Features of Urban Heat Island in Mountainous Chongqing from a Dense Surface Monitoring Network
Abstract
:1. Introduction
2. Data and Methods
3. Mean Diurnal Cycle of UHI Intensity in Chongqing City
3.1. UHI Intensity General Features and Relationship with Urbanization
3.2. Possible Indicators of UHI Intensity
4. Seasonal Variations of UHI Intensity
5. Discussions and Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Oke, T.R. The distinction between canopy and boundary layer urban heat islands. Atmosphere 1976, 14, 268–277. [Google Scholar] [CrossRef]
- Oke, T.R. Canyon geometry and the nocturnal urban heat island: Comparison of scale model and field observations. Int. J. Climatol. 1981, 1, 237–254. [Google Scholar] [CrossRef]
- Oke, T.R. The energetic basis of the urban heat island. Q. J. R. Meteorol. Soc. 1982, 108, 1–24. [Google Scholar] [CrossRef]
- Arnfield, A.J. Two decades of urban climate research: A review of turbulence, exchanges of energy and water, and the urban heat island. Int. J. Climatol. 2003, 23, 1–26. [Google Scholar] [CrossRef]
- Hu, X.M.; Xue, M.; Klein, P.M.; Illston, B.G.; Chen, S. Analysis of urban effects in Oklahoma City using a dense surface observing network. J. Appl. Meteorol. Climatol. 2016, 55, 723–741. [Google Scholar] [CrossRef]
- Morini, E.; Castellani, B.; Presciutti, A.; Filipponi, M.; Nicolini, A.; Rossi, F. Optic-energy performance improvement of exterior paints for buildings. Energy Build. 2017, 139, 690–701. [Google Scholar] [CrossRef]
- Nouri, A.S.; Costa, J.P.; Santamouris, M.; Matzarakis, A. Approaches to outdoor thermal comfort thresholds through public xpace design: A Review. Atmosphere 2018, 9, 108. [Google Scholar] [CrossRef]
- Castaldo, V.L.; Coccia, V.; Cotana, F.; Pignatta, G.; Pisello, A.L.; Rossi, F. Thermal-energy analysis of natural “cool” stone aggregates as passive cooling and global warming mitigation technique. Urban Clim. 2015, 14, 301–314. [Google Scholar] [CrossRef]
- Yang, J.; Kumar, D.I.M.; Pyrgou, A.; Chong, A.; Santamouris, M.; Kolokotsa, D.; Eang, L.S. Green and cool roofs’ urban heat island mitigation potential in tropical climate. Sol. Energy 2018, 173, 597–609. [Google Scholar] [CrossRef]
- Miao, S.G.; Chen, F.; Lemone, M.A.; Tewari, M.; Li, Q.C.; Wang, Y.C. An observational and modeling study of characteristics of urban heat island and boundary layer structures in Beijing. J. Appl. Meteorol. Climatol. 2009, 48, 484–501. [Google Scholar] [CrossRef]
- Morini, E.; Touchaei, A.G.; Rossi, F.; Cotana, F.; Akbari, H. Evaluation of albedo enhancement to mitigate impacts of urban heat island in Rome (Italy) using WRF meteorological model. Urban Clim. 2018, 24, 551–566. [Google Scholar] [CrossRef]
- Yang, P.; Ren, G.; Liu, W. Spatial and temporal characteristics of Beijing urban heat island intensity. J. Appl. Meteorol. Climatol. 2013, 52, 1803–1816. [Google Scholar] [CrossRef]
- Bassett, R.; Cai, X.; Chapman, L.; Heaviside, C.; Thornes, J.E.; Muller, C.L.; Young, D.T.; Warren, E.L. Observations of urban heat island advection from a high-density monitoring network. Q. J. R. Meteorol. Soc. 2016, 142, 2434–2441. [Google Scholar] [CrossRef]
- Hu, X.-M.; Xue, M. Influence of synoptic sea-breeze fronts on the urban heat island intensity in Dallas–Fort Worth, Texas. Mon. Weather Rev. 2016, 144, 1487–1507. [Google Scholar] [CrossRef]
- Lee, D.O. Urban warming? An analysis of recent trends in London’s heat island. Weather 1992, 47, 50–56. [Google Scholar] [CrossRef]
