Petrochemical and Industrial Sources of Volatile Organic Compounds Analyzed via Regional Wind-Driven Network in Shanghai
Abstract
:1. Introduction
2. Experiments
2.1. Sampling Sites and Period
2.2. Instrument Quality Control
2.3. Categorization of Surface Wind Patterns
3. Results
3.1. Wind Fields in Jinshan District
3.2. Statistic Analysis for Wind and VOCs Concentrations
3.3. Influence of the Four Wind Patterns on VOCs
3.4. VOCs Fingerprint Profiles Analysis
3.5. VOCs Ozone Formation Potentials
3.6. VOCs Indicators Analysis
4. Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Seinfeld, J.H.; Pandis, S.N. Atmospheric Chemistry and Physics; Wiley: Hoboken, NJ, USA, 2006. [Google Scholar]
- Pachauri, T.; Satsangi, A.; Singla, V.; Lakhani, A.; Kumari, K.M. Characteristics and Sources of Carbonaceous Aerosols in Pm2. 5 During Wintertime in Agra, India. Aerosol Air Qual. Res. 2013, 13, 977–991. [Google Scholar] [CrossRef]
- Poisson, N.; Kanakidou, M.; Crutzen, P.J. Impact of Non-Methane Hydrocarbons on Tropospheric Chemistry and the Oxidizing Power of the Global Troposphere: 3-Dimensional Modelling Results. J. Atmos. Chem. 2000, 36, 157–230. [Google Scholar] [CrossRef]
- Jobson, B.T.; Berkowitz, C.M.; Kuster, W.C.; Goldan, P.D.; Williams, E.J.; Fesenfeld, F.C.; Apel, E.C.; Karl, T.; Lonneman, W.A.; Riemer, D. Hydrocarbon Source Signatures in Houston, Texas: Influence of the Petrochemical Industry. J. Geophys. Res. Atmos. 2004, 109, D24. [Google Scholar] [CrossRef]
- Leuchner, M.; Rappenglück, B. Voc Source–Receptor Relationships in Houston During Texaqs-Ii. Atmos. Environ. 2010, 44, 4056–4067. [Google Scholar] [CrossRef]
- Ling, Z.H.; Guo, H. Contribution of Voc Sources to Photochemical Ozone Formation and Its Control Policy Implication in Hong Kong. Environ. Sci. Policy 2014, 38, 180–191. [Google Scholar] [CrossRef]
- Hou, X.; Strickland, M.J.; Liao, K.J. Contributions of Regional Air Pollutant Emissions to Ozone and Fine Particulate Matter-Related Mortalities in Eastern U.S. Urban Areas. Environ. Res. 2015, 137, 475–484. [Google Scholar] [CrossRef]
- Jiang, H.Y.; Li, H.R.; Yang, L.S.; Li, Y.H.; Wang, W.Y.; Yan, Y.C. Spatial and Seasonal Variations of the Air Pollution Index and a Driving Factors Analysis in China. J. Environ. Qual. 2014, 43, 1853–1863. [Google Scholar] [CrossRef]
- Zhang, X.; Zhao, W.; Meng, F. Study on Classification Control of Atmospheric Volatile Organic Compounds Emission Pollution Sources Based on Ofp. Environ. Prot. (Chinese version) 2017, 13, 23–26. [Google Scholar]
- Huang, C.; Chen, C.H.; Li, L.; Cheng, Z. Emission Inventory of Anthropogenic Air Pollutants and Voc Species in the Yangtze River Delta Region, China. Atmos. Chem. Phys. 2011, 11, 4105–4120. [Google Scholar] [CrossRef]
- Wang, H. Characterization of Volatile Organic Compounds (Vocs) and the Impact on Ozone Formation During the Photochemical Smog Episode in Shanghai, China. Acta Sci. Circumstantiae 2015, 35, 1603–1611. [Google Scholar]
