Research Progress of HP Characteristics, Hazards, Control Technologies, and Measures in China after 2013
Abstract
:1. Introduction
2. Overview of the Basic Situation of Haze
2.1. Main Causes of HW Formation
2.2. Temporal and Spatial Distribution Characteristics of HP
2.3. Major Source of Haze PM in Different Regions
3. Hazards of HP
3.1. Effects of HP on Human Health, Production, and Life
3.1.1. Effects of HP on Human Health
3.1.2. Effects of HP on Human Production and Life
3.2. Effects of HP on Economic Losses
3.3. Effects of HP on Atmospheric Environment
4. Prevention and Control Technologies and Measures of HP
4.1. Source Control Technologies and Measures
4.2. Non-Source Control Technologies and Measures
5. Conclusions and Prospects
- (1)
- The situation of HP in China is getting better year by year, which is closely related to the national policy and vigorous supervision, while it has been a pattern of high levels in the north and low levels in the south.
- (2)
- In most regions of China, the contribution of secondary source for HP is relatively large, and that of traffic is greater in the regions with rapid economic development.
- (3)
- HP not only causes serious harm to human health, including the mental mood, but also the effects on the human production and life, plant growth, property, and atmospheric environment cannot be ignored.
- (4)
- The source and non-source control technologies and measures of HP were the first surveyed, and from which we found that the current research on non-source control technology of HP is not in-depth and it has not been widely applied at present.
- (5)
- The source apportionment of PM in the atmosphere is the premise of accurate and effective control of HP. At present, the research on source apportionment of PM is mainly concentrated in the developed regions such as municipalities and provincial capitals, while that on small- and medium-sized cities or underdeveloped regions is relatively scarce, and the conclusions of different source apportionment technologies are not consistent. Therefore, in the next step, we should further promote the sources apportionment of PM, and then establish a dynamic database of the sources of haze pollutants in different regions.
- (6)
- In most regions of China, the proportion of secondary sources is relatively larger. Therefore, it is necessary to have a deeper understanding of the formation mechanism of secondary pollution sources, so as to provide a substantial theoretical basis for further control HP.
- (7)
- At present, China relies on the government to lead and constantly improve relevant laws and regulations, but individual or public participation is very limited. Therefore, while studies on the legal countermeasures of HP were strengthened, we should further enhance people’s awareness of environmental protection and improve the social health security system, so as to ensure the unity of efforts from the top to the bottom.
- (8)
- In studies on the technologies and measures to control HP, the key point is on the source control technology and measures, but the research on the non-source control technology and measures is not deep enough. Thus, at the same time as reducing the emission of PM to the atmosphere, we should also pay attention to reducing the concentration of existing PM in the atmosphere, and then, build a twin-track strategy to ensure the purification capacity of the atmosphere itself.
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- China Meteorological Administration. Haze and its Definition. 2013. Available online: http://www.cma.go-v.cn/kppd/kppdqxwq/kppdjckp/201301/t20130114_202783.html (accessed on 22 September 2013).
- Bari, M.A.; Kindzierski, W.B. Characterization of air quality and sources of fine particulate matter (PM2.5) in the City of Calgary, Canada. Atmos. Pollut. Res. 2018, 9, 534–543. [Google Scholar] [CrossRef]
- Tadros, C.V.; Crawford, J.; Treble, P.C.; Baker, A.; Cohen, D.D.; Atanacio, A.J.; Hankin, S.; Roach, R. Chemical characterisation and source identification of atmospheric aerosols in the Snowy Mountains, south-eastern Australia. Sci. Total Environ. 2018, 630, 432–443. [Google Scholar] [CrossRef] [PubMed]
- Querol, X.; Perez, N.; Reche, C.; Ealo, M.; Ripoll, A.; Tur, J.; Pandolfi, M.; Pey, J.; Salvador, P.; Moreno, T.; et al. African dust and air quality over Spain: Is it only dust that matters? Sci. Total Environ. 2019, 686, 737–752. [Google Scholar] [CrossRef] [PubMed]
- Perez-Martinez, P.J.; de Fatima Andrade, M.; de Miranda, R.M. Heavy truck restrictions and air quality implications in Sao Paulo, Brazil. J. Environ. Manag. 2017, 202, 55–68. [Google Scholar] [CrossRef]
- Thunis, P.; Degraeuwe, B.; Pisoni, E.; Trombetti, M.; Peduzzi, E.; Belis, C.A.; Wilson, J.; Clappier, A.; Vignati, E. PM2.5 source allocation in European cities: A SHERPA modelling study. Atmos. Environ. 2018, 187, 93–106. [Google Scholar] [CrossRef]
- Szigeti, T.; Mihucz, V.G.; Óvári, M.; Baysal, A.; Atılgan, S.; Akman, S.; Záray, G. Chemical characterization of PM2.5 fractions of urban aerosol collected in Budapest and Istanbul. Microchem. J. 2013, 107, 86–94. [Google Scholar] [CrossRef]
- Sullivan, T.J.; Driscoll, C.T.; Beier, C.M.; Burtraw, D.; Fernandez, I.J.; Galloway, J.N.; Gay, D.A.; Goodale, C.L.; Likens, G.E.; Lovett, G.M.; et al. Air pollution success stories in the United States: The value of long-term observations. Environ. Sci. Policy 2018, 84, 69–73. [Google Scholar] [CrossRef]
- Zeng, L.W.; Offor, F.; Zhan, L.X.; Lyu, X.P.; Liang, Z.R.; Zhang, L.Y.; Wang, J.Y.; Cheng, H.R.; Guo, H. Comparison of PM2.5 pollution between an African city and an Asian metropolis. Sci. Total Environ. 2019, 696. [Google Scholar] [CrossRef]
- Sulong, N.A.; Latif, M.T.; Khan, M.F.; Amil, N.; Ashfold, M.J.; Wahab, M.I.A.; Chan, K.M.; Sahani, M. Source apportionment and health risk assessment among specific age groups during haze and non-haze episodes in Kuala Lumpur, Malaysia. Sci. Total Environ. 2017, 601–602, 556–570. [Google Scholar] [CrossRef]
- Shahid, I.; Kistler, M.; Mukhtar, A.; Ghauri, B.M.; Ramirez-Santa Cruz, C.; Bauer, H.; Puxbaum, H. Chemical characterization and mass closure of PM10 and PM2.5 at an urban site in Karachi—Pakistan. Atmos. Environ. 2016, 128, 114–123. [Google Scholar] [CrossRef]
- China’s State Council. Action Plan for Air Pollution Prevention and Control. 2013. Available online: http://gov.cn/zwgk/2013-09/12/content_2486773.html (accessed on 15 September 2013).
- Beijing Municipal Government. 2013–2017 Clean Air Action Plan of Beijing. 2013. Available online: http://zfxxgk.beijing.gov.cn/110001/szfwj/201309/12/c-ontentcae7ba16b4bb46d68d78a11e928aebcd.shtml (accessed on 18 September 2013).
- Zhang, J.K.; Sun, Y.; Liu, Z.R.; Ji, D.S.; Hu, B.; Liu, Q.; Wang, Y.S. Characterization of submicron aerosols during a month of serious pollution in Beijing, 2013. Atmos. Chem. Phys. 2014, 14, 2887–2903. [Google Scholar] [CrossRef]
- Liu, R.T.; Han, Z.W.; Li, J.W. Analysis of meteorological characteristics during winter haze events in Beijing. Clim. Environ. Res. 2014, 19, 164–172. (in Chinese). [Google Scholar] [CrossRef]
- National Bureau of Statistics. China Statistical Yearbook. 2014. Available online: http://www.sta-ts.gov.cn/tjsj/ndsj/2014/indexch.htm (accessed on 22 March 2014).
- National Bureau of Statistics. China Statistical Yearbook. 2015. Available online: http://www.sta-ts.gov.cn/tjsj/ndsj/2015/indexch.htm (accessed on 12 March 2015).
- National Bureau of Statistics. China Statistical Yearbook. 2016. Available online: http://www.sta-ts.gov.cn/tjsj/ndsj/2016/indexch.htm (accessed on 24 March 2016).
- National Bureau of Statistics. China Statistical Yearbook. 2017. Available online: http://www.sta-ts.gov.cn/tjsj/ndsj/2017/indexch.htm (accessed on 26 March 2017).
- National Bureau of Statistics. China Statistical Yearbook. 2018. Available online: http://www.sta-ts.gov.cn/tjsj/ndsj/2018/indexch.htm (accessed on 6 March 2018).
- Ministry of Ecology and Environment of the People’s Republic of China. Ambient air quality standards. 2012. Available online: http://kjs.mee.gov.cn/hjbhbz/bzw-b/dqhjbh/dqhjzlbz/201203/t20120302_22416-5.shtml (accessed on 6 May 2012).
