Methods for the Human Biometeorological Evaluation of Climate and Air Quality for the Urban and Regional Planning at Regional Level. Part I: Climate; Beuth: Berlin, Germany, 1998. [Google Scholar]
- Matzarakis, A.; Fröhlich, D.; Bermon, S.; Adami, P.E. Quantifying Thermal Stress for Sport Events—The Case of the Olympic Games 2020 in Tokyo. Atmosphere 2018, 9, 479. [Google Scholar] [CrossRef]
Months | Mean Temperature (°C) | Mean Maximum Temperature (°C) | Mean Minimum Temperature (°C) | Mean Relative Humidity (%) | Mean Cloudiness (octas) | Mean Precipitation (mm) | Prevailing Wind Direction | Mean Wind Speed (knots) |
---|---|---|---|---|---|---|---|---|
January | 10.85 | 13.13 | 8.71 | 72.53 | 5.00 | 74.89 | N | 14.74 |
February | 10.79 | 13.57 | 8.60 | 71.19 | 4.88 | 54.04 | N | 14.92 |
March | 12.16 | 15.17 | 9.71 | 69.97 | 4.31 | 49.17 | N | 13.41 |
April | 15.27 | 18.70 | 12.33 | 65.64 | 3.58 | 22.50 | N | 10.93 |
May | 19.61 | 23.42 | 16.02 | 60.23 | 2.48 | 13.62 | N | 8.82 |
June | 23.93 | 27.61 | 20.08 | 54.61 | 1.13 | 3.26 | N | 8.84 |
July | 25.65 | 29.13 | 22.30 | 55.81 | 0.37 | 0.31 | N | 11.36 |
August | 25.39 | 28.86 | 22.23 | 59.54 | 0.44 | 1.29 | N | 11.69 |
September | 22.81 | 26.17 | 19.94 | 64.17 | 1.49 | 7.39 | N | 11.08 |
October | 18.98 | 22.10 | 16.60 | 69.76 | 3.19 | 37.79 | N | 11.91 |
November | 15.56 | 18.38 | 13.27 | 73.17 | 4.30 | 58.76 | N | 11.72 |
December | 12.51 | 14.77 | 10.38 | 73.42 | 4.93 | 85.05 | N | 13.91 |
Year | 17.79 | 20.92 | 15.01 | 65.84 | 3.01 | 408.08 | N | 11.94 |
PET (°C) | Thermal Perception | Physiological Stress Level |
---|---|---|
<4 | Very Cold | Extreme Cold Stress |
4–8 | Cold | Strong Cold Stress |
8–13 | Cool | Moderate Cold Stress |
13–18 | Slightly Cool | Slight Cold Stress |
18–23 | Comfortable | No Thermal Stress |
23–29 | Slightly Warm | Slight Heat Stress |
29–35 | Warm | Moderate Heat Stress |
35–41 | Hot | Strong Heat Stress |
>41 | Very Hot | Extreme Heat Stress |
Parameter | Threshold |
---|---|
Cold stress | PET < 8 °C |
Thermal acceptability | 18 °C < PET < 29 °C |
Heat stress | PET > 35 °C |
Sunny days | Cloud cover < 4 octas |
Fog | Relative humidity > 93% |
Sultriness | Vapor pressure > 18 hPa |
Dry days | Precipitation ≤ 1 mm |
Rain | Precipitation > 5 mm |
Stormy conditions | Wind velocity > 8 m/s |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nastos, P.T.; Matzarakis, A. Present and Future Climate—Tourism Conditions in Milos Island, Greece. Atmosphere 2019, 10, 145. https://doi.org/10.3390/atmos10030145
Nastos PT, Matzarakis A. Present and Future Climate—Tourism Conditions in Milos Island, Greece. Atmosphere. 2019; 10(3):145. https://doi.org/10.3390/atmos10030145
Chicago/Turabian StyleNastos, Panagiotis T., and Andreas Matzarakis. 2019. "Present and Future Climate—Tourism Conditions in Milos Island, Greece" Atmosphere 10, no. 3: 145. https://doi.org/10.3390/atmos10030145
APA StyleNastos, P. T., & Matzarakis, A. (2019). Present and Future Climate—Tourism Conditions in Milos Island, Greece. Atmosphere, 10(3), 145. https://doi.org/10.3390/atmos10030145