Understanding Household Energy Transitions: From Evaluating Single Cookstoves to “Clean Stacking” Alternatives
Abstract
:1. Introduction
2. Materials and Methods
2.1. Review and Re-Processing of a Comprehensive Field Survey
2.2. Tests of Clean Stacking Options in Simulated Kitchen
2.3. Air Sampling Methods
2.4. Data Analysis
3. Results
3.1. Patterns of Stoves Use and Distribution of Cooking Practices
3.2. Indoor Air Pollution Levels
3.3. Fuel, Time, and Energy Consumption
4. Discussion
4.1. Indoor CO and PM2.5 Concentrations
4.2. Stove Stacking Options
4.3. Overall Implications
4.4. Limitations
5. Conclusions
- Evaluation of health and environmental consequences of stove transitions based on the full replacement of traditional fires will lead to misplaced expectations, and clean fuel and cookstove programs should evaluate more realistic “clean-stacking” options.
- The displacement of cooking tasks to other stoves depends on the specific stoves present. Thus, environmental and health implications of adopting cleaner fuels and stoves depend on the specific stacking options that dominate the mix.
- The promotion of LPG in rural households has resulted in stacking of open fires with LPG stoves, with negligible health benefits and marginal energy savings.
- Clean woodburning chimney stoves—such as the Patsari stove examined in this study—in combination with LPG could be the most effective stacking option in terms of IAP impacts and fuelwood savings.
- Stove performance testing frameworks should be revised to incorporate the pervasive use of stove stacking, and testing protocols that include controlled cooking cycles in test kitchens, as these are more representative of emissions during daily cooking activities.
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- WHO. Burning Opportunity: Clean Household Energy for Health, Sustainable Development, and Wellbeing of Women and Children; World Health Organization: Geneva, Switzerland, 2016. [Google Scholar]
- GBD 2016 Risk Factors Collaborators. Global, regional, and national comparative risk assessment of 84 behavioural, environmental and occupational, and metabolic risks or clusters of risk, 1990-2016: A systematic analysis for the Global Burden of Disease Study 2016. Lancet 2017, 390, 1345–1422. [Google Scholar] [CrossRef]
- Ruiz-Mercado, I.; Masera, O.; Zamora, H.; Smith, K.R. Adoption and sustained use of improved cookstoves. Energy Policy 2011, 39, 7557–7566. [Google Scholar] [CrossRef]
- Ruiz-Mercado, I.; Masera, O. Patterns of Stove Use in the Context of Fuel–Device Stacking: Rationale and Implications. EcoHealth 2015, 12, 42–56. [Google Scholar] [CrossRef] [PubMed]
- Shankar, A.V.; Quinn, A.; Dickinson, K.L.; Williams, K.; Masera, O.; Charron, D.; Darby, J. Everybody Stacks: Lessons from household energy case studies to inform design principles for clean energy transitions. Energy Policy 2019. under review. [Google Scholar]
- Masera, O.; Bailis, R.; Drigo, R.; Ghilardi, A.; Ruiz-Mercado, I. Environmental burden of traditional bioenergy use. Annu. Rev. Environ. Resour. 2015, 40, 121–150. [Google Scholar] [CrossRef]
- Berrueta, B.; Serrano-Medrano, M.; García-Bustamante, C.; Astier, M.; Masera, O.R. Promoting sustainable local development of rural communities and mitigating climate change: The case of Mexico’s Patsari improved cookstove Project. Clim. Chang. 2017, 140, 63–77. [Google Scholar] [CrossRef]
