Time-Scaling Properties of Sunshine Duration Based on Detrended Fluctuation Analysis over China
Abstract
:1. Introduction
2. Data Records and Method
2.1. Data Records
2.2. The DFA Method
- In order to investigate the correlation characteristics in the SSD time series, xi, i = 1…N, N is the length of the time series. The SSD anomaly time series is integrated to obtain profile Y(i), and I = 1, …, N, is then obtained as follows.
- The local trend Pn(i) in each box of length s is calculated by a least-squares fit of the data records. Then, the integrated time series Yn(i) is detrended by subtracting the local trend.Yn(i) = Y(i) − Pn(i)
- The root-mean-square deviation of the profile from these local polynomial fits determines the deviation F(s) for a given n-size box.Finally, for long-range correlated data records, follows a power-law relationship and increases with time window s. The power-law relationship can be exhibited by a linear log-log plot, where α is the scaling exponent. In this method, the scaling exponent α taking values from 0 to 1 (0 < α < 1) allows the measure of LRCs for the time series as follows.
- If α = 0.5, Gaussian random walks.
- If 0.5 < α < 1, positive LRCs are indicated and the time series is persistent.
- If 0 < α < 0.5, the time series is anti-persistent.
3. Results
4. Discussion and Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Benson, R.B.; Paris, M.V.; Sherry, J.E.; Justus, C.G. Estimation of daily and monthly direct, diffuse and global solar radiation from sunshine duration measurements. Sol. Energy 1984, 32, 523–535. [Google Scholar] [CrossRef]
- Akpabio, L.E.; Etuk, S.E. Relationship between global solar radiation and sunshine duration for Onne, Nigeria. Turk. J. Phys. 2003, 27, 161–167. [Google Scholar]
- Gopinathan, K.K. A general formula for computing the coefficients of the correlation connecting global solar radiation to sunshine duration. Sol. Energy 1988, 41, 499–502. [Google Scholar] [CrossRef]
- Almorox, J.Y.; Hontoria, C. Global solar radiation estimation using sunshine duration in Spain. Energy Convers. Manag. 2004, 45, 1529–1535. [Google Scholar] [CrossRef]
- Che, H.Z.; Shi, G.Y.; Zhang, X.Y.; Arimoto, R.; Zhao, J.Q.; Xu, L.; Wang, B.; Chen, Z.H. Analysis of 40 years of solar radiation data from China, 1961–2000. Geophys. Res. Lett. 2005, 32. [Google Scholar] [CrossRef] [Green Version]
- Wang, Y.; Zhang, L. Relationship between global solar radiation and sunshine duration for Northwest China. Int. J Phys. Sci. 2010, 5, 1023–1033. [Google Scholar]
- Aksoy, B. Analysis of changes in sunshine duration data for Ankara, Turkey. Theor. Appl. Climatol. 1999, 64, 229–237. [Google Scholar] [CrossRef]
- Kaiser, D.P.; Qian, Y. Decreasing trends in sunshine duration over China for 1954–1998: Indication of increased haze pollution? Geophys. Res. Lett. 2002, 29, 38-1–38-4. [Google Scholar] [CrossRef]
- Liu, S.C.; Wang, C.H.; Shiu, C.J.; Chang, H.W.; Hsiao, C.K.; Liaw, S.H. Reduction in sunshine duration over Taiwan: Causes and implications. Terr. Atmos. Ocean. Sci. 2002, 13, 523–546. [Google Scholar] [CrossRef]
- Zheng, X.; Kang, W.; Zhao, T.; Luo, Y.; Duan, C.; Chen, J. Long-term trends in sunshine duration over Yunnan-Guizhou Plateau in Southwest China for 1961–2005. Geophys. Res. Lett. 2008, 35. [Google Scholar] [CrossRef] [Green Version]
- Yang, Y.H.; Zhao, N.; Hao, X.H.; Li, C.Q. Decreasing trend of sunshine hours and related driving forces in North China. Theor. Appl. Climatol. 2009, 97, 91–98. [Google Scholar] [CrossRef]
- Peng, C.K.; Buldyrev, S.V.; Havlin, S.; Simons, M.; Stanley, H.E.; Goldberger, A.L. Mosaic organization of DNA nucleotides. Phys. Rev. E 1994, 49, 1685–1689. [Google Scholar] [CrossRef]
- Bunde, A.; Havlin, S.; Kantelhardt, J.W.; Penzel, T.; Peter, J.H.; Voigt, K. Correlated and uncorrelated regions in heart-rate fluctuations during sleep. Phys. Rev. Lett. 2000, 85, 3736–3739. [Google Scholar] [CrossRef]