- Wang, D.S. Experiences and implications of haze governance in Europe and America developed countries. Power Energy 2014, 35, 127–130. [Google Scholar] [CrossRef]
- Tian, D.W. Inspiration of control haze in England. Chin. Cadres Trib. 2014, 03, 86–89. [Google Scholar] [CrossRef]
- Cui, Y.H. Experience of European and American countries in air pollution control and its inspiration to the construction of ecological civilization in China. Int. Forum 2015, 17, 13–18. [Google Scholar] [CrossRef]
- Yuan, F. Atmospheric haze control and its inspiration in Japan—Historical Inspection of China’s economy. J. Chifeng Univ. (Nat. Sci. Ed.) 2015, 31, 14–16. [Google Scholar] [CrossRef]
- Cui, Y.H. The experience and enlightenment of USA governance in Los Angeles smog. J. Guangdong Univ. Foreign Stud. 2016, 27, 21–27. [Google Scholar] [CrossRef]
- Hswen, Y.; Qin, Q.; Brownstein, J.S.; Hawkins, J.B. Feasibility of using social media to monitor outdoor air pollution in London, England. Prev. Med. 2019, 121, 86–93. [Google Scholar] [CrossRef]
- Golly, B.; Waked, A.; Weber, S.; Samake, A.; Jacob, V.; Conil, S.; Rangognio, J.; Chrétien, E.; Vagnot, M.P.; Robic, P.Y.; et al. Organic markers and OC source apportionment for seasonal variations of PM2.5 at 5 rural sites in France. Atmos. Environ. 2019, 198, 142–157. [Google Scholar] [CrossRef]
- Hadley, O.L. Background PM2.5 source apportionment in the remote Northwestern United States. Atmos. Environ. 2017, 167, 298–308. [Google Scholar] [CrossRef]
- Wang, J.H.; Ogawa, S. Effects of Meteorological Conditions on PM2.5 Concentrations in Nagasaki, Japan. Int. J. Environ. Res. Public Health 2015, 12, 9089–9101. [Google Scholar] [CrossRef] [PubMed]
- Masiol, M.; Hopke, P.K.; Felton, H.D.; Frank, B.P.; Rattigan, O.V.; Wurth, M.J.; LaDuke, G.H. Source apportionment of PM 2.5 chemically speciated mass and particle number concentrations in New York City. Atmos. Environ. 2017, 148, 215–229. [Google Scholar] [CrossRef]
- Gao, J.H.; Woodward, A.; Vardoulakis, S.; Kovats, S.; Wilkinson, P.; Li, L.P.; Xu, L.; Li, J.; Yang, J.; Li, J.; et al. Haze, public health and mitigation measures in China: A review of the current evidence for further policy response. Sci. Total Environ. 2017, 578, 148–157. [Google Scholar] [CrossRef] [PubMed]
- Xie, Z.S.; Fan, C.L.; Lu, R.; Liu, P.X.; Wang, B.B.; Du, S.L.; Jin, C.; Deng, S.X.; Li, Y.P. Characteristics of ambient bioaerosols during haze episodes in China: A review. Environ. Pollut. 2018, 243, 1930–1942. [Google Scholar] [CrossRef] [PubMed]
- Guan, X.; Nie, H.L.; Song, L.L.; Gao, N. Discussion on the adjustment measures of energy structure for haze control in Beijing. Dist. Heat. 2016, 23–27. [Google Scholar] [CrossRef]
- Zhao, B.; Liou, K.N.; Gu, Y.; Li, Q.; Jiang, J.H.; Su, H.; He, C.; Tseng, H.R.; Wang, S.; Liu, R.; et al. Enhanced PM2.5 pollution in China due to aerosol-cloud interactions. Sci. Rep. 2017, 7, 4453. [Google Scholar] [CrossRef]
- Chen, D.; Ma, X.; Xie, X.; Wei, P.; Wen, W.; Xu, T.; Lang, J.; Yang, N.; Gao, Q.; Shi, H.; et al. Modelling the Effect of Aerosol Feedbacks on the Regional Meteorology Factors over China. Aerosol Air Qual. Res. 2015, 15, 1559–1579. [Google Scholar] [CrossRef]
- Gao, J.; Qiao, L.P.; Lou, S.R.; Yan, R.S.; Zhou, M.; Liu, Y.C.; Feng, J.L.; Huang, D.D. Secondary Aerosol Formation in Urban Shanghai: Insights into the Roles of Photochemical Oxidation and Aqueous-Phase Reaction. Environ. Sci. 2019, 40, 20–28. [Google Scholar] [CrossRef]
- Zhao, D.D.; Xin, J.Y.; Gong, C.S.; Quan, J.N.; Liu, G.N.; Zhao, W.P.; Wang, Y.S.; Liu, Z.; Song, T. The formation mechanism of air pollution episodes in Beijing city: Insights into the measured feedback between aerosol radiative forcing and the atmospheric boundary layer stability. Sci. Total Environ. 2019, 692, 371–381. [Google Scholar] [CrossRef]
- Feng, X.Y. Characteristics and formation mechanism of a haze event in the winter of Taiyuan investigated by single particle aerosol mass spectrometry (SPAMS). Environ. Chem. 2019, 38, 177–185. [Google Scholar] [CrossRef]
- Liu, Y.; Zheng, M.; Yu, M.Y.; Cai, X.H.; Du, H.Y.; Li, J.; Zhou, T.; Yan, C.Q.; Wang, X.S.; Shi, Z.B.; et al. High-time-resolution source apportionment of PM2.5 in Beijing with multiple models. Atmos. Chem. Phys. 2019, 19, 6595–6609. [Google Scholar] [CrossRef]
- Yang, Z.S. Research progress of haze pollution induced health effects in humans. Occup. Health 2014, 30, 2517–2520. [Google Scholar] [CrossRef]
- Yang, Y.R.; Liu, X.G.; Qu, Y.; Wang, J.L.; An, J.L.; Zhang, Y.H.; Zhang, F. Formation mechanism of continuous extreme haze episodes in the megacity Beijing, China, in January 2013. Atmos. Res. 2015, 155, 192–203. [Google Scholar] [CrossRef]
- Zhang, Y.W.; Zhang, X.Y.; Zhang, Y.M.; Shen, X.J.; Sun, J.Y.; Ma, Q.L.; Yu, X.M.; Zhu, J.L.; Zhang, L.; Che, H.C. Significant concentration changes of chemical components of PM1 in the Yangtze River Delta area of China and the implications for the formation mechanism of heavy haze-fog pollution. Sci. Total Environ. 2015, 538, 7–15. [Google Scholar] [CrossRef]
- Zhang, B.; Wang, Y.; Hao, J. Simulating aerosol–radiation–cloud feedbacks on meteorology and air quality over eastern China under severe haze conditions in winter. Atmos. Chem. Phys. 2015, 15, 2387–2404. [Google Scholar] [CrossRef]
- Ding, A.J.; Huang, X.; Nie, W.; Sun, J.N.; Kerminen, V.M.; Petäjä, T.; Su, H.; Cheng, Y.F.; Yang, X.Q.; Wang, M.H.; et al. Enhanced haze pollution by black carbon in megacities in China. Geophys. Res. Lett. 2016, 43, 2873–2879. [Google Scholar] [CrossRef]
