Extreme Drought Events over Brazil from 2011 to 2019
Abstract
:1. Introduction
2. Materials and Methods
2.1. Drought Indices
2.1.1. Remote Sensing Component: Vegetation Health Index—VHI
2.1.2. Standardized Precipitation Index—SPI
2.2. Integrated Drought Index (IDI)
2.3. Soil Moisture Data
2.4. Reservoir Data
2.5. Fire Data
3. Results and Discussion
3.1. Drought Assessment
3.2. Case Study 1: Hydrological Drought Impact Assessment in the São Francisco River Basin
3.3. Case Study 2: Drought Impact Assessment on Smallholder Agriculture Production
3.4. Case Study 3: Drought Impacts on Forest Fire
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- EM-DAT: The OFDA/CRED International Disaster Database. Available online: https://www.emdat.be (accessed on 27 August 2019).
- UNISDR. Drought Risk Reduction Framework and Practices: Contributing to the Implementation of the Hyogo Framework for Action; United Nations Secretariat of the International Strategy for Disaster Reduction (UNISDR): Geneva, Switzerland, 2012; p. 213. [Google Scholar]
- IPCC. Managing the Risks of Extreme Events and Disasters to Advance Climate Change Adaptation. A Special Report of Working Groups I and II of the Intergovernmental Panel on Climate Change (IPCC); Field, C.B., Barros, V., Stocker, T.F., Qin, D., Dokken, D.J., Ebi, K.L., Mastrandrea, M.D., Mach, K.J., Plattner, G.K., Allen, S.K., et al., Eds.; Cambridge University Press: Cambridge, UK; New York, NY, USA, 2012; p. 582. [Google Scholar]
- Hartmann, D.L.; Klein Tank, A.M.G.; Rusticucci, M.; Alexander, L.V.; Brönnimann, S.; Charabi, Y.; Dentener, F.J.; Dlugokencky, E.J.; Easterling, D.R.; Kaplan, A.; et al. Observations: Atmosphere and Surface. In Climate Change 2013 the Physical Science Basis: Working Group I Contribution to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change; Cambridge University Press: Cambridge, UK, 2013; pp. 159–254. [Google Scholar]
- Ning, L.; Riddle, E.E.; Bradley, R.S. Projected changes in climate extremes over the northeastern United States. J. Clim. 2015, 28, 3289–3310. [Google Scholar] [CrossRef]
- Dai, A.; Trenberth, K.E.; Qian, T. A global dataset of Palmer drought severity index for 1870–2002: Relationship with soil moisture and effects of surface warming. J. Hydrometeorol. 2004, 5, 1117–1130. [Google Scholar] [CrossRef]
- IPCC. Climate Change 2014: Impacts, Adaptation, and Vulnerability. Part B: Regional Aspects; Cambridge University Press: New York, USA, 2014. [Google Scholar]
- Zhou, L.; Zhang, J.; Wu, J.; Zhao, L.; Liu, M.; Lü, A.; Wu, Z. Comparison of remote sensed and meteorological data derived drought indices in Mid-Eastern China. Int. J. Remote Sens. 2012, 33, 1755–1779. [Google Scholar] [CrossRef]
- IPCC. 2018: Global warming of 1.5°C. In An IPCC Special Report on the Impacts of Global Warming of 1.5°C above Pre-Industrial Levels and Related Global Greenhouse Gas Emission Pathways, in the Context of Strengthening the Global Response to the Threat of Climate Change, Sustainable Development, and Efforts to Eradicate Poverty; Masson-Delmotte, P., Zhai, H.O., Pörtner, D., Roberts, J., Skea, P.R., Shukla, A., Pirani, W., Moufouma-Okia, C., Péan, R., Pidcock, S., et al., Eds.; World Meteorological Organization: Geneva, Switzerland, 2018. [Google Scholar]
- Herweijer, C.; Seager, R. The global footprint of persistent extra-tropical drought in the instrumental era. Int. J. Clim. 2008, 28, 1761–1774. [Google Scholar] [CrossRef]
- Ning, L.; Liu, J.; Wang, B.; Chen, K.; Yan, M.; Jin, C.; Wang, Q. Variability and mechanisms of megadroughts over eastern China during the last millennium: A model study. Atmosphere 2019, 10, 7. [Google Scholar] [CrossRef]
- Economic Losses, Poverty & Disasters 1998–2017. CRED-UNISDR: 2018. Available online: http:// https://www.unisdr.org/we/inform/publications/61119 (accessed on 15 May 2019).