- Wang, H.; Nie, L.; Li, J.; Wang, Y.; Wang, G.; Wang, J.; Hao, Z. Characterization and Assessment of Volatile Organic Compounds (Vocs) Emissions from Typical Industries. Chin. Sci. Bull. 2013, 58, 724–730. [Google Scholar] [CrossRef]
- Wu, W.; Zhao, B.; Wang, S.; Hao, J. Ozone and Secondary Organic Aerosol Formation Potential from Anthropogenic Volatile Organic Compounds Emissions in China. J. Environ. Sci. 2017, 53, 224–237. [Google Scholar] [CrossRef]
- Dumanoglu, Y.; Kara, M.; Altiok, H.; Odabasi, M.; Elbir, T.; Bayram, A. Spatial and Seasonal Variation and Source Apportionment of Volatile Organic Compounds (Vocs) in a Heavily Industrialized Region. Atmos. Environ. 2014, 98, 168–178. [Google Scholar] [CrossRef]
- Zhao, C.H.; Geng, F.H.; Ma, C.Y.; Chen, Y.H.; Mao, X.Q. Aerosol Characteristics During Photochemical Pollution in Shanghai Area. China Environ. Sci. 2015, 35, 356–363. [Google Scholar]
- Cheng, F.Y.; Chin, S.C.; Liu, T.H. The Role of Boundary Layer Schemes in Meteorological and Air Quality Simulations of the Taiwan Area. Atmos. Environ. 2012, 54, 714–727. [Google Scholar] [CrossRef]
- Angevine, W.M.; Senff, C.J.; White, A.B.; Williams, E.J.; Koermer, J.; Miller, S.T.; Talbot, R.; Johnston, P.E.; McKeen, S.A.; Downs, T. Coastal Boundary Layer Influence on Pollutant Transport in New England. J. Appl. Meteorol. 2004, 43, 1425–1437. [Google Scholar] [CrossRef]
- Chen, S.P.; Wang, C.H.; Lin, W.D.; Tong, Y.H.; Chen, Y.C.; Chiu, C.J.; Chiang, H.C.; Fan, C.L.; Wang, J.L.; Chang, J.S. Air Quality Impacted by Local Pollution Sources and Beyond - Using a Prominent Petro-Industrial Complex as a Study Case. Environ. Pollut. 2018, 236, 699–705. [Google Scholar] [CrossRef]
- Duan, J.; Tan, J.; Yang, L.; Wu, S.; Hao, J. Concentration, Sources and Ozone Formation Potential of Volatile Organic Compounds (Vocs) During Ozone Episode in Beijing. Atmos. Res. 2008, 88, 25–35. [Google Scholar] [CrossRef]
- Liu, Y.; Yuan, B.; Li, X.; Shao, M.; Lu, S.; Li, Y.; Chang, C.C.; Wang, Z.; Hu, W.; Huang, X.; et al. Impact of Pollution Controls in Beijing on Atmospheric Oxygenated Volatile Organic Compounds (Ovocs) During the 2008 Olympic Games: Observation and Modeling Implications. Atmos. Chem. Phys. 2015, 15, 3045–3062. [Google Scholar] [CrossRef]
- Cheng, H.; Guo, H.; Wang, X.; Saunders, S.M.; Lam, S.H.M.; Jiang, F.; Wang, T.; Ding, A.; Lee, S.; Ho, K.F. On the Relationship between Ozone and Its Precursors in the Pearl River Delta: Application of an Observation-Based Model (Obm). Environ. Sci. Pollut. Res. 2010, 17, 547–560. [Google Scholar] [CrossRef]
- Jin, X.; Holloway, T. Spatial and Temporal Variability of Ozone Sensitivity over China Observed from the Ozone Monitoring Instrument: Ozone Sensitivity over China. J. Geophys. Res. Atmos. 2015, 120, 7229–7246. [Google Scholar] [CrossRef]