- Masera, O.R.; Saatkamp, B.D.; Kammen, D.M. From linear fuel switching to multiple cooking strategies: A critique and alternative to the energy ladder model. World Dev. 2000, 28, 2083–2103. [Google Scholar] [CrossRef]
- Medina, P.; Berrueta, V.; Martínez, M.; Ruiz, V.; Edwards, R.; Masera, O. Comparative performance of five Mexican plancha-type cookstoves using water boiling tests. Dev. Eng. 2017, 2, 20–28. [Google Scholar] [CrossRef] [Green Version]
- Masera, O.; Diaz, R.; Berrueta, V.M. From cookstoves to cooking systems: The integrated program on sustainable household energy use in Mexico. Energy Sustain. Dev. 2005, 9, 25–36. [Google Scholar] [CrossRef]
- Berrueta, V.; Edwards, R.; Masera, O.R. Energy performance of wood-burning cookstoves in Michoacan, Mexico. Renew. Energy 2008, 33, 859–870. [Google Scholar] [CrossRef]
- Masera, O.R.; Navia, J. Fuel switching or multiple cooking fuels? Understanding inter-fuel substitution patterns in rural Mexican households. Biomass Bioenergy 1997, 12, 347–361. [Google Scholar] [CrossRef]
- Johnson, M.; Edwards, R.; Berrueta, V.; Masera, O. New approaches to performance testing of improved cookstoves. Environ. Sci. Technol. 2010, 44, 368–374. [Google Scholar] [CrossRef] [PubMed]
- Johnson, M.; Edwards, R.; Morawska, L.; Smith, K.; Nicas, M. WHO IAQ Guideline: Household Fuel Combustion. Review 3: Modeling Linking Emissions and Air Quality. 2016. Available online: https://www.who.int/airpollution/guidelines/household-fuel-combustion/Review_3.pdf (accessed on 13 March 2019).
- Brooks, N.; Bhojvaid, V.; Jeuland, M.A.; Lewis, J.J.; Patange, O.; Pattanayak, S.K. How much do alternative cookstoves reduce biomass fuel use? Evidence from North India. Resour. Energy Econ. 2016, 43, 153–171. [Google Scholar] [CrossRef]
- Romieu, I.; Riojas-Rodríguez, H.; Marrón-Mares, A.T.; Schilmann, A.; Perez-Padilla, R.; Masera, O. Improved Biomass Stove Intervention in Rural Mexico. Am. J. Respir. Crit. Care Med. 2009, 180, 649–656. [Google Scholar] [CrossRef]
- Schilmann, A.; Riojas-Rodríguez, H.; Catalán-Vázquez, M.; Estevez-García, J.A.; Masera, O.; Berrueta, V.; Armendáriz-Arnez, C.; Pérez-Padilla, R.; Cortez-Lugo, M.; Rodríguez-Dozal, S.; et al. A follow-up study after an improved cookstove intervention in rural Mexico: Estimation of household energy use and chronic PM2.5 exposure. Environ. Int. 2019, 131, 105013. [Google Scholar] [CrossRef]
- Medina, P.; Berrueta, V.; Martínez, M.; Ruiz, V.; Ruiz-Mercado, I.; Masera, O.R. Closing the gap between lab and field cookstove tests: Benefits of multi-pot and sequencing cooking tasks through controlled burning cycles. Energy Sustain. Dev. 2017, 41, 106–111. [Google Scholar] [CrossRef]
- Pennise, D.; Charron, D.; Wofchuck, T.; Rouse, J.; Hunt, A. Evaluation of Manufactured Wood-Burning Stoves in Dadaab Refugee Camps, Kenya. Berkeley Air Monitoring Group 2010. Available online: http://www.safefuelandenergy.org/files/USAID%20Daadab%20study.pdf (accessed on 18 March 2019).
- Grabow, K.; Still, D.; Bentson, S. Test Kitchen studies of indoor air pollution from biomass cookstoves. Energy Sustain. Dev. 2013, 17, 458–462. [Google Scholar] [CrossRef]
- MacCarty, N.; Still, D.; Ogle, D.; Drouin, T. Assessing Cook Stove Performance: Field and Lab Studies of Three Rocket Stoves Comparing the Open Fire and Traditional Stoves in Tamil Nadu, India on Measures of Time to Cook, Fuel Use, Total Emissions, and Indoor Air Pollution. Aprovecho Research Center. 2008. Available online: https://www.k4health.org/sites/default/files/CCT%20rocket%20stove%20report%20India.pdf (accessed on 3 April 2019).
- De la Sota, C.; Lumbreras, J.; Pérez, N.; Ealo, M.; Kane, M.; Youm, I.; Viana, M. Indoor air pollution from biomass cookstoves in rural Senegal. Energy Sustain. Dev. 2018, 43, 224–234. [Google Scholar] [CrossRef]
- Instructions for Use of the Indoor Air Pollution Meter (IAP Meter) 5000 Series. Aprovecho Research Center. 2013. Available online: http://aprovecho.org/wp-content/uploads/2016/03/iap-meter-5000-series-instruction-manual.pdf (accessed on 1 April 2019).
- Smith, K.R.; Dutta, K.; Chengappa, C.; Gusain, P.P.S.; Masera, O.; Berrueta, V.; Edwards, R.; Bailis, R.; Naumoff Shields, K. Monitoring and evaluation of improved biomass cookstove programs for indoor air quality and stove performance: Conclusions from the Household Energy and Health Project. Energy Sustain. Dev. 2007, 11, 5–18. [Google Scholar] [CrossRef]
- Standard Operating Procedure. Installing Indoor Air Pollution Instruments in a Home; University of California-Berkeley: Berkeley, CA, USA, 2005; Available online: http://berkeleyair.com/wp-content/publications/guidelines-for-instrument-placement.pdf (accessed on 17 August 2018).
- National Ambient Air Quality Standards for Particulate Matter; Final Rule 40 CFR Part 50. Appendix L to Part 50—Reference Method for the Determination of Fine Particulate Matter as PM2.5 in the Atmosphere, July 1997. Available online: https://www3.epa.gov/ttnamti1/files/cfr/50apdxl.pdf (accessed on 30 July 2019).
- Armendáriz-Arnez, C.; Edwards, R.D.; Johnson, M.; Rosas, I.A.; Espinosa, F.; Masera, O.R. Indoor particle size distributions in homes with open fires and improved Patsari cook stoves. Atmos. Environ. 2010, 44, 2881–2886. [Google Scholar] [CrossRef]
- Masera, O.; Edwards, R.; Armendáriz-Arnez, C.; Berrueta, V.; Johnson, M.; Rojas Bracho, L.; Riojas-Rodríguez, H.; Smith, K. Impact of Patsari improved cookstoves on indoor air quality in Michoacán, Mexico. Energy Sustain. Dev. 2007, 11, 45–56. [Google Scholar] [CrossRef]
- Johnson, M.; Lam, N.; Brant, S.; Gray, C.; Pennise, D. Modeling indoor air pollution from cookstove emissions in developing countries using a Monte Carlo single-box model. Atmos. Environ. 2011, 45, 3237–3243. [Google Scholar] [CrossRef]
- Chartier, R.; Phillips, M.; Mosquin, P.; Elledge, M.; Bronstein, K.; Nandasena, S.; Thornburg, V.; Thornburg, J.; Rodes, C. A comparative study of human exposures to household air pollution from commonly used cookstoves in Sri Lanka. Indoor Air 2017, 27, 147–159. [Google Scholar] [CrossRef] [PubMed]
- Tagle, M.; Smith, K.R.; Pillarisetti, A.; Hernández, M.T.; Leguizamón, L.; Galeano, A.C.; Flores, L.; Acosta, C.; Bergottini, A.; Dillner, A.; et al. Household Air Pollution from Biomass Burning in Urban and Rural Paraguay; University of California-Berkeley: Berkeley, CA, USA, 2018; Available online: https://static1.squarespace.com/static/53856e1ee4b00c6f1fc1f602/t/5add7e34562fa77ceb24693f/1524465216360/Study+biomass+cooking+Paraguay_final_ENG.pdf (accessed on 17 April 2019).
- Ruiz-García, V.M.; Edwards, R.D.; Ghasemian, M.; Berrueta, V.M.; Princevac, M.; Vázquez, J.C.; Johnson, M.; Masera, O.R. Fugitive Emissions and Health Implications of Plancha-Type Stoves. Environ. Sci. Technol. 2018, 52, 10848–10855. [Google Scholar] [CrossRef]
- Wolf, J.; Mäusezahl, D.; Verastegui, H.; Hartinger, S.M. Adoption of Clean Cookstoves after Improved Solid Fuel Stove Programme Exposure: A Cross-Sectional Study in Three Peruvian Andean Regions. Int. J. Environ. Res. Public Health 2017, 14, 745. [Google Scholar] [CrossRef]
- Rehfuess, E.A.; Puzzolo, E.; Stanistreet, D.; Pope, D.; Bruce, N. Enablers and barriers to large-scale uptake of improved solid fuel stoves: A systematic review. Environ. Health Perspect. 2014, 122, 120–130. [Google Scholar] [CrossRef]
- Young, B.N.; Clark, M.L.; Rajkumar, S.; Benka-Coker, M.L.; Bachand, A.; Brook, R.D.; Nelson, T.L.; Volckens, J.; Reynolds, S.J.; L’Orange, C.; et al. Exposure to household air pollution from biomass cookstoves and blood pressure among women in rural Honduras: A cross-sectional study. Wiley 2018, 16, 328–338. [Google Scholar] [CrossRef]
- Gould, C.F.; Urpelainen, J. LPG as a clean cooking fuel: Adoption, use, and impact in rural India. Energy Policy 2018, 122, 395–408. [Google Scholar] [CrossRef]
- Jagger, P.; Das, I. Implementation and scale-up of a biomass pellet and improved cookstove enterprise in Rwanda. Energy Sustain. Dev. 2018, 46, 32–41. [Google Scholar] [CrossRef]
- Serrano-Medrano, M.; García-Bustamente, C.; Berrueta, V.M.; Martínez-Bravo, R.; Ruiz-García, V.M.; Ghilardi, A.; Masera, O. Promoting LPG, clean woodburning cookstoves or both? Climate change mitigation implications of integrated household energy transition scenarios in rural Mexico. Environ. Res. Lett. 2018, 13, 1–14. [Google Scholar] [CrossRef]
Cooking Task | Stacking Option | |||
---|---|---|---|---|
Patsari-U-Type | Patsari-LPG | LPG-U-Type | Patsari-LPG-U-Type | |
1. Tortillas | Patsari | Patsari | U-type | Patsari |
2. Fried rice | Patsari | Patsari | U-type | Patsari |
3. Boil beans | U-type | Patsari | U-type | U-type |
4. Boil 1 L of water | Patsari | LPG | LPG | LPG |
5. Reheat (tortillas and meals) | Patsari | LPG | LPG | LPG |
6. Fried meals (eggs and beans) | Patsari | LPG | LPG | LPG |
Task | Stove/Stacking | Particulate Matter PM2.5 (μg/m3) | Carbon Monoxide CO (mg/m3) | ||||||
---|---|---|---|---|---|---|---|---|---|
Total Cooking | 24-h | Ambient Air | Incremental Stove Contribution | Total Cooking | 24-h | Ambient Air | Incremental Stove Contribution | ||
CCC | Patsari | 29 ± 12 | 21 ± 8 | 19 ± 11 | 6 ± 2 | 2.7 ± 0.3 | 1.7 ± 0.5 | 1.1 ± 0.4 | 0.8 ± 0.2 |
U-type | 874 ± 177 | 144 ± 46 | 16 ± 11 | 132 ± 44 | 12 ± 2 | 3 ± 1 | 0.7 ± 0.3 | 2.8 ± 0.7 | |
LPG | 38 ± 12 | 18 ± 4 | 14 ± 4 | 4 ± 3 | 2.8 ± 1.2 | 0.6 ± 0.3 | 0.2 ± 0.2 | 0.4 ± 0.3 | |
Patsari-U-type | 610 ± 72 | 107 ± 9 | 13 ± 6 | 97 ± 9 | 11 ± 1 | 2.7 ± 0.3 | 0.9 ± 0.1 | 1.7 ± 0.3 | |
Patsari-LPG | 53 ± 8 | 24 ± 5 | 18 ± 6 | 9 ± 1 | 4 ± 1 | 3 ± 1 | 2 ± 1 | 0.6 ± 0.1 | |
U-type-LPG | 868 ± 420 | 131 ± 55 | 10 ± 7 | 124 ± 56 | 21 ± 7 | 4 ± 1 | 1 ± 0.1 | 2.8 ± 0.9 | |
Patsari-U-type-LPG | 718 ± 146 | 107 ± 22 | 17 ± 9 | 93 ± 26 | 22 ± 2 | 3.2 ± 0.2 | 0.5 ± 0.3 | 2.8 ± 0.3 |
Task | Stove/Stacking | Fuel | Fuel Consumption (kg) | Energy Consumption (MJ) | Cooking Time (min) |
---|---|---|---|---|---|
CCC | Patsari | Fuelwood | 11 ± 1 | 189 ± 21 | 305 ± 25 |
U-type | Fuelwood | 16 ± 1 | 276 ± 18 | 283 ± 20 | |
LPG | Gas | 0.9 ± 0.2 | 43 ± 8 | 268 ± 81 | |
Patsari-U-type | Fuelwood, Patsari | 5 ± 2 | 94 ± 31 | 162 ± 10 | |
Fuelwood, U-type | 10 ± 1 | 171 ± 16 | 189 ± 16 | ||
TOTAL | 15 ± 3 | 266 ± 46 | 189 ± 16 | ||
Patsari-LPG | Fuelwood | 7 ± 1 | 125 ± 10 | 215 ± 17 | |
Gas | 0.1 ± 0.1 | 6 ± 1 | 43 ± 4 | ||
TOTAL | 7 ± 1 | 131 ± 12 | 215 ± 17 | ||
U-type-LPG | Fuelwood | 12 ± 1 | 218 ± 10 | 212 ± 17 | |
Gas | 0.1 ± 0.1 | 5 ± 1 | 36 ± 2 | ||
TOTAL | 12 ± 1 | 223 ± 11 | 212 ± 17 | ||
Patsari-U-type-LPG | Fuelwood, Patsari | 4 ± 2 | 77 ± 26 | 107 ± 15 | |
Fuelwood, U-type | 10 ± 1 | 169 ± 15 | 169 ± 15 | ||
Gas | 0.1 ± 0.1 | 6 ± 1 | 35 ± 7 | ||
TOTAL | 14 ± 3 | 251 ± 41 | 169 ± 15 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Medina, P.; Berrueta, V.; Cinco, L.; Ruiz-García, V.; Edwards, R.; Olaya, B.; Schilmann, A.; Masera, O. Understanding Household Energy Transitions: From Evaluating Single Cookstoves to “Clean Stacking” Alternatives. Atmosphere 2019, 10, 693. https://doi.org/10.3390/atmos10110693
Medina P, Berrueta V, Cinco L, Ruiz-García V, Edwards R, Olaya B, Schilmann A, Masera O. Understanding Household Energy Transitions: From Evaluating Single Cookstoves to “Clean Stacking” Alternatives. Atmosphere. 2019; 10(11):693. https://doi.org/10.3390/atmos10110693
Chicago/Turabian StyleMedina, Paulo, Victor Berrueta, Lourdes Cinco, Victor Ruiz-García, Rufus Edwards, Belén Olaya, Astrid Schilmann, and Omar Masera. 2019. "Understanding Household Energy Transitions: From Evaluating Single Cookstoves to “Clean Stacking” Alternatives" Atmosphere 10, no. 11: 693. https://doi.org/10.3390/atmos10110693
APA StyleMedina, P., Berrueta, V., Cinco, L., Ruiz-García, V., Edwards, R., Olaya, B., Schilmann, A., & Masera, O. (2019). Understanding Household Energy Transitions: From Evaluating Single Cookstoves to “Clean Stacking” Alternatives. Atmosphere, 10(11), 693. https://doi.org/10.3390/atmos10110693