- Guha-Sapir, D.; D’Aoust, O.; Vos, F.; Hoyois, P. The Frequency and Impact of Natural Disasters, in: The Economic Impact of Natural Disasters; Guha-Sapir, D., Santos, I., Eds.; Oxford University Press: Oxford, UK, 2013; pp. 1–27. [Google Scholar]
- Carolwicz, M. Natural hazards need not lead to natural disasters. Eos Trans. Am. Geophys. Union 1996, 77, 149–153. [Google Scholar] [CrossRef]
- Keyantash, J.; Dracup, J.A. The Quantification of Drought: An Evaluation of Drought Indices. Bull. Am. Meteorol. Soc. 2002, 83, 1167–1180. [Google Scholar] [CrossRef]
- Tortajada, C. São Francisco Water Transfer. Human Development Report, Human Development Report Office, Ocassional Paper, UNDP, 2006. Available online: http://hdr.undp.org/sites/default/files/tortajada_cecilia.pdf (accessed on 15 August 2019).
- Schellnhuber, H.; Hare, B.; Serdeczny, O.; Adams, S.; Coumou, D.; Frieler, K.; Rocha, M.; Martin, M.; Otto, I.; Perrette, M.; et al. Turn Down the Heat: Why a 4°C Warmer World Must be Avoided; World Bank: Washington, DC, USA, 2012; pp. 1–85. [Google Scholar]
- Ringler, T.D.; Ju, L.; Gunzburger, M. A multiresolution method for climate system modeling: Application of spherical centroidal Voronoi tessellations. Ocean Dyn. 2008, 58, 475–498. [Google Scholar] [CrossRef]
- Trenberth, K.E. Changes in precipitation with climate change. Clim. Res. 2011, 47, 123–138. [Google Scholar] [CrossRef] [Green Version]
- Dai, A. Drought under global warming: A review. WIRES Clim. Change 2011, 2, 45–65. [Google Scholar] [CrossRef]
- Rossiello, M.R.; Szema, A. Health Effects of Climate Change-induced Wildfires and Heatwaves. Cureus 2019, 11, 4771. [Google Scholar] [CrossRef] [PubMed]
- Wilhite, D.A. Drought as a natural hazard: Concepts and definitions. In Drought: A global Assessment; Routledge: London, UK, 2000; pp. 3–18. [Google Scholar]
- Van Loon, A.F. Hydrological drought explained. WIREs Water 2015, 2, 359–392. [Google Scholar] [CrossRef]
- IBGE-Instituto Brasileiro de Geografia e Estatística, Censo Agropecuário 2006. Available online: http://www.ibge.gov.br (accessed on 1 July 2018).
- Uvo, B. Influence of Sea Surface Temperature on Rainfall and Runnoff in Northeastern South America: Analysis and Modeling. Ph.D. Thesis, Department of Water Resources Engineering, Lund Institute of Technology, Lund, Sweden, 1998. [Google Scholar]
- Kane, R.P. Some characteristics and precipitation effects of the El Nino of 1997–1998. J. Atmos. Sol. Terr. Phys. 1999, 61, 1325–1346. [Google Scholar] [CrossRef]
- Hastenrath, S. Circulation and teleconnection mechanisms of Northeast Brazil droughts. Prog. Oceanogr. 2006, 70, 407–415. [Google Scholar] [CrossRef]
- Shimizu, M.H.; Ambrizzi, T.; Liebmann, B. Extreme precipitation events and their relationship with ENSO and MJO phases over northern South America. Int. J. Climatol. 2017, 37, 2977–2989. [Google Scholar] [CrossRef]
- Marengo, J.A.; Alves, L.M.; Alvalá, R.C.; Cunha, A.P.; Brito, S.; Moraes, O.L. Climatic characteristics of the 2010–2016 drought in the semiarid Northeast Brazil region. An. Acad. Bras. Cienc. 2017, 90, 1973–1985. [Google Scholar] [CrossRef]
- Cunha, A.P.M.A.; Brito, S.S.B.; Ribeiro-Neto, G.G.; Alvalá, R.C.S. As secas de 1963 e 2017 no Distrito Federal, Brasil. Anuário Inst. Geociências 2018, 41, 487–498. [Google Scholar] [CrossRef]
- Nobre, C.A.; Marengo, J.A.; Seluchi, M.E.; Cuartas, A.; Alves, L.M. Some Characteristics and Impacts of the Drought and Water Crisis in Southeastern Brazil during 2014 and 2015. J. Water Resour. Prot. 2016, 8, 252–262. [Google Scholar] [CrossRef] [Green Version]