- Kalabokas, P.D.; Hatzianestis, J.; Bartzis, J.G.; Papagiannakopoulos, P. Atmospheric Concentrations of Saturated and Aromatic Hydrocarbons around a Greek Oil Refinery. Atmos. Environ. 2001, 35, 2545–2555. [Google Scholar] [CrossRef]
- Brown, S.G.; Frankel, A.; Hafner, H.R. Source Apportionment of Vocs in the Los Angeles Area Using Positive Matrix Factorization. Atmos. Environ. 2007, 41, 227–237. [Google Scholar] [CrossRef]
- Liaud, C.; Nguyen, N.T.; Nasreddine, R.; le Calvé, S. Experimental Performances Study of a Transportable Gc-Pid and Two Thermo-Desorption Based Methods Coupled to Fid and Ms Detection to Assess Btex Exposure at Sub-Ppb Level in Air. Talanta 2014, 127, 33–42. [Google Scholar] [CrossRef]
- Nasreddine, R.; Person, V.; Serra, C.A.; le Calvé, S. Development of a Novel Portable Miniaturized Gc for near Real-Time Low Level Detection of Btex. Sens. Actuators B Chem. 2016, 224, 159–169. [Google Scholar] [CrossRef]
- Cai, X.M.; Steyn, D.G. Modelling Study of Sea Breezes in a Complex Coastal Environment. Atmos. Environ. 2000, 34, 2873–2885. [Google Scholar] [CrossRef]
- Levy, I.; Mahrer, Y.; Dayan, U. Coastal and Synoptic Recirculation Affecting Air Pollutants Dispersion: A Numerical Study. Atmos. Environ. 2009, 43, 1991–1999. [Google Scholar] [CrossRef]
- Su, Y.C.; Chen, S.P.; Tong, Y.H.; Fan, C.L.; Chen, W.H.; Wang, J.L.; Chang, J.S. Assessment of Regional Influence from a Petrochemical Complex by Modeling and Fingerprint Analysis of Volatile Organic Compounds (Vocs). Atmos. Environ. 2016, 141, 394–407. [Google Scholar] [CrossRef]
- Jia, C.; Batterman, S.; Godwin, C. Vocs in Industrial, Urban and Suburban Neighborhoods, Part 1: Indoor and Outdoor Concentrations, Variation, and Risk Drivers. Atmos. Environ. 2008, 42, 2083–2100. [Google Scholar] [CrossRef]
- Prinn, R.; Cunnold, D.; Rasmussen, R.; Simmonds, P.; Alyea, F.; Crawford, A.; Fraser, P.; Rosen, R. Atmospheric Trends in Methylchloroform and the Global Average for the Hydroxyl Radical. Science 1987, 238, 945–950. [Google Scholar] [CrossRef]
- Liu, P.W.G.; Yao, Y.C.; Tsai, J.H.; Hsu, Y.C.; Chang, L.P.; Chang, K.H. Source Impacts by Volatile Organic Compounds in an Industrial City of Southern Taiwan. Sci. Total Environ. 2008, 398, 154–163. [Google Scholar] [CrossRef]
- Cai, C.; Geng, F.; Tie, X.; Yu, Q.; An, J. Characteristics and Source Apportionment of Vocs Measured in Shanghai, China. Atmos. Environ. 2010, 44, 5005–5014. [Google Scholar] [CrossRef]
- Wang, G.; Cheng, S.; Wei, W.; Zhou, Y.; Yao, S.; Zhang, H. Characteristics and Source Apportionment of Vocs in the Suburban Area of Beijing, China. Atmos. Pollut. Res. 2016, 7, 711–724. [Google Scholar] [CrossRef]