- Kim, Y.-H.; Baik, J.-J. Maximum urban heat island intensity in Seoul. J. Appl. Meteorol. 2002, 41, 651–659. [Google Scholar] [CrossRef]
- Ganbat, G.; Han, J.-Y.; Ryu, Y.-H.; Baik, J.-J. Characteristics of the urban heat island in a high-altitude metropolitan city, Ulaanbaatar, Mongolia. Asia-Pac. J. Atmos. Sci. 2013, 49, 535–541. [Google Scholar] [CrossRef]
- Magee, N.; Curtis, J.; Wendler, G. The urban heat island effect at Fairbanks, Alaska. Theor. Appl. Climatol. 1999, 64, 39–47. [Google Scholar] [CrossRef]
- Philandras, C.M.; Metaxas, D.A.; Nastos, P.T. Climate variability and urbanization in Athens. Theor. Appl. Climatol. 1999, 63, 65–72. [Google Scholar] [CrossRef]
- Fenner, D.; Meier, F.; Scherer, D.; Polze, A. Spatial and temporal air temperature variability in Berlin, Germany, during the years 2001–2010. Urban Clim. 2014, 10, 308–331. [Google Scholar] [CrossRef]
- Basara, J.B.; Basara, H.G.; Illston, B.G.; Crawford, K.C. The impact of the urban heat island during an intense heat wave in Oklahoma City. Adv. Meteorol. 2010, 7, 185–194. [Google Scholar] [CrossRef]
- Peng, S.S.; Piao, S.L.; Ciais, P.; Friedlingstein, P.; Ottle, C.; Breon, F.-M.; Nan, H.; Zhou, L.; Myneni, R.B. Surface urban heat island across 419 global big cities. Environ. Sci. Technol. 2011, 46, 696–703. [Google Scholar] [CrossRef] [PubMed]
- Cui, Y.; de Foy, B. Seasonal variations of the urban heat island at the surface and the near-surface and reductions due to urban vegetation in Mexico City. J. Appl. Meteorol. Climatol. 2012, 51, 855–868. [Google Scholar] [CrossRef]
- Zeng, M. Study on Spatial-Temporal Distribution and Causes of Urban Heat Island in Chongqing. Master’s Thesis, Southwest University, Chongqing, China, 2014. (In Chinese). [Google Scholar]
- Yang, P.; Liu, W.; Zhong, J.; Yang, J. Evaluating the Quality of Temperature Measured at Automatic Weather Stations in Beijing. J. Appl. Meteorol. Sci. 2011, 22, 706–715. (In Chinese) [Google Scholar]
- Basara, J.B.; Hall, P.K.; Schroeder, A.J.; Illston, B.G.; Nemunaitis, K.L. Diurnal cycle of the Oklahoma City urban heat island. J. Geophys. Res. Atmos. 2008, 113, 1–16. [Google Scholar] [CrossRef]
- Small, C.; Pozzi, F.; Elvidge, C.D. Spatial analysis of global urban extent from DMSP-OLS night lights. Remote Sens. Environ. 2005, 96, 277–291. [Google Scholar] [CrossRef]
- Zhang, Q.; Seto, K.C. Mapping urbanization dynamics at regional and global scales using multi-temporal DMSP/OLS nighttime light data. Remote Sens. Environ. 2011, 115, 2320–2329. [Google Scholar] [CrossRef]
- Li, Q.; Lu, L.; Weng, Q.; Xie, Y.; Guo, H. Monitoring urban dynamics in the Southeast U.S.A. using time-series DMSP/OLS nightlight imagery. Remote Sens. 2016, 8, 578. [Google Scholar] [CrossRef]
- Kim, Y.-H.; Baik, J.-J. Spatial and temporal structure of the urban heat island in Seoul. J. Appl. Meteorol. Climatol. 2005, 44, 591–605. [Google Scholar] [CrossRef]
- Clark, M.R.; Parker, D.J. On the Mesoscale Structure of Surface Wind and Pressure Fields near Tornadic and Nontornadic Cold Fronts. Mon. Weather Rev. 2014, 142, 3560–3585. [Google Scholar] [CrossRef]
- Miao, S.; Li, P.; Wang, X. Building morphological characteristics and their effect on the wind in Beijing. Adv. Atmos. Sci. 2009, 26, 1115–1124. [Google Scholar] [CrossRef]
- Karl, T.R.; Jones, P.D.; Knight, R.W.; Kukla, G.; Plummer, N.; Razuvayev, V.; Gallo, K.P.; Lindseay, J.; Charlson, R.J.; Peterson, T. A new perspective on cecent global warming: Asymmetric trends of daily maximum and minimum temperature. Bull. Am. Meteorol. Soc. 1993, 74, 1007–1024. [Google Scholar] [CrossRef]
- Gedzelman, S.D.; Austin, S.; Cermak, R.; Stefano, N.; Partridge, S.; Quesenberry, S.; Robinson, D.A. Mesoscale aspects of the urban heat island around New York City. Theor. Appl. Climatol. 2003, 75, 29–42. [Google Scholar]
- Zhao, L.; Lee, X.; Smith, R.B.; Oleson, K. Strong contributions of local background climate to urban heat islands. Nature 2014, 511, 216–219. [Google Scholar] [CrossRef]
- Schwarz, N.; Lautenbach, S.; Seppelt, R. Exploring indicators for quantifying surface urban heat islands of European cities with MODIS land surface temperatures. Remote Sens. Environ. 2011, 115, 3175–3186. [Google Scholar] [CrossRef]
- Hu, Y.; Jia, G. Influence of land use change on urban heat island derived from multi-sensor data. Int. J. Climatol. 2010, 30, 1382–1395. [Google Scholar] [CrossRef]
- Yang, X.; Li, Y. The impact of building density and building height heterogeneity on average urban albedo and street surface temperature. Build. Environ. 2015, 90, 146–156. [Google Scholar] [CrossRef]
- Park, S.-B.; Baik, J.-J. Large-eddy simulations of convective boundary layers over flat and urbanlike surfaces. J. Atmos. Sci. 2014, 71, 1880–1892. [Google Scholar] [CrossRef]
- Yoo, C.; Lee, S.; Feldstein, S.B. Mechanisms of arctic surface air temperature change in response to the Madden-Julian oscillation. J. Clim. 2012, 25, 5777–5790. [Google Scholar] [CrossRef]
- Liu, W.T.; Katsaros, K.B.; Businger, J.A. Bulk parameterization of air-sea exchanges of heat and water vapor including the molecular constraints at the interface. J. Atmos. Sci. 1979, 36, 1722–1735. [Google Scholar] [CrossRef]
- Kamal, S.; Huang, H.P.; Myint, S.W. The influence of urbanization on the climate of the Las Vegas metropolitan area: A numerical study. J. Appl. Meteorol. Climatol. 2015, 54, 2157–2177. [Google Scholar] [CrossRef]
- Hu, X.-M.; Klein, P.M.; Xue, M.; Lundquist, J.K.; Zhang, F.; Qi, Y. Impact of low-level jets on the nocturnal urban heat island intensity in Oklahoma City. J. Appl. Meteorol. Climatol. 2013, 52, 1779–1802. [Google Scholar] [CrossRef]
- Nelson, M.; Pardyjak, E.R.; Klein, P.M. Momentum and turbulent kinetic energy budgets within the Park Avenue street canyon during the Joint Urban 2003 Field Campaign. Bound.-Lay. Meteorol. 2011, 140, 143–162. [Google Scholar] [CrossRef]
- Yow, D.M.; Carbone, G.J. The urban heat island and local temperature variations in Orlando, Florida. Southeast. Geogr. 2006, 46, 297–321. [Google Scholar] [CrossRef]
- Sala, J.Q.; Olcina, A.G.; Cuevas, A.P.; Cantos, J.O.; Amoros, A.R.; Chiva, E.M. Climatic warming in the Spanish Mediterranean: Natural trend or urban effect. Clim. Chang. 2000, 46, 473–483. [Google Scholar] [CrossRef]
- Shao, J.; Li, Y.; Ni, J. The characteristics of temperature variability with terrain, latitude and longitude in Sichuan-Chongqing Region. J. Geogr. Sci. 2012, 22, 223–244. [Google Scholar] [CrossRef]
- Yim, S.H.L.; Fung, J.C.H.; Lau, A.K.H.; Kot, S.C. Developing a high-resolution wind map for a complex terrain with a coupled MM5/CALMET system. J. Geophys. Res. Atmos. 2007, 112. [Google Scholar] [CrossRef]
- Wagenbrenner, N.S.; Forthofer, J.M.; Lamb, B.K.; Shannon, K.S.; Butler, B.W. Downscaling surface wind predictions from numerical weather prediction models in complex terrain with WindNinja. Atmos. Chem. Phys. 2016, 16, 5229–5241. [Google Scholar] [CrossRef]
Rural | Suburban | Urban | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
ID | Longitude °E | Latitude °N | Elevation m | NNLI | ID | Longitude °E | Latitude °N | Elevation m | NNLI | ID | Longitude °E | Latitude °N | Elevation m | NNLI |
A7296 | 106.793 | 29.992 | 455.3 | 0.006 | A7481 | 106.938 | 29.697 | 203.0 | 0.030 | A8038 | 106.414 | 29.570 | 517.9 | 0.203 |
A7302 | 106.619 | 29.975 | 300.0 | 0.007 | A7074 | 106.571 | 29.910 | 394.0 | 0.031 | A8034 | 106.365 | 29.494 | 312.0 | 0.237 |
A7490 | 106.739 | 29.158 | 650.0 | 0.007 | A7470 | 106.651 | 29.346 | 286.5 | 0.032 | A7452 | 106.424 | 29.346 | 220.0 | 0.248 |
A7473 | 106.881 | 29.184 | 701.0 | 0.008 | A7317 | 106.390 | 29.761 | 244.8 | 0.045 | A8048 | 106.428 | 29.405 | 241.0 | 0.259 |
A7322 | 106.855 | 29.255 | 569.9 | 0.010 | A7378 | 106.487 | 29.926 | 271.1 | 0.054 | A8035 | 106.540 | 29.491 | 250.0 | 0.275 |
A7301 | 106.786 | 29.919 | 401.2 | 0.012 | A7465 | 106.212 | 29.208 | 224.0 | 0.054 | A8043 | 106.609 | 29.598 | 224.0 | 0.277 |
A7345 | 106.297 | 29.798 | 295.0 | 0.013 | A7023 | 106.833 | 29.861 | 220.0 | 0.055 | A7021 | 106.463 | 29.729 | 336.0 | 0.340 |
A7033 | 106.217 | 29.700 | 415.0 | 0.014 | A7316 | 106.438 | 29.841 | 228.0 | 0.062 | A8047 | 106.493 | 29.431 | 215.0 | 0.453 |
A7482 | 106.819 | 29.398 | 242.0 | 0.015 | A8010 | 106.698 | 29.636 | 560.0 | 0.065 | A8007 | 106.479 | 29.471 | 310.0 | 0.468 |
A7483 | 106.803 | 29.512 | 200.5 | 0.016 | A7390 | 106.351 | 29.944 | 233.8 | 0.079 | A8009 | 106.564 | 29.537 | 315.0 | 0.613 |
A7474 | 106.903 | 29.605 | 220.7 | 0.017 | A7467 | 106.386 | 29.243 | 219.0 | 0.080 | A8045 | 106.507 | 29.506 | 256.0 | 0.708 |
A7305 | 106.881 | 29.811 | 191.1 | 0.017 | A7136 | 106.440 | 29.685 | 227.0 | 0.082 | A6100 | 106.486 | 29.590 | 266.0 | 0.782 |
A7471 | 106.930 | 29.532 | 558.0 | 0.018 | A8032 | 106.771 | 29.597 | 202.0 | 0.096 | A8002 | 106.489 | 29.523 | 377.1 | 0.790 |
A7472 | 106.774 | 29.469 | 258.0 | 0.019 | A7348 | 106.176 | 29.588 | 445.6 | 0.108 | A8000 | 106.511 | 29.602 | 342.0 | 0.883 |
A7032 | 106.167 | 29.500 | 275.0 | 0.020 | A8005 | 106.379 | 29.707 | 267.8 | 0.120 | A7001 | 106.530 | 29.380 | 242.6 | 0.953 |
A7135 | 106.383 | 29.850 | 213.3 | 0.020 | A8003 | 106.409 | 29.643 | 511.5 | 0.122 | |||||
A7076 | 106.934 | 29.734 | 193.0 | 0.020 | A8036 | 106.446 | 29.461 | 277.0 | 0.164 | |||||
A9015 | 106.349 | 29.716 | 261.4 | 0.022 | A8011 | 106.606 | 29.555 | 510.0 | 0.165 | |||||
A7133 | 106.763 | 29.853 | 460.0 | 0.026 | A7362 | 106.167 | 29.817 | 260.0 | 0.171 | |||||
A8037 | 106.853 | 29.649 | 278.0 | 0.029 | A8046 | 106.330 | 29.301 | 299.0 | 0.198 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jiang, P.; Liu, X.; Zhu, H.; Li, Y. Features of Urban Heat Island in Mountainous Chongqing from a Dense Surface Monitoring Network. Atmosphere 2019, 10, 67. https://doi.org/10.3390/atmos10020067
Jiang P, Liu X, Zhu H, Li Y. Features of Urban Heat Island in Mountainous Chongqing from a Dense Surface Monitoring Network. Atmosphere. 2019; 10(2):67. https://doi.org/10.3390/atmos10020067
Chicago/Turabian StyleJiang, Ping, Xiaoran Liu, Haonan Zhu, and Yonghua Li. 2019. "Features of Urban Heat Island in Mountainous Chongqing from a Dense Surface Monitoring Network" Atmosphere 10, no. 2: 67. https://doi.org/10.3390/atmos10020067
APA StyleJiang, P., Liu, X., Zhu, H., & Li, Y. (2019). Features of Urban Heat Island in Mountainous Chongqing from a Dense Surface Monitoring Network. Atmosphere, 10(2), 67. https://doi.org/10.3390/atmos10020067