- Shi, K.F.; Li, Y.; Chen, Y.; Li, L.Y.; Huang, C. How does the urban form-PM2.5 concentration relationship change seasonally in Chinese cities? A comparative analysis between national and urban agglomeration scales. J. Clean. Prod. 2019, 239, 118088. [Google Scholar] [CrossRef]
- Xie, Y.Z.; Liu, Z.R.; Wen, T.X.; Huang, X.J.; Liu, J.Y.; Tang, G.Q.; Yang, Y.; Li, X.R.; Shen, R.R.; Hu, B.; et al. Characteristics of chemical composition and seasonal variations of PM2.5 in Shijiazhuang, China: Impact of primary emissions and secondary formation. Sci. Total Environ. 2019, 677, 215–229. [Google Scholar] [CrossRef]
- Li, Y.; Xue, Y.; Guang, J.; de Leeuw, G.; Self, R.; She, L.; Fan, C.; Xie, Y.Q.; Chen, G.L. Spatial and temporal distribution characteristics of haze days and associated factors in China from 1973 to 2017. Atmos. Environ. 2019, 214. [Google Scholar] [CrossRef]
- Yang, Y.; Wang, H.L.; Hou, X.W.; Dong, X.B.; Zhu, L.L.; Fan, G.C.; Zhao, Y.L. Characteristics and formation mechanism of a long-term haze episode and the vertical distribution of aerosol concentration in Shijiazhuang. Acta Sci. Circumst. 2017, 37, 824–832. [Google Scholar] [CrossRef]
- Chen, R.M.; Wu, Y.; Kang, W.Y.; Wang, R.Y. Analysis of pollutant concentrations and characteristics of continuous smoggy weather. Clim. Environ. Res. 2014, 19, 209–218. [Google Scholar] [CrossRef]
- Jia, M.W.; Kang, N.; Zhao, T.L. Characteristics of typical autumn and winter haze pollution episodes and their boundary layer in Nanjing. Environ. Sci. Technol. 2014, 37, 105–110. [Google Scholar] [CrossRef]
- Chen, Q.; Sun, F.K.; Xu, Y.X. Does winter heating cause smog? evidence from a city panel in north China. Nankai Econ. Stud. 2017, 4, 27–42. [Google Scholar] [CrossRef]
- Wang, J.; Shi, R.H.; Li, L.; Zhang, L. Characteristics and formation mechanism of a heavy air pollution episode in Shanghai. Acta Sci. Circumst. 2015, 35, 1537–1546. [Google Scholar] [CrossRef]
- Wang, B.N.; Pu, M.J.; Miao, Q. Analysis of the characteristics and variation of pollutant concentrations for a long-lasting fog and haze event in the Jiangsu area. Trans. Atmos. Sci. 2016, 39, 243–252. [Google Scholar] [CrossRef]
- Zhou, Y.S.; Xiao, L.; Yan, J.; Xue, Y.F.; Yan, X. Pollutants reduction analysis based on air pollution source emission inventory in Beijing. Environ. Sustain. Dev. 2019, 44, 70–78. [Google Scholar] [CrossRef]
- Zheng, B.; Tong, D.; Li, M.; Liu, F.; Hong, C.; Geng, G.; Li, H.; Li, X.; Peng, L.; Qi, J.; et al. Trends in China’s anthropogenic emissions since 2010 as the consequence of clean air actions. Atmos. Chem. Phys. 2018, 18, 14095–14111. [Google Scholar] [CrossRef]
- Xiong, Y.; Zhou, J.B.; Schauer, J.J.; Yu, W.Y.; Hu, Y. Seasonal and spatial differences in source contributions to PM2.5 in Wuhan, China. Sci. Total Environ. (in Chinese). 2016, 577, 155–165. [Google Scholar] [CrossRef]
- Zhang, Y.J.; Zheng, M.; Cai, J.; Yan, C.Q.; Hu, Y.T.; Russell, A.G.; Wang, X.S.; Wang, S.X.; Zhang, Y.H. Comparison and overview of PM2.5 source apportionment methods. Chin. Sci. Bull. 2015, 60, 109–121. (in Chinese). [Google Scholar] [CrossRef]
- Gao, Z.X.; Wang, X.L.; Shen, L.J.; Xiang, H.; Wang, H.L. Observation and Source Apportionment of Trace Gases, Water-Soluble Ions and Carbonaceous Aerosol During a Haze Episode in Wuhan. Atmosphere 2019, 10, 397. [Google Scholar] [CrossRef]
- Zheng, M.; Zhang, Y.J.; Yan, C.Q.; Zhu, X.L.; James, J.S.; Zhang, Y.H. Review of PM2.5 source apportionment methods in China. Acta Sci. Nat. Univ. Pekin. 2014, 50, 1141–1154. [Google Scholar] [CrossRef]
- Zhu, Y.H.; Huang, L.; Li, J.Y.; Ying, Q.; Zhang, H.L.; Liu, X.G.; Liao, H.; Li, N.; Liu, Z.X.; Mao, Y.H.; et al. Sources of particulate matter in China: Insights from source apportionment studies published in 1987–2017. Environ. Int. 2018, 115, 343–357. [Google Scholar] [CrossRef] [PubMed]
- Yuan, X.J.; Xu, X.M. Online source apportionment of atmospheric particulate matter PM2.5 in Changji city. Environ. Prot. Xinjiang 2018, 40, 1–7. [Google Scholar]
- Yang, J.M.; Dai, Q.L.; Liu, B.S.; Bi, X.H.; Song, W.B.; Wu, J.H.; Feng, Y.C. Source apportionment of ambient PM2.5 at background sites in Guanzhong area, China: Comparison of results obtained by multiple models. Res. Environ. Sci. 2017, 30, 184–192. [Google Scholar] [CrossRef]
- Tan, J.H.; Zhang, L.M.; Zhou, X.M.; Duan, J.C.; Li, Y.; Hu, J.N.; He, K.B. Chemical characteristics and source apportionment of PM2.5 in Lanzhou, China. Sci. Total Environ. 2017, 601–602, 1743–1752. [Google Scholar] [CrossRef] [PubMed]
- Turap, Y.S.; Rekefu, S.; Wang, G.; Talifu, D.; Gao, B.; Aierken, T.; Hao, S.; Wang, X.M.; Tursun, Y.; Maihemuti, M.; et al. Chemical Characteristics and Source Apportionment of PM2.5 during Winter in the Southern Part of Urumqi, China. Aerosol Air Qual. Res. 2019, 19, 1325–1337. [Google Scholar] [CrossRef]
- Turap, Y.S.; Talifu, D.; Wang, X.M.; Abulizi, A.; Maihemuti, M.; Tursun, Y.; Ding, X.; Aierken, T.; Rekefu, S. Temporal distribution and source apportionment of PM2.5 chemical composition in Xinjiang, NW-China. Atmos. Res. 2019, 218, 257–268. [Google Scholar] [CrossRef]
- Zhao, X.Y.; Wang, X.H.; Chu, Y.X.; Yang, W.; Ren, L.H.; Bai, Z.P. Characterization of chemical composition mass balance and source appointment of ambient PM2.5 in Xinzhou city. Chin. J. Environ. Eng. 2017, 11, 4660–4668. [Google Scholar] [CrossRef]
- Wei, Q.Z.; Wang, Y.H.; Li, S.; Luo, B.; Jia, Q.; Yu, J.L.; Zhao, H.; Yuan, X.R.; Niu, J.P. The source apportionment of PM2.5 based on PCA-MLR model in Lanzhou city. J. Environ. Hyg. 2017, 7, 267–273. [Google Scholar] [CrossRef]
- Statistics Bureau of Xinjiang Uygur Autonomous Region. Statistics Bulletin of the National Economic and Social Development. 2017. Available online: http://www.xjtj.gov.cn/sjcx/tjgb_3414/201804/t20180403_551-601.html (accessed on 26 July 2018).