- Gong, Y.; Wei, Y.; Cheng, J.; Jiang, T.; Chen, L.; Xu, B. Health Risk Assessment and Personal Exposure to Volatile Organic Compounds (Vocs) in Metro Carriages—a Case Study in Shanghai, China. Sci. Total Environ. 2017, 574, 1432–1438. [Google Scholar] [CrossRef]
- Scheff, P.A.; Wadden, R.A.; Bates, B.A.; Aronian, P.F. Source Fingerprints for Receptor Modeling of Volatile Organics. Japca 1989, 39, 469–478. [Google Scholar] [CrossRef]
- Liu, Y.; Shao, M.; Fu, L.; Lu, S.; Zeng, L.; Tang, D. Source Profiles of Volatile Organic Compounds (Vocs) Measured in China: Part I. Atmos. Environ. 2008, 42, 6247–6260. [Google Scholar] [CrossRef]
- Osadetz, K.G.; Brooks, P.W.; Snowdon, L.R. Oil Families and Their Sources in Canadian Williston Basin, (Southeastern Saskatchewan and Southwestern Manitoba). Bull. Can. Pet. Geol. 1992, 40, 254–273. [Google Scholar]
- Wang, H.; Qiao, Y.; Chen, C.; Lu, J.; Dai, H.X.; Qiao, L.P.; Lou, S.; Huang, C.; Jing, S.; Wu, J.P. Source Profiles and Chemical Reactivity of Volatile Organic Compounds from Solvent Use in Shanghai, China. Aerosol Air Qual. Res. 2014, 14, 301–310. [Google Scholar] [CrossRef] [Green Version]
- Sexton, K.; Westberg, H. Photochemical Ozone Formation from Petroleum Refinery Emissions. Atmos. Environ. (1967) 1983, 17, 467–475. [Google Scholar] [CrossRef]
- Na, K.; Moon, K.C.; Kim, Y.P. Source Contribution to Aromatic Voc Concentration and Ozone Formation Potential in the Atmosphere of Seoul. Atmos. Environ. 2005, 39, 5517–5524. [Google Scholar] [CrossRef]
- Zhu, S.; Huang, X.; He, L.; Lu, S.; Feng, N. Variation Characteristics and Chemical Reactivity of Ambient Vocs in Shenzhen. China Environ. Sci. 2012, 32, 2140–2148. [Google Scholar]
- Gao, Z.; Gao, S.; Cui, H.; Fu, Q.; Jin, D.; Liang, G.; Fang, F. Characteristics and Chemical Reactivity of Vocs During a Typical Photochemical Episode in Summer at a Chemical Industrial Area. Acta Sci. Circumstantiae 2017, 4, 5. [Google Scholar]
- Atkinson, R.; Arey, J. Atmospheric Degradation of Volatile Organic Compounds. Chem. Rev. 2003, 103, 4605–4638. [Google Scholar] [CrossRef]
- Laowagul, W.; Yoshizumi, K. Behavior of Benzene and 1,3-Butadiene Concentrations in the Urban Atmosphere of Tokyo, Japan. Atmos. Environ. 2009, 43, 2052–2059. [Google Scholar] [CrossRef]
- Carter, W.P.L. Saprc Atmospheric Chemical Mechanisms and Voc Reactivity Scales. Available online: www.cert.ucr.edu/~carter/SAPRC (accessed on 18 October 2019).
- Fenske, J.D.; Hasson, A.S.; Ho, A.W.; Paulson, S.E. Measurement of Absolute Unimolecular and Bimolecular Rate Constants for Ch 3 Choo Generated by the Trans -2butene Reaction with Ozone in the Gas Phase. J. Phys. Chem. A 2000, 104, 9921–9932. [Google Scholar] [CrossRef]
- Cui, H.X.; Wu, Y.M.; Gao, S.; Duan, Y.S.; Wang, D.F.; Zhang, Y.H.; Fu, Q.Y. Characteristics of Ambient Vocs and Their Role in O3 Formation: A Typical Air Pollution Episode in Shanghai Urban Area. Huan Jing Ke Xue 2011, 32, 3537–3542. [Google Scholar]