- Kantelhardt, J.W.; Koscielny-Bunde, E.; Rego, H.H.; Havlin, S.; Bunde, A. Detecting long-range correlations with detrended fluctuation analysis. Physica A 2001, 295, 441–454. [Google Scholar] [CrossRef] [Green Version]
- Weber, R.O.; Talkner, P. Spectra and correlations of climate data from days to decades. J. Geophys. Res. 2001, 106, 20131–20144. [Google Scholar] [CrossRef] [Green Version]
- Eichner, J.F.; Koscielny-Bunde, E.; Bunde, A.; Havlin, S.; Schellnhuber, H.J. Power-law persistence and trends in the atmosphere: A detailed study of long temperature records. Phys. Rev. E 2003, 68, 046133. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Blender, R.; Fraedrich, K. Long time memory in global warming simulations. Geophys. Res. Lett. 2003, 30. [Google Scholar] [CrossRef] [Green Version]
- Lin, G.; Fu, Z. A universal model to characterize different multi-fractal behaviors of daily temperature records over China. Physica A 2008, 387, 573–579. [Google Scholar] [CrossRef]
- Yuan, N.; Fu, Z.; Mao, J. Different scaling behaviors in daily temperature records over China. Physica A 2010, 389, 4087–4095. [Google Scholar] [CrossRef]
- Varotsos, C.A.; Efstathiou, M.N.; Cracknell, A.P. On the scaling effect in global surface air temperature anomalies. Atmos. Chem. Phys. 2013, 13, 5243–5253. [Google Scholar] [CrossRef] [Green Version]
- Jiang, L.; Yuan, N.; Fu, Z.; Wang, D.; Zhao, X.; Zhu, X. Subarea characteristics of the long-range correlations, the index χ for daily temperature records over China. Theor. Appl. Climatol. 2012, 109, 261–270. [Google Scholar] [CrossRef]
- Jiang, L.; Li, N.; Fu, Z.; Zhang, J. Long-range correlation behaviors for the 0-cm average ground surface temperature and average air temperature over China. Theor. Appl. Climatol. 2015, 119, 25–31. [Google Scholar] [CrossRef]
- Jiang, L.; Li, N.; Zhao, X. Scaling behaviors of precipitation over China. Theor. Appl. Climatol. 2017, 128, 63–70. [Google Scholar] [CrossRef]
- Chen, X.; Lin, G.; Fu, Z. Long-range correlations in daily relative humidity fluctuations: A new index to characterize the climate regions over China. Geophys. Res. Lett. 2007, 34. [Google Scholar] [CrossRef] [Green Version]
- Monetti, R.A.; Havlin, S.; Bunde, A. Long-term persistence in the sea surface temperature fluctuations. Physica A 2003, 320, 581–589. [Google Scholar] [CrossRef] [Green Version]
- Luo, M.; Leung, Y.; Zhou, Y.; Zhang, W. Scaling behaviors of global sea surface temperature. J. Clim. 2015, 28, 3122–3132. [Google Scholar] [CrossRef]
- Jiang, L.; Zhang, J.; Liu, X.; Li, F. Multi-fractal scaling comparison of the Air Temperature and the Surface Temperature over China. Physica A 2016, 462, 783–792. [Google Scholar] [CrossRef]
- Chen, Z.; Ivanov, P.C.; Hu, K.; Stanley, H.E. Effect of nonstationarities on detrended fluctuation analysis. Phys. Rev. E 2002, 65, 041107. [Google Scholar] [CrossRef]
- Koscielny-Bunde, E.; Bunde, A.; Havlin, S.; Goldreich, Y. Analysis of daily temperature fluctuations. Physica A 1986, 231, 393–396. [Google Scholar] [CrossRef]
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jiang, L.; Zhang, J.; Fang, Y. Time-Scaling Properties of Sunshine Duration Based on Detrended Fluctuation Analysis over China. Atmosphere 2019, 10, 83. https://doi.org/10.3390/atmos10020083
Jiang L, Zhang J, Fang Y. Time-Scaling Properties of Sunshine Duration Based on Detrended Fluctuation Analysis over China. Atmosphere. 2019; 10(2):83. https://doi.org/10.3390/atmos10020083
Chicago/Turabian StyleJiang, Lei, Jiping Zhang, and Yan Fang. 2019. "Time-Scaling Properties of Sunshine Duration Based on Detrended Fluctuation Analysis over China" Atmosphere 10, no. 2: 83. https://doi.org/10.3390/atmos10020083
APA StyleJiang, L., Zhang, J., & Fang, Y. (2019). Time-Scaling Properties of Sunshine Duration Based on Detrended Fluctuation Analysis over China. Atmosphere, 10(2), 83. https://doi.org/10.3390/atmos10020083