- Wei, Z.; Hou, L.Q.; Wei, W.; Yue, L.; Zhang, C.Y.; Ma, S.M.; Zhao, L.; Ji, S.P.; Wang, L.T. Source apportionment of PM 2.5 in Handan city using a combined method of WRF/Chem and PMF model. Environ. Sci. Technol. 2017, 40, 67–74. [Google Scholar] [CrossRef]
- Li, H.Y.; Pan, L.; Yang, X.; Shan, J.; Wu, S.W.; Guo, X.B.; Deng, F.R. Characteristics and sources analysis of ambient PM2.5 in heating period in an urban area of Beijing. J. Environ. Health 2017, 34, 947–950. [Google Scholar] [CrossRef]
- Hu, J.; Wang, H.; Zhang, J.Q.; Zhang, M.; Zhang, H.F.; Wang, S.L.; Chai, F.H. PM2.5 Pollution in Xingtai, China: Chemical Characteristics, Source Apportionment, and Emission Control Measures. Atmosphere 2019, 10, 121. [Google Scholar] [CrossRef]
- Yuan, J.; Liu, B.S.; Cheng, Y.; Xiao, Z.M.; Xu, H.; Guan, Y.C. Study on characteristics of PM2.5 and chemical components and source apportionment of high temporal resolution in January 2017 in Tianjin urban area. Acta Sci. Circumst. 2018, 38, 1090–1101. [Google Scholar] [CrossRef]
- Zhang, L.K.; Lu, S.F.; Jiao, K.L.; Sun, P.; Wang, W.D.; Li, Y.M. Pollution characteristics and source apportionment of PM 2.5 in Baotou City. Environ. Sci. Technol. 2018, 41, 65–71. [Google Scholar] [CrossRef]
- Lang, J.L.; Cheng, S.Y.; Wen, W.; Liu, C.; Wang, G. Development and Application of a New PM2.5 Source Apportionment Approach. Aerosol Air Qual. Res. 2017, 17, 340–350. [Google Scholar] [CrossRef]
- Lang, J.L.; Li, S.Y.; Cheng, S.Y.; Zhou, Y.; Chen, D.S.; Zhang, Y.Y.; Zhang, H.Y.; Wang, H.Y. Chemical Characteristics and Sources of Submicron Particles in a City with Heavy Pollution in China. Atmosphere 2018, 9, 388. [Google Scholar] [CrossRef]
- Li, X.R.; Jiang, L.; Bai, Y.; Yang, Y.; Liu, S.Q.; Chen, X.; Xu, J.; Liu, Y.S.; Wang, Y.F.; Guo, X.Q.; et al. Wintertime aerosol chemistry in Beijing during haze period: Significant contribution from secondary formation and biomass burning emission. Atmos. Res. 2019, 218, 25–33. [Google Scholar] [CrossRef]
- Li, Y.Y.; Chang, M.; Ding, S.S.; Wang, S.W.; Ni, D.; Hu, H.T. Monitoring and source apportionment of trace elements in PM2.5: Implications for local air quality management. J. Environ. Manag. 2017, 196, 16–25. [Google Scholar] [CrossRef]
- Ma, Q.X.; Wu, Y.F.; Tao, J.; Xia, Y.J.; Liu, X.Y.; Zhang, D.Z.; Han, Z.W.; Zhang, X.L.; Zhang, R.J. Variations of Chemical Composition and Source Apportionment of PM2.5 during Winter Haze Episodes in Beijing. Aerosol Air Qual. Res. 2017, 17, 2791–2803. [Google Scholar] [CrossRef]
- Liu, S.; Ma, T.; Yang, Y.; Gao, J.; Peng, L.; Cao, L.Y.; Peng, N.N.; Zhang, H.J. Chemical composition characteristics and source apportionment of PM 2.5 during winter in Taiyuan. Environ. Sci. 2019, 40, 1537–1544. [Google Scholar] [CrossRef]
- Shi, G.L.; Liu, J.Y.; Wang, H.T.; Tian, Y.Z.; Wen, J.; Shi, X.R.; Feng, Y.C.; Ivey, C.E.; Russell, A.G. Source apportionment for fine particulate matter in a Chinese city using an improved gas-constrained method and comparison with multiple receptor models. Environ. Pollut. 2018, 233, 1058–1067. [Google Scholar] [CrossRef] [PubMed]
- Wang, T.; Hua, Y.; Xu, Q.C.; Wang, S.X. Source apportionment of PM2.5 in suburban area of Beijing-Tianjin-Hebei region in autumn and winter. Environ. Sci. 2019, 40, 1035–1042. [Google Scholar] [CrossRef]
- Xu, H.; Xiao, Z.M.; Chen, K.; Tang, M.; Zheng, N.Y.; Li, P.; Yang, N.; Yang, W.; Deng, X.W. Spatial and temporal distribution, chemical characteristics, and sources of ambient particulate matter in the Beijing-Tianjin-Hebei region. Sci. Total Environ. 2019, 658, 280–293. [Google Scholar] [CrossRef] [PubMed]
- Xu, X.M.; Zhang, H.F.; Chen, J.M.; Li, Q.; Wang, X.F.; Wang, W.X.; Zhang, Q.Z.; Xue, L.K.; Ding, A.J.; Mellouki, A. Six sources mainly contributing to the haze episodes and health risk assessment of PM2.5 at Beijing suburb in winter 2016. Ecotoxicol. Environ. Saf. 2018, 166, 146–156. [Google Scholar] [CrossRef]
- Li, Y.Y.; Ge, C. Research progress of PM2. 5 source analysis in three main regions of China. Mod. Chem. Ind. 2017, 37, 1–5. [Google Scholar] [CrossRef]
- Yu, S.Y.; Liu, W.J.; Xu, Y.S.; Yi, K.; Zhou, M.; Tao, S.; Liu, W.X. Characteristics and oxidative potential of atmospheric PM2.5 in Beijing: Source apportionment and seasonal variation. Sci. Total Environ. 2019, 650, 277–287. [Google Scholar] [CrossRef]
- Zhang, Y.Y.; Lang, J.L.; Cheng, S.Y.; Li, S.Y.; Zhou, Y.; Chen, D.S.; Zhang, H.Y.; Wang, H.Y. Chemical composition and sources of PM1 and PM2.5 in Beijing in autumn. Sci. Total Environ. 2018, 630, 72–82. [Google Scholar] [CrossRef]
- Zong, Z.; Wang, X.P.; Tian, C.G.; Chen, Y.J.; Fu, S.F.; Qu, L.; Ji, L.; Li, J.; Zhang, G. PMF and PSCF based source apportionment of PM2.5 at a regional background site in North China. Atmos. Res. 2018, 203, 207–215. [Google Scholar] [CrossRef]
- Qin, S.D.; Hui, X.J.; Xia, G.F.; Wang, S.L. A numerical study of PM2.5 pollution in Benxi City based on Model-3/CMAQ. Res. Environ. Sci. 2018, 31, 53–60. [Google Scholar] [CrossRef]
- Tian, S.S.; Zhang, X.; Bian, S.S.; Zhao, X.Y.; Han, B.; Yu, H.; Yin, B.H.; Chen, L.; Bai, Z.P. Characteristics of PM2.5 pollution components and their sources in Shenyang. China Environ. Sci. 2019, 39, 487–496. [Google Scholar] [CrossRef]
- Li, Y.Y.; Ji, Y.Q.; Zhang, J.; Zhao, J.Q.; Wang, S.B.; Zhang, L. Pollution characteristics and source apportionment of elements in PM2.5 during winter in Panjin City. Environ. Chem. 2019, 38, 1891–1898. [Google Scholar] [CrossRef]
- Xu, S.C.; Wang, J.; Wu, J.H.; Meng, H.; Liu, B.S.; Xue, L.; Wang, J. Characterization of chemical composition and comprehensive source apportionment of PM2.5 in Qingdao. Environ. Monit. China 2018, 34, 44–53. [Google Scholar] [CrossRef]
- Liu, X.D.; Ma, Y.F. Analysis on the online source of PM2.5 in Huaibei city in winter. Chem. Eng. Des. Commun. 2017, 43, 188. [Google Scholar]
- Du, W.J.; Zhang, Y.R.; Chen, Y.T.; Xu, L.L.; Chen, J.S.; Deng, J.J.; Hong, Y.W.; Xiao, H. Chemical Characterization and Source Apportionment of PM2.5 during Spring and Winter in the Yangtze River Delta, China. Aerosol Air Qual. Res. 2017, 17, 2165–2180. [Google Scholar] [CrossRef]
- Hwang, S.L.; Chi, M.C.; Guo, S.E.; Lin, Y.C.; Chou, C.T.; Lin, C.M. Seasonal variation and source apportionment of PM2.5-bound trace elements at a coastal area in southwestern Taiwan. Environ. Sci. Pollut. Res. 2018, 25, 9101–9113. [Google Scholar] [CrossRef] [PubMed]
- Li, L.; Qiao, Y.Z.; Chen, F.; Li, C.Y.; Han, J.Z. Source analysis of atmospheric PM 2.5 in the main city of Suqian city. Environ. Dev. 2018, 30, 123–124. [Google Scholar] [CrossRef]
- Wang, L.; Qu, K.; Bi, H.Z. Analysis of PM2.5 source on-line monitoring in Yantai. Environ. Sustain. Dev. 2018, 43, 37–41. [Google Scholar] [CrossRef]
- Li, M.R.; Hu, M.; Guo, Q.F.; Tan, T.Y.; Du, B.H.; Huang, X.F.; He, L.Y.; Guo, S.; Wang, W.F.; Fan, Y.G.; et al. Seasonal Source Apportionment of PM2.5 in Ningbo, a Coastal City in Southeast China. Aerosol Air Qual. Res. 2018, 18, 2741–2752. [Google Scholar] [CrossRef]
- Liu, B.S.; Wu, J.H.; Zhang, J.Y.; Wang, L.; Yang, J.M.; Liang, D.N.; Dai, Q.L.; Bi, X.H.; Feng, Y.C.; Zhang, Y.F.; et al. Characterization and source apportionment of PM2.5 based on error estimation from EPA PMF 5.0 model at a medium city in China. Environ. Pollut. 2017, 222, 10–22. [Google Scholar] [CrossRef]
- Liu, T.; Tian, Y.Z.; Xue, Q.Q.; Wei, Z.; Qian, Y.; Feng, Y.C. An advanced three-way factor analysis model (SDABB model) for size-resolved PM source apportionment constrained by size distribution of chemical species in source profiles. Environ. Pollut. 2018, 242, 1606–1615. [Google Scholar] [CrossRef]
- Luo, Y.Y.; Zhou, X.H.; Zhang, J.Z.; Xiao, Y.; Wang, Z.; Zhou, Y.; Wang, W.X. PM2.5 pollution in a petrochemical industry city of northern China: Seasonal variation and source apportionment. Atmos. Res. 2018, 212, 285–295. [Google Scholar] [CrossRef]
- Yang, J.M.; Liu, B.S.; Bi, X.H.; Mei, R.B.; Sui, B.H.; Cui, R.; Feng, Y.C. Chemical composition characteristics and source apportionment of ambient PM 2.5 in Tai’an. Environ. Sci. Technol. 2017, 40, 153–160. [Google Scholar] [CrossRef]
- Jin, Q.; Ren, R.; Gong, L.K. Research on the elemental characterization and source apportionment of PM2.5 in main urban area of Hangzhou. Chin. J. Health Lab. Technol. 2017, 27, 3200–3205. [Google Scholar]
- Shi, S.S.; Wang, H.L.; Zhu, B.; Lin, X.; Guo, T.; Sha, D.D.; Jiang, L.; Zhang, Y.X.; Shi, Y.Z. Source apportionment and size distribution of aerosols at Lin’an atmosphere regional background station during winter. Environ. Sci. 2017, 38. [Google Scholar] [CrossRef]
- Liu, T.; Wang, X.J.; Chen, Q.; Wen, J.; Huang, B.; Zhu, H.X.; Tian, Y.Z.; Feng, Y.C. Pollution characteristics and source apportionment of ambient PM2.5 during four seasons in Yantai city. Environ. Sci. 2019, 40, 1082–1090. [Google Scholar] [CrossRef]
- Chi, W.W.; Li, Q.H. Sources analysis of particulate matter (PM2.5) in Xuzhou city by mass spectrometry. Environ. Sci. Technol. 2017, 30, 61–65. [Google Scholar]
- Chi, W.W.; Li, Q.H.; Feng, C.L. Study on PM2.5 online source analysis within Xuzhou municipaity. Energy Environ. Prot. 2017, 31, 45–48. [Google Scholar] [CrossRef]
- Wang, Q.L.; Cheng, N.N.; Li, S.J.; Dong, M.L.; Wang, X.Q.; Ge, L.L.; Guo, T.J.; Li, W.; Gao, X. An Amended Chemical Mass Balance Model for Source Apportionment of PM2.5 in Typical Chinese Eastern Coastal Cities. Clean Soil Air Water 2019, 47. [Google Scholar] [CrossRef]
- Wang, G.Y.; Xue, F.Y. An online real time source analysis on atmospheric PM2.5 in autumn of Zhenjiang city. Environ. Prot. Technol. 2017, 23, 28–31. [Google Scholar]
- Zou, C.Y.; Jiang, N.S.; Li, Z.K. PM2.5 source apportionment of historic district using principal component analysis in Suzhou city. J. Shandong Agric. Univ. (Nat. Sci. Ed.) 2019, 50, 70–74. [Google Scholar] [CrossRef]
- Zhao, X.Y.; Yang, W.; Wang, J.; Liu, Y.Y.; Bai, W.Y.; Xu, Y.P.; Wang, X.H.; Bai, Z.P. Source apportionment and pollution characteristics of PM 2.5 during the two heavy pollution episodes in the winter of 2016 in a typical logistics city. Environ. Sci. 2019, 40, 1052–1061. [Google Scholar] [CrossRef]
- Zhang, S.W.; Zhang, Q.J.; Albergel, A.; Buty, D.; Yu, L.M.; Wang, H.T.; Bi, W.X.; Cheng, P.; Chen, F.; Fang, J.; et al. Particulate matter pollution in Kunshan High-Tech zone: Source apportionment with trace elements, plume evolution and its monitoring. J. Environ. Sci. 2018, 71, 119–126. [Google Scholar] [CrossRef] [PubMed]
- Zhao, Z.P.; Lv, S.; Zhang, Y.H.; Zhao, Q.B.; Shen, L.; Xu, S.; Yu, J.Q.; Hou, J.W.; Jin, C.Y. Characteristics and source apportionment of PM2.5 in Jiaxing, China. Environ. Sci. Pollut. Res. 2019, 26, 7497–7511. [Google Scholar] [CrossRef] [PubMed]
- Acciai, C.; Zhang, Z.Y.; Wang, F.J.; Zhong, Z.X.; Lonati, G. Characteristics and source Analysis of trace Elements in PM2.5 in the Urban Atmosphere of Wuhan in Spring. Aerosol Air Qual. Res. 2017, 17, 2224–2234. [Google Scholar] [CrossRef]
- Chen, C.; Wang, T.J.; Li, Y.H.; Ma, H.L.; Chen, P.L.; Wang, D.Y.; Zhang, Y.X.; Qiao, Q.; Li, G.M.; Wang, W.H. Pollution characteristics and source apportionment of fine particulate matter in autumn and winter in Puyang, China. Environ. Sci. 2019, 40, 3421–3430. [Google Scholar] [CrossRef]
- Huang, F.; Chen, N.; Zhou, J.B.; Cao, W.X.; Li, K. Characteristics and source apportionment of PM2.5 in urban areas of Wuhan during 2016–2017. Environ. Monit. China 2019, 35, 17–25. [Google Scholar] [CrossRef]
- Hao, H.Z.; Guo, Q.Q. Spatial and temporal characteristics of PM2.5 and source apportionment in Wuhan. Iop Conf. Ser. Earth Environ. Sci. 2018, 121. [Google Scholar] [CrossRef]
- Jiang, N.; Li, Q.; Su, F.C.; Wang, Q.; Yu, X.; Kang, P.R.; Zhang, R.Q.; Tang, X.Y. Chemical characteristics and source apportionment of PM2.5 between heavily polluted days and other days in Zhengzhou, China. J. Environ. Sci. 2018, 66, 188–198. [Google Scholar] [CrossRef]
- Jiang, N.; Wang, K.; Yu, X.; Su, F.C.; Yin, S.S.; Li, Q.; Zhang, R.Q. Chemical Characteristics and Source Apportionment by Two Receptor Models of Size-segregated Aerosols in an Emerging Megacity in China. Aerosol Air Qual. Res. 2018, 18, 1375–1390. [Google Scholar] [CrossRef]
- Jiang, N.; Yin, S.S.; Guo, Y.; Li, J.Y.; Kang, P.R.; Zhang, R.Q.; Tang, X.Y. Characteristics of mass concentration, chemical composition, source apportionment of PM 2.5 and PM 10 and health risk assessment in the emerging megacity in China. Atmos. Pollut. Res. 2018, 9, 309–321. [Google Scholar] [CrossRef]
- Ma, X.Y.; Xiao, Z.G.; He, L.Z.; Shi, Z.B.; Cao, Y.J.; Tian, Z.; Vu, T.; Liu, J.S. Chemical Composition and Source Apportionment of PM2.5 in Urban Areas of Xiangtan, Central South China. Int. J. Environ. Res. Public Health 2019, 16. [Google Scholar] [CrossRef] [PubMed]
- Wang, Q.; Jiang, N.; Yin, S.S.; Li, X.; Yu, F.; Guo, Y.; Zhang, R.Q. Carbonaceous species in PM 2.5 and PM 10 in urban area of Zhengzhou in China: Seasonal variations and source apportionment. Atmos. Res. 2017, 191, 1–11. [Google Scholar] [CrossRef]
- Chen, Y.A.; Fung, J.C.H.; Chen, D.H.; Shen, J.; Lu, X.C. Source and exposure apportionments of ambient PM2.5 under different synoptic patterns in the Pearl River Delta region. Chemosphere 2019, 236, 124266. [Google Scholar] [CrossRef] [PubMed]
- Fang, X.Z.; Bi, X.H.; Xu, H.; Wu, J.H.; Zhang, Y.F.; Feng, Y.C. Source apportionment of ambient PM10 and PM2.5 in Haikou, China. Atmos. Res. 2017, 190, 1–9. [Google Scholar] [CrossRef]
- Huang, X.F.; Zou, B.B.; He, L.Y.; Hu, M.; Prévôt, A.S.H.; Zhang, Y.H. Exploration of PM2.5 sources on the regional scale in the Pearl River Delta based on ME-2 modeling. Atmos. Chem. Phys. 2018, 18, 11563–11580. [Google Scholar] [CrossRef]
- Liu, B.S.; Li, T.K.; Yang, J.M.; Wu, J.H.; Wang, J.; Gao, J.X.; Bi, X.H.; Feng, Y.C.; Zhang, Y.F.; Yang, H.H. Source apportionment and a novel approach of estimating regional contributions to ambient PM2.5 in Haikou, China. Environ. Pollut. 2017, 223, 334–345. [Google Scholar] [CrossRef]
- Wang, Q.Q.; Huang, X.H.H.; Tam, F.C.V.; Zhang, X.X.; Liu, K.M.; Yeung, C.; Feng, Y.M.; Cheng, Y.Y.; Wong, Y.K.; Ng, W.M.; et al. Source apportionment of fine particulate matter in Macao, China with and without organic tracers: A comparative study using positive matrix factorization. Atmos. Environ. 2019, 198, 183–193. [Google Scholar] [CrossRef]
- Zhang, K.; Shang, X.N.; Herrmann, H.; Meng, F.; Mo, Z.Y.; Chen, J.H.; Lv, W.L. Approaches for identifying PM2.5 source types and source areas at a remote background site of South China in spring. Sci. Total Environ. 2019, 691, 1320–1327. [Google Scholar] [CrossRef]
- Zou, B.B.; Huang, X.F.; Zhang, B.; Dai, J.; Zeng, L.W.; Feng, N.; He, L.Y. Source apportionment of PM2.5 pollution in an industrial city in southern China. Atmos. Pollut. Res. 2017, 8, 1193–1202. [Google Scholar] [CrossRef]
- Cheng, X.; Huang, Y.; Zhang, S.P.; Ni, S.J.; Long, Z.J. Characteristics, Sources, and Health Risk Assessment of Trace Elements in PM10 at an Urban Site in Chengdu, Southwest China. Aerosol Air Qual. Res. 2018, 18, 357–370. [Google Scholar] [CrossRef]
- Li, L.L.; Tan, Q.W.; Zhang, Y.H.; Feng, M.; Qu, Y.; An, J.L.; Liu, X.G. Characteristics and source apportionment of PM2.5 during persistent extreme haze events in Chengdu, southwest China. Environ. Pollut. 2017, 230, 718–729. [Google Scholar] [CrossRef] [PubMed]
- Wu, M.; Wu, D.; Xia, J.R.; Zhao, T.L.; Yang, Q.J. Analysis of pollution characteristics and sources of PM2.5 chemical components in Chengdu in winter. Environ. Sci. 2019, 40, 77–85. [Google Scholar] [CrossRef]
- Chen, Y.; Xie, S.D.; Luo, B.; Zhai, C.Z. Pollution characterization and source apportionment of fine particles in urban Chongqing. Acta Sci. Circumst. 2017, 37, 2420–2430. [Google Scholar] [CrossRef]
- Chen, Z.H.; Wu, Y.F.; Wang, P.L.; Wu, Y.P.; Li, Z.Y.; Zhao, Y.; Zhou, J.S.; Zhu, C.; Cao, C.; Mao, Y.Y.; et al. Autophagy is essential for ultrafine particle-induced inflammation and mucus hyperproduction in airway epithelium. Autophagy 2016, 12, 297–311. [Google Scholar] [CrossRef]
- Fan, F.Y.; Lei, Y.L.; Li, L. Health damage assessment of particulate matter pollution in Jing-Jin-Ji region of China. Environ. Sci. Pollut. Res. 2019, 26, 7883–7895. [Google Scholar] [CrossRef]
- Li, L.M.; Li, L.G.; Li, N.W. Studies review on cause and damage of urban haze. Environ. Eng. 2017, 35, 92–97. [Google Scholar] [CrossRef]
- Qi, J.C. Fog and haze weather on human health. Chin. J. Urban Rural Enterp. Hyg. 2017, 32, 43–47. [Google Scholar] [CrossRef]
- Bi, Z.; Zhou, H.G. Research progress of lung disease caused by air fine particulate matter and its mechanism. Environ. Eng. 2016, 34, 496–499. [Google Scholar]
- Zhao, C.; Liao, J.P.; Wang, G.F. Role of immunoregulation in airway inflammatory response induced by particulate matter. Chin. J. Front. Med Sci. (Electron. Version) 2014, 6, 29. [Google Scholar] [CrossRef]
- Hu, J.R.; Xu, H.J.; Li, Q.Y.; Li, C.L.; Sun, X.W.; Zhang, X.J. Effects of short-term exposure to PM2.5 on chronic airway inflammation and oxidative stress of passive smoking rats. J. Shanghai Jiaotong Univ. (Med Sci.) 2014, 34, 619–625. [Google Scholar] [CrossRef]
- Xie, Y.B.; Chen, J.; Li, W. An assessment of PM2.5 related health risks and impaired values of Beijing residents in a consecutive high-level exposure during heavy haze days. Environ. Sci. 2014, 35, 1–8. [Google Scholar] [CrossRef]
- Xian, M.; Wang, K.J.; Lou, H.F.; Wang, Y.; Zhang, L.; Wang, C.S. Short-term Haze Exposure Predisposes Healthy Volunteers to Nasal Inflammation. Allergy Asthma Immunol. Res. 2019, 11, 632–643. [Google Scholar] [CrossRef] [PubMed]
- Zhang, L.L.; Yang, Y.; Li, Y.H.; Qian, Z.M.; Xiao, W.L.; Wang, X.J.; Rolling, C.A.; Liu, E.; Xiao, J.P.; Zeng, W.L.; et al. Short-term and long-term effects of PM2.5 on acute nasopharyngitis in 10 communities of Guangdong, China. Sci. Total Environ. 2019, 688, 136–142. [Google Scholar] [CrossRef] [PubMed]
- Wu, Y.F.; He, T.F.; Lu, B.B.; Li, P.P.; Zhao, F.M.; Wang, A.H. Effects of various air pollutants on upper respiratory diseases outpatient visits at community levels. J. Environ. Occup. Med. 2015, 32, 909–913. [Google Scholar] [CrossRef]
- Li, Z.; Xu, X.; Thompson, L.A.; Gross, H.E.; Shenkman, E.A.; DeWalt, D.A.; Huang, I.C. Longitudinal Effect of Ambient Air Pollution and Pollen Exposure on Asthma Control: The Patient-Reported Outcomes Measurement Information System (PROMIS) Pediatric Asthma Study. Acad. Pediatr. 2019, 19, 615–623. [Google Scholar] [CrossRef] [PubMed]
- Qu, F.F.; Liu, F.F.; Zhang, H.R.; Chao, L.S.; Guan, J.T.; Li, R.Q.; Yu, F.X.; Yan, X.X. The hospitalization attributable burden of acute exacerbations of chronic obstructive pulmonary disease due to ambient air pollution in Shijiazhuang, China. Environ. Sci. Pollut. Res. 2019. [CrossRef] [PubMed]
- Liu, J.Y.; Li, Y.F.; Li, J.; Liu, Y.; Tao, N.N.; Song, W.M.; Cui, L.L.; Li, H.C. Association between ambient PM2.5 and children’s hospital admissions for respiratory diseases in Jinan, China. Environ. Sci. Pollut. Res. 2019, 26, 24112–24120. [Google Scholar] [CrossRef]
- Ang, S.J.; Xiong, L.L.; Tang, M. Effects of PM2.5 on iNOS Synthesis in Human Lung Adenocarcinoma A549 Cells and Related Mechanism. J. Environ. Occup. Med. 2016, 33, 433–437. [Google Scholar] [CrossRef]
- Li, C.J.; Qin, G.; Wang, C.X.; Lv, J.Y.; Zhang, M.S.; Cao, J. Effects of atmospheric fine particulate matter on cardiovascular system. Chin. J. Integr. Med. Cardio Cerebrovasc. Dis. 2016, 14, 382–385. [Google Scholar] [CrossRef]
- Gao, L.Y.; Nie, L.K.; Li, X.; Wang, T.; Qin, H.X.; Zhang, L.; Chen, Y.M.; Zheng, Z.; Wu, W.; Cao, J. Advances in the study of damage mechanism of fine particulate matter PM2.5 on cardiovascular diseases. J. Xinxiang Med. Univ. 2018, 35, 551–553. [Google Scholar] [CrossRef]
- Qi, A.; Zhang, Y.J.; Yang, H.F. Adverse effects of atmospheric PM2.5 on cardiovascular system and mechanism: A review of recent studies. J. Environ. Health 2016, 33, 465–469. [Google Scholar] [CrossRef]
- Dong, F.M.; Mo, Y.Z.; Li, G.X.; Xu, M.M.; Pan, X.C. Association between ambient PM10/PM2.5 levels and population mortality of circulatory diseases: A case-crossover study in Beijing. J. Peking Univ. (Health Sci.) 2013, 45, 398–404. [Google Scholar] [CrossRef]
- Fu, Y.; Wang, C.; Wang, L.; Tang, Y.S.; Li, X.X.; Di, Y.X. Variation characteristics of PM2.5 pollution in Hebei province and health effects evaluation of exposed population. Environ. Sci. Manag. 2016, 41, 187–190. [Google Scholar] [CrossRef]
- Yang, Y.; Chen, Y.; Yuan, Z.K. The impact of PM2.5 on the health of pupils in Nanchang. Chin. Prev. Med. 2017, 18, 605–608. [Google Scholar] [CrossRef]
- Wang, Q.W.; Wang, X.Y.; Pan, X.C.; Li, Y.H.; Lv, H.M.; Gao, P.; Mao, J.Z.; Liu, W. Short-term effects of ambient air pollution on daily outpatient visits for urticaria in Beijing. Chin. J. Derm 2016, 30, 737–739. [Google Scholar] [CrossRef]
- Lin, L.; Zhu, X.; Jiang, G.R. The influence of smog on the ratio of regional GDP growth: Mediating effect of depression. J. Psychol. Sci. 2018, 41, 627–632. [Google Scholar] [CrossRef]
- Song, Y.; Zhou, A.; Zhang, M.; Wang, H. Assessing the effects of haze pollution on subjective well-being based on Chinese General Social Survey. J. Clean. Prod. 2019, 235, 574–582. [Google Scholar] [CrossRef]
- Zhang, S.J.; Du, R.; Chen, H.L.; Ren, W.S.; Du, P.R. Seasonal Variation of Microbial Activity and Pathogenic Bacteria under Non-serious Pollution Levels in Beijing. Aerosol Air Qual. Res. 2019, 19, 1798–1807. [Google Scholar] [CrossRef]
- Liu, X.W.; Sun, H.Y.; Feike, T.; Zhang, X.Y.; Shao, L.W.; Chen, S.Y. Assessing the Impact of Air Pollution on Grain Yield of Winter Wheat—A Case Study in the North China Plain. PLoS ONE 2016, 11, e0162655. [Google Scholar] [CrossRef]
- Wang, Z.Y.; Zhao, Y.Y.; Yao, Q.J.; Yuan, Y.X.; Zhang, X.W.; Zhang, Q. Influence of cold haze weather on facility vegetable production in Henan province. North. Hortic. 2015, 47–50. [Google Scholar] [CrossRef]
- Zhou, L.; Chen, X.H.; Tian, X. The impact of fine particulate matter (PM2.5) on China’s agricultural production from 2001 to 2010. J. Clean. Prod. 2018, 178, 133–141. [Google Scholar] [CrossRef]
- Ma, J.J.; Kong, F.T.; Zhou, X.Y.; Xu, W.W.; Wu, J.Z. Research progress of influence of haze-fog on agricultural production and agricultural product circulation. J. Agric. Sci. Technol. 2017, 19, 1–7. [Google Scholar] [CrossRef]
- Liang, Y.Q. Analysis of the impact of haze pollution on biodiversity. Low Carbon World 2017, 38–39. [Google Scholar] [CrossRef]
- Jiang, J.F.; Ye, C.M.; Sheng, Z.Z.; Sheng, X.X.; Hua, Y. Risk assessment of economic loss for haze health damage in Shanghai. Ecol. Sci. 2017, 36, 90–97. [Google Scholar] [CrossRef]
- Mu, Z.; Zhang, S.Q. An evaluation of the economic loss due to the heavy haze during January 2013 in China. China Environ. Sci. 2013, 33, 2087–2094. [Google Scholar] [CrossRef]
- Wang, G.Z.; Gu, S.J.; Chen, J.B. Assessment of the indirect economic loss caused by heavy haze in Beijing based on input-output model. Environ. Eng. 2016, 34, 121–125. [Google Scholar] [CrossRef]
- Li, C.H.; Zhao, X.Y. Indirect economic loss estimation of inter-industrial sectors: Triggered from agricultural economic loss induced from haze in Beijing. Chin. Agric. Sci. Bull. 2017, 33, 118–124. [Google Scholar]
- Liu, H.N.; Zhu, Y.; Lin, H.J.; Wang, X.Y. Observation and analysis of haze characteristics in Suzhou based on automatic station data. China Environ. Sci. 2015, 35, 668–675. [Google Scholar]
- Wei, L.F.; Yang, F.M.; Tan, J.H.; Ma, Y.L.; He, K.B. Research progress on aerosol extinction properties. Environ. Chem. 2014, 33, 705–715. [Google Scholar] [CrossRef]
- Liu, D.Y.; Cao, D.F.; Chen, S.Y.; Zhou, B.; Xia, J.; Qian, H.Z. Effects of sand dust weather on air quality of cities in north bank of Taihu Lake. J. Nat. Disasters 2013, 22, 135–144. [Google Scholar] [CrossRef]
- Hao, X.D.; Luo, Y.Q.; Cao, D.Q.; Li, S. Induction of haze to eutrophication of surface water. China Water Wastewater 2018, 34, 12–15. [Google Scholar]
- Li, W.J.; Xu, L.; Liu, X.H.; Zhang, J.C.; Lin, Y.T.; Yao, X.H.; Gao, H.W.; Zhang, D.Z. Air pollution–aerosol interactions produce more bioavailable iron for ocean ecosystems. Sci. Adv. 2017, 3, e1601749. [Google Scholar] [CrossRef] [PubMed]
- Liu, X.X.; Chen, W.S.; Mei, D.; Yang, W.Z.; Li, F.Z.; Tang, J.F. On the erosion situation of the dust-removing system of the sintering machine tailing. J. Saf. Environ. 2014, 14, 121–124. [Google Scholar] [CrossRef]
- Xin, M.J.; Chen, T.Y.; Meng, J.; Wu, L.Y.; Jiao, J.K.; Zhang, Q.; Liu, C.H.; Song, Y.Q.; Ren, W.T. Design and numerical simulation of two-stage device for dust removal from flue gas of straw carbonization. J. Huazhong Agric. Univ. 2018, 37, 100–107. [Google Scholar] [CrossRef]
- Liu, X.J.; Zhang, Y.C.; Wu, Q.Y.; Zhang, M.F.; Liu, F.; Guo, Y.C. Study on the key structure parameters of a gravity settling chamber based on a flow field simulation. Eng. Appl. Comput. Fluid Mech. 2019, 13, 377–395. [Google Scholar] [CrossRef]
- Zhou, F.B.; Li, J.L.; Li, S.H.; Wang, F. Experimental investigation and application of dry-type filtering dust collection technology in fully mechanized excavation face. J. China Coal Soc. 2017, 42, 639–645. [Google Scholar] [CrossRef]
- Wang, Y.W.; Xu, K.L.; Wang, B.B.; Wang, Q.S. Hydrogen inhibition by using Cr(NO3)3·9H2O in the wet dust removal system for the treatment of aluminum dust. Int. J. Hydrog. Energy 2018, 43, 2514–2523. [Google Scholar] [CrossRef]
- Xu, K.L.; Wang, Y.T.; Shen, R.Q.; Wang, Q.S. Inhibition of hydrogen production reactions in the wet dust removal system using CeCl3 solutions. Int. J. Hydrog. Energy 2018, 43, 14859–14865. [Google Scholar] [CrossRef]
- Xie, R.J.; Liu, G.Y.; Liu, D.P.; Liang, S.M.; Lei, D.X.; Dong, H.Y.; Huang, H.B.; Leung, D.Y.C. Wet scrubber coupled with heterogeneous UV/Fenton for enhanced VOCs oxidation over Fe/ZSM-5 catalyst. Chemosphere 2019, 227, 401–408. [Google Scholar] [CrossRef]
- Liao, B.W.; Juang, S.H.; Lin, H. A new design of wet scrubber for removal of fine particles from exhaust gas. Environ. Prot. Eng. 2016, 42, 59–70. [Google Scholar] [CrossRef]
- Hu, F.Y.; Tan, Z.H.; Xiong, G.L.; Liu, L.B.; Wei, L.S. Analysis on pulse dust cleaning performance of laval nozzle used for bag filters. Environ. Eng. 2019, 37, 117–122. [Google Scholar] [CrossRef]
- Li, S.H.; Ding, Q.Q.; Li, C.T. Dust cleaning simulation of low pressure pulse bag filter with a long bag. Environ. Eng. 2018, 36, 79–82. [Google Scholar] [CrossRef]
- Dong, M.; Zhou, F.; Shang, Y.; Li, S.F. Numerical study on electrohydrodynamic flow and fine-particle collection efficiency in a spike electrode-plate electrostatic precipitator. Powder Technol. 2019, 351, 71–83. [Google Scholar] [CrossRef]
- Zheng, C.H.; Duan, D.W.; Chang, Q.Y.; Liu, S.J.; Yang, Z.D.; Liu, X.T.; Weng, W.G.; Gao, X. Experiments on Enhancing the Particle Charging Performance of an Electrostatic Precipitator. Aerosol Air Qual. Res. 2019, 19, 1411–1420. [Google Scholar] [CrossRef]
- Zhang, P.; Ji, L.; Han, T.Y.; Li, Y.K.; Qi, L.Q. Multi-field coupling and synergistic removal of fine particles in coal-fired flue gas. Fuel 2019, 255. [Google Scholar] [CrossRef]
- Xu, M.H.; Wang, W.Y.; Wen, Y.; Yu, D.X.; Liu, X.W. Research development of precipitation technology to accomplish the ultra-low emission from coal-fired power plants. Proc. Chin. Soc. Electr. Eng. 2019, 39, 1–13. [Google Scholar] [CrossRef]
- Shi, W.Z.; Yang, M.M.; Zhang, X.H.; Li, S.Q.; Yao, Q. Ultra-low emission technical route of coal-fired power plants and the cooperative removal. Proc. Chin. Soc. Electr. Eng. 2019, 36, 4308–4318. [Google Scholar] [CrossRef]
- Li, H.Y.; Wang, J.; Zheng, Y.X. Emission characteristics and control methods of fine particles in sintering process. Environ. Eng. 2018, 36, 102–106. [Google Scholar] [CrossRef]
- Xie, P.F.; Tang, D.G.; Zhang, S.Q. Environmental economic analysis of upgrading the fuel quality in the Jing-Jin-Ji region. China Environ. Sci. 2017, 37, 2352–2362. [Google Scholar] [CrossRef]
- Zhang, F.; Yao, M.F. Three-dimensional direct numerical simulation of partially premixed combustion in engine-related conditions. Acta Phys. Chim. Sin. 2016, 32, 1941–1949. [Google Scholar] [CrossRef]
- Yu, X.Y.; Li, J. Analysis on trend of atmospheric pollution characteristics and causes for fogs in Harbin. Environ. Sci. Manag. 2014, 39, 50–53. [Google Scholar] [CrossRef]
- Shuai, S.J.; Dong, Z.L.; Zheng, R.; Wang, B.Y.; Fu, H.C.; Xu, H.M.; Wang, J.X. Review of formation mechanism and emission characteristics of particulate matter from automotive gasoline engines. Trans. CSICE 2016, 34, 105–116. [Google Scholar] [CrossRef]
- Hou, X.J.; Li, M.M.; Du, S.Z.; Mo, L.R.; Xu, J. Research on NOx emission control technology of diesel engine and its performance optimization. J. Wuhan Univ. Technol. (Transp. Sci. Eng.) 2016, 40, 958–962. [Google Scholar] [CrossRef]
- Liu, S.J.; Wang, X.F.; Wang, J.; Sun, Y.F. Optimization of S1100 diesel engine to meet non-road national III emission standards. Trans. CSICE 2018, 36, 222–229. [Google Scholar] [CrossRef]
- Tan, P.Q.; Wang, D.Y.; Lou, D.M.; Hu, Z.Y. Progress of control technologies on exhaust emissions for agricultural machinery. Trans. Chin. Soc. Agric. Eng. 2018, 34, 1–14. [Google Scholar] [CrossRef]
- You, D.L.; Hu, T.; Zheng, F.; Ma, Z.H.; Luo, L. Study on preventing and controlling motor vehicle exhaust. Environ. Sci. Manag. 2015, 40, 102–105. [Google Scholar] [CrossRef]
- Shan, W.P.; Liu, F.D.; He, H. Catalytic abatement of NOx from diesel exhaust. Chin. Sci. Bull. (in Chinese). 2014, 59, 2540–2549. [Google Scholar] [CrossRef]
- Wang, Y.; Li, J.; Liu, Y.; Yin, Q.X. Influence of external purification technology on particulate emission of GDI engine. Veh. Engine 2016, 57–60. [Google Scholar] [CrossRef]
- Xing, J.D.; Ye, K.H.; Zuo, J.; Jiang, W.Y. Control Dust Pollution on Construction Sites: What Governments Do in China? Sustainability 2018, 10, 2945. [Google Scholar] [CrossRef]
- Wu, Z.Z.; Zhang, X.L.; Wu, M. Mitigating construction dust pollution: State of the art and the way forward. J. Clean. Prod. 2016, 112, 1658–1666. [Google Scholar] [CrossRef]
- Jiang, L.L.; Xu, X.L.; Yang, H. Analysis and countermeasures on fog and haze in Ningbo. Environ. Sci. Manag. 2015, 40, 43–46. [Google Scholar]
- Huang, Y.H.; Han, K.L.; Li, D.C.; Chen, L.Y.; Ren, B.Q.; Qin, J.P. Characteristic of remaining dust and wet road dust on city roads in Beijing. Chin. J. Environ. Eng. 2017, 11, 4149–4154. [Google Scholar] [CrossRef]
- Fan, S.B.; Yang, T.; Li, X.F.; Wang, K.; Qi, H.Y. Emission inventory and control scenario analysis for road fugitive dust in sub-center of Beijing. Environ. Sci. Technol. 2019, 42, 173–179. [Google Scholar] [CrossRef]
- Wang, Y.C.; Jiang, C.L.; He, J.Y.; Zhong, Y.Z.; Song, X.J.; Lei, Y.; Yan, L. Air pollutant emissions reduction potential from burning coal in cities of air pollution transmission channel in Beijing-Tianjin-Hebei area. China Environ. Sci. 2018, 38, 2401–2405. [Google Scholar] [CrossRef]
- Shi, D.; Li, S.L. The effect of green cooperative development in Beijing-Tianjin-Hebei region—A quasi-natural experiment based on the policy of the coal-to-gas/electricity. Res. Econ. Manag. 2018, 39, 64–77. [Google Scholar] [CrossRef]
- Luo, Y.F. Research on the quality control of civil coal and interpretation of national standard. China Coal 2019, 45, 14–18. [Google Scholar]
- Huang, B.J. Study on volatile organic compounds emission of straw combustion and management countermeasure in Wuhan city. Environ. Sci. 2013, 34, 4543–4551. [Google Scholar] [CrossRef]
- Liu, B.J.; Wang, S.H.; Lu, F.; Wang, X.Y.; Jensen, M.B.; Zheng, S.W.; Liu, L.; Shan, M.Y.; Zhao, K.X. Roof greening in urban area of Beijing during 2005–2015: Development trends, distribution patterns and policy promotion. Chin. J. Ecol. 2018, 37, 1509–1517. [Google Scholar] [CrossRef]
- Gao, G.J.; Xu, Y.S.; Mo, L.; Yu, X.X. The ability of plant leaves on depositing size-fractionated particles. Ecol. Environ. Sci. 2016, 25, 260–265. [Google Scholar] [CrossRef]
- Zhang, Y.Y.; Wu, J.H.; Zeng, T.; Zhong, H.M. Mechanism of eliminating the aerosol haze particles by using laser gradient force. Acta Phys. Sin. 2016, 65, 158–164. [Google Scholar] [CrossRef]
- Zhang, D.F.; Chen, X.W.; Wang, H.R.; Du, J.; Jiang, J.L.; Wu, J.H. Experimental investigation for eliminating haze particles by laser gradient force. J. Xi’an Jiaotong Univ. 2018, 52, 57–63. [Google Scholar] [CrossRef]
- Zeng, Z.X.; Luan, Y.G.; Liu, L.; Ju, L.P.; Peng, D.W.; Zhong, Y. Technology research on electrostatic haze using lightning rod. J. Shenyang Norm. Univ. (Nat. Sci. Ed.) 2017, 35, 189–192. [Google Scholar] [CrossRef]
- Wang, L.Z.; Niu, H.T.; Peng, N.N.; Shen, X. Primary research on haze removal method based on diffusion and relative motion. Environ. Eng. 2015, 33, 75–79. [Google Scholar] [CrossRef]
- Wang, L.Z.; Niu, H.T.; Peng, N.N.; Shen, X. Research into Haze Removal Method Based on Diffusion and Relative Motion. Aerosol Air Qual. Res. 2016, 16, 1757–1763. [Google Scholar] [CrossRef]
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wei, T.; Wang, L. Research Progress of HP Characteristics, Hazards, Control Technologies, and Measures in China after 2013. Atmosphere 2019, 10, 767. https://doi.org/10.3390/atmos10120767
Wei T, Wang L. Research Progress of HP Characteristics, Hazards, Control Technologies, and Measures in China after 2013. Atmosphere. 2019; 10(12):767. https://doi.org/10.3390/atmos10120767
Chicago/Turabian StyleWei, Tao, and Lianze Wang. 2019. "Research Progress of HP Characteristics, Hazards, Control Technologies, and Measures in China after 2013" Atmosphere 10, no. 12: 767. https://doi.org/10.3390/atmos10120767
APA StyleWei, T., & Wang, L. (2019). Research Progress of HP Characteristics, Hazards, Control Technologies, and Measures in China after 2013. Atmosphere, 10(12), 767. https://doi.org/10.3390/atmos10120767