- Geng, F.; Zhao, C.; Tang, X.; Lu, G.; Tie, X. Analysis of Ozone and Vocs Measured in Shanghai: A Case Study. Atmos. Environ. 2007, 41, 989–1001. [Google Scholar] [CrossRef]
- Geng, F.; Zhang, Q.; Tie, X.; Huang, M.; Ma, X.; Deng, Z.; Yu, Q.; Quan, J.; Zhao, C. Aircraft Measurements of O3, Nox, Co, Vocs, and So2 in the Yangtze River Delta Region. Atmos. Environ. 2009, 43, 584–593. [Google Scholar] [CrossRef]
- An, J.; Zhu, B.; Wang, H.; Li, Y.; Lin, X.; Yang, H. Characteristics and Source Apportionment of Vocs Measured in an Industrial Area of Nanjing, Yangtze River Delta, China. Atmos. Environ. 2014, 97, 206–214. [Google Scholar] [CrossRef]
- Guo, H.; Wang, T.; Simpson, I.J.; Blake, D.R.; Yu, X.M.; Kwok, Y.H.; Li, Y.S. Source Contributions to Ambient Vocs and Co at a Rural Site in Eastern China. Atmos. Environ. 2004, 38, 4551–4560. [Google Scholar] [CrossRef] [Green Version]
- Tang, J.H.; Chan, L.Y.; Chan, C.Y.; Li, Y.S.; Chang, C.C.; Liu, S.C.; Wu, D.; Li, Y.D. Characteristics and Diurnal Variations of Nmhcs at Urban, Suburban, and Rural Sites in the Pearl River Delta and a Remote Site in South China. Atmos. Environ. 2007, 41, 8620–8632. [Google Scholar] [CrossRef]
- Chen, C.H.; Su, L.Y.; Wang, H.L.; Huang, C.; Li, L.; Zhou, M.; Qiao, Y.; Chen, Y.; Chen, M.; Huang, H.; et al. Variation and Key Reactive Species of Ambient Vocs in the Urban Area of Shanghai, China. Acta Sci. Circumst. 2012, 32, 367–376. [Google Scholar]
- Chang, C.C.; Wang, J.L.; Lung, S.C.C.; Liu, S.C.; Shiu, C.J. Source Characterization of Ozone Precursors by Complementary Approaches of Vehicular Indicator and Principal Component Analysis. Atmos. Environ. 2009, 43, 1771–1778. [Google Scholar] [CrossRef]
- Zhang, Y.; Wang, X.; Barletta, B.; Simpson, I.J.; Blake, D.R.; Fu, X.; Zhang, Z.; He, Q.; Liu, T.; Zhao, X.; et al. Source Attributions of Hazardous Aromatic Hydrocarbons in Urban, Suburban and Rural Areas in the Pearl River Delta (Prd) Region. J. Hazard. Mater. 2013, 250, 403–411. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, L.; Zhu, B.; Gao, J.H.; Kang, H.Q.; Yang, P.; Wang, H.L.; Ye, L.; Shao, P. Modeling Study of a Typical Summer Ozone Pollution Event over Yangtze River Delta. Huan Jing Ke Xue 2015, 36, 3981–3988. [Google Scholar] [PubMed]
- Atkinson, R.; Carter, W.P.L.; Winer, A.M.; Pitts, J.N., Jr. An Experimental Protocol for the Determination of Oh Radical Rate Constants with Organics Using Methyl Nitrite Photolysis as an Oh Radical. J. Air Pollut. Control Assoc. 1981, 31, 1090–1092. [Google Scholar] [CrossRef] [Green Version]
- Shilling, J.E.; Chen, Q.; King, S.M.; Rosenoern, T.; Kroll, J.H.; Worsnop, D.R.; McKinney, K.A.; Martin, S.T. Particle Mass Yield in Secondary Organic Aerosol Formed by the Dark Ozonolysis of A-Pinene. Atmos. Chem. Phys. 2008, 8, 2073–2088. [Google Scholar] [CrossRef] [Green Version]
- Yuan, B.; Hu, W.W.; Shao, M.; Wang, M.; Chen, W.T.; Lu, S.H.; Zeng, L.M.; Hu, M. Voc Emissions, Evolutions and Contributions to Soa Formation at a Receptor Site in Eastern China. Atmos. Chem. Phys. 2013, 13, 8815–8832. [Google Scholar] [CrossRef] [Green Version]
- Blake, N.J.; Penkett, S.A.; Clemitshaw, K.C.; Anwyl, P.; Lightman, P.; Marsh, A.R.W.; Butcher, G. Estimates of Atmospheric Hydroxyl Radical Concentrations from the Observed Decay of Many Reactive Hydrocarbons in Well-Defined Urban Plumes. J. Geophys. Res.-Atmos. 1993, 98, 2851–2864. [Google Scholar] [CrossRef]
- Kleinman, L.I.; Daum, P.H.; Lee, Y.N.; Nunnermacker, L.J.; Springston, S.R.; Weinstein-Lloyd, J.; Hyde, P.; Doskey, P.; Rudolph, J.; Fast, J.; et al. Photochemical Age Determinations in the Phoenix Metropolitan Area. J. Geophys. Res.-Atmos. 2003, 108, D3. [Google Scholar] [CrossRef] [Green Version]
- Sun, J.; Wu, F.; Hu, B.; Tang, G.; Zhang, J.; Wang, Y. Voc Characteristics, Emissions and Contributions to Soa Formation During Hazy Episodes. Atmos. Environ. 2016, 141, 560–570. [Google Scholar] [CrossRef]
- Atkinson, R.; Baulch, D.L.; Cox, R.A.; Crowley, J.N.; Hampson, R.F.; Hynes, R.G.; Jenkin, M.E.; Rossi, M.J.; Troe, J.; Subcommittee, I.U.P.A.C. Evaluated Kinetic and Photochemical Data for Atmospheric Chemistry: Volume Ii–Gas Phase Reactions of Organic Species. Atmos. Chem. Phys. 2006, 6, 3625–4055. [Google Scholar] [CrossRef] [Green Version]
- Jacob, D.J. Introduction to Atmospheric Chemistry; Princeton, N.J., Ed.; Princeton University Press: Princeton, NJ, USA, 1999. [Google Scholar]
- Derwent, R.G.; Jenkin, M.E.; Utembe, S.R.; Shallcross, D.E.; Murrells, T.P.; Passant, N.R. Secondary Organic Aerosol Formation from a Large Number of Reactive Man-Made Organic Compounds. Sci. Total Environ. 2010, 408, 3374–3381. [Google Scholar] [CrossRef] [PubMed]
Instrument | Specifications | Manufacturer | Accuracy | Time Resolution |
---|---|---|---|---|
Meteorological Parameters | WS500-UMB | SWARCO-LUFFT (Fellbach, Germany) | Wind Speed ±3% | 1 h |
Wind Direction <3° | ||||
High Boiling Point (C6-C12) Organics Analyzer | GC955-615 | SYNSPEC (Groningen, Netherlands) | ±15% | 1 h |
Low Boiling Point (C2-C5) Organics Analyzer | GC955-815 | SYNSPEC (Groningen, Netherlands) | ±15% | 1 h |
Trace Gas | T101, T201 | API (San Diego, CA USA) | ±5% | 1 h |
Ozone | T400 | Focused Photonics Inc. (Hangzhou, China) | ±5% | 1 h |
Site | LC | SE | SW | N |
---|---|---|---|---|
ZQ | 67% | 22% | 8% | 3% |
XL | 49% | 41% | 6% | 4% |
GM | 52% | 38% | 5% | 5% |
XC | 49% | 29% | 0% | 22% |
SHJD | 47% | 43% | 5% | 5% |
WL | 74% | 22% | 1% | 3% |
Site | Pearson Correlation Coefficient | Samples |
---|---|---|
ZQ | −0.24 | 2208 |
XL | −0.27 | 2208 |
GM | −0.46 | 2208 |
XC | −0.21 | 2208 |
SHJD | −0.31 | 2208 |
WL | −0.25 | 2208 |
Wind Patterns | Complex | Industry | Vehicle | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
ZQ | XL | GM | SHJD | XC | ZQ | XL | GM | SHJD | XC | ZQ | XL | GM | SHJD | XC | |
LC | 38% | 80% | 78% | 21% | 23% | 60% | 86% | 61% | 6% | 13% | 8% | 3% | 3% | 7% | 5% |
SE | 29% | 71% | 34% | 1% | 12% | 14% | 51% | 9% | 0% | 0% | 5% | 2% | 4% | 0% | 2% |
SW | 21% | 13% | 81% | 71% | 19% | 38% | 100% | 96% | 0% | 23% | 17% | 2% | 0% | 4% | 6% |
N | 2% | 23% | 48% | 0% | 0% | 4% | 27% | 27% | 4% | 2% | 17% | 13% | 8% | 3% | 6% |
VOCs Species | Average SOA Yields | VOCs Species | Average SOA Yields |
---|---|---|---|
Ethane | 0 | Ethylene | 0 |
Propane | 0 | Propylene | 0 |
C4-C6 alkanes | 0 | 1-Butene | 0 |
n-Heptane | 0.048 | Cis-2-butene | 0 |
n-Octane | 0.058 | Trans-2-butene | 0 |
n-Nonane | 0.14 | Isobutene | 0 |
n-Decane | 0.22 | 1,3-butadiene | 0.13 |
n-C11 alkane | 0.33 | 1-Pentene | 0 |
n-C12 alkane | 0.44 | 2-Pentene | 0 |
C3-C5 cycloalkanes | 0.04 | Other C5 alkenes | 0 |
n-Cyclohexane | 0.0017 | 1-Hexene | 0.02 |
n-Cycloheptane | 0.22 | Other C6 alkenes | 0.02 |
Cyclopentene | 0.073 | C7 alkenes | 0.015 |
Cyclohexene | 0.094 | C8 alkenes | 0.022 |
Acetylene | 0 | C9 alkenes | 0.05 |
Benzene | 0.0093 | C10 alkenes | 0.09 |
Toluene | 0.36 | >C10 alkenes | 0.11 |
o-Xylene | 0.10 | isoprene | 0.0079 |
m-Xylene | 0.069 | Other alkenes | 0.11 |
p-Xylene | 0.072 | 1,2,3-Trimethylbenzene | 0.021 |
Ethylbenzene | 0.054 | 1,2,4-Trimethylbenzene | 0.021 |
n-Propylbenzene | 0.016 | 1,3,5-Trimethylbenzene | 0.021 |
i-Propylbenzene | 0.04 | p-Ethyltoluene | 0.025 |
o-Ethyltoluene | 0.056 | m-Ethyltoluene | 0.063 |
Wind Pattern | Site | OH·∆t (1010 molecule·s·cm−3) | VOCs Consume (ppbv) | Ozone Formation (ppbv) | SOA Formation (μg·cm−3) |
---|---|---|---|---|---|
SE | ZQ | 14.6 | 189 | 613 | 11.2 |
XL | 11.6 | 90 | 502 | 7.8 | |
GM | 9.8 | 195 | 495 | 12.0 | |
SW | SHJD | 5.4 | 733 | 802 | 19.0 |
XC | 15.1 | 440 | 2095 | 15.5 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Qiu, W.; Li, S.; Liu, Y.; Lu, K. Petrochemical and Industrial Sources of Volatile Organic Compounds Analyzed via Regional Wind-Driven Network in Shanghai. Atmosphere 2019, 10, 760. https://doi.org/10.3390/atmos10120760
Qiu W, Li S, Liu Y, Lu K. Petrochemical and Industrial Sources of Volatile Organic Compounds Analyzed via Regional Wind-Driven Network in Shanghai. Atmosphere. 2019; 10(12):760. https://doi.org/10.3390/atmos10120760
Chicago/Turabian StyleQiu, Wanyi, Shule Li, Yuhan Liu, and Keding Lu. 2019. "Petrochemical and Industrial Sources of Volatile Organic Compounds Analyzed via Regional Wind-Driven Network in Shanghai" Atmosphere 10, no. 12: 760. https://doi.org/10.3390/atmos10120760
APA StyleQiu, W., Li, S., Liu, Y., & Lu, K. (2019). Petrochemical and Industrial Sources of Volatile Organic Compounds Analyzed via Regional Wind-Driven Network in Shanghai. Atmosphere, 10(12), 760. https://doi.org/10.3390/atmos10120760