- Marengo, J.A.; Souza, C.M.; Thonicke, K.; Burton, C.; Halladay, K.; Betts, R.A.; Alves, L.M.; Soares, W.R. Changes in Climate and Land Use Over the Amazon Region: Current and Future Variability and Trends. Front. Earth Sci. 2018, 6, 1. [Google Scholar] [CrossRef]
- Jiménez-Muñoz, J.C.; Mattar, C.; Barichivich, J.; Santamería-Artigas, A.; Takahashi, K.; Malhi, Y.; Sobrino, J.; Schrier, G. Record-breaking warming and extreme drought in the Amazon rainforest during the course of El Niño 2015–2016. Sci. Rep. 2016, 6, 33130. [Google Scholar] [CrossRef]
- PBMC Base científica das mudanças climáticas. Contribuição do Grupo de Trabalho 1 do Painel Brasileiro de Mudanças Climáticas ao Primeiro Relatório da Avaliação Nacional sobre Mundanças Climáticas; Ambrizzi, T., Araujo, M., Eds.; COPPE; Universidade Federal do Rio de Janeiro: Rio de Janeiro, Brazil, 2013; p. 464. [Google Scholar]
- Magrin, G.O.; Marengo, J.A.; Boulanger, J.-P.; Buckeridge, M.S.; Castellanos, E.; Poveda, G.; Scarano, F.R.; Vicuna, S. Central and South America. In Climate Change 2014: Impacts, Adaptation, and Vulnerability. Part B: Regional Aspects. Contribution of Working Group II to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change; Cambridge University Press: Cambridge, UK, 2014. [Google Scholar]
- Marengo, J.A.; Torres, R.R.; Alves, L.M. Drought in Northeast Brazil—past, present, and future. Theor. Appl. Climatol. 2017, 129, 1189–1200. [Google Scholar] [CrossRef]
- Palmer, W.C. Meteorological Drought. In Weather Bureau. Research Paper No. 45, U.S.; Department of Commerce Weather Bureau: Washington, DC, USA, 1965; p. 58. [Google Scholar]
- McKee, T.B.; Doesken, N.J.; Kleist, J. The relationship of drought frequency and duration to time scales. In Proceedings of the Eighth Conference on Applied Climatology, Anaheim, CA, USA, 17–22 January 1993. [Google Scholar]
- Kogan, F.N.; Yang, B.; Zhiyuan, P.; Xianfeng, J. Modelling corn production in China using AVHRR-based vegetation health indices. Int. J. Remote Sens. 2005, 26, 2325–2336. [Google Scholar] [CrossRef]
- Abbas, S.; Nichol, J.E.; Qamer, F.M.; Xu, J. Characterization of drought development through remote sensing: A case study in Central Yunnan, China. Remote Sens. 2014, 6, 4998–5018. [Google Scholar] [CrossRef]
- Hao, Z.; Singh, V.P.; Xia, Y. Seasonal drought prediction: Advances, challenges, and future prospects. Rev. Geophys. 2018, 56, 108–141. [Google Scholar] [CrossRef]
- Sudene, 2007. Superintendência do Desenvolvimento do Nordeste. Delimitação do Semiárido. Available online: http://sudene.gov.br/planejamento-regional/delimitacao-do-semiarido (accessed on 14 May 2019).
- Johnson, G.E.; Achutuni, V.R.; Thiruvengadachari, S.; Kogan, F.N. The role of NOAA satellite data in drought early warning and monitoring: Selected case studies. In Drought Assessment, Management and Planning: Theory and Case Studies, D.A.; Springer: Boston, MA, USA, 1993; pp. 31–47. [Google Scholar] [CrossRef]
- Peters, A.J.; Walter-Shea, L.J.; Viña, A.; Hayes, M.; Svoboda, M.D. Drought monitoring with NDVI-based standardized vegetation index. Photogramm. Eng. Remote. Sens. 2002, 68, 71–75. [Google Scholar]
- Tucker, C.J.; Choudhury, B.J. Satellite remote sensing of drought conditions. Remote Sens. Environ. 1987, 23, 243–251. [Google Scholar] [CrossRef]
- Nemani, R.R.; Running, S.W. Testing a theoretical climate-soil-leaf area hydrologic equilibrium of forests using satellite data and ecosystem simulation. Agric. For. Meteorol. 1989, 44, 245–260. [Google Scholar] [CrossRef]
- Carlson, T.N.; Gillies, R.R.; Perry, E.M. A method to make use of thermal infrared temperature and NDVI measurements to infer surface soil water content and fractional vegetation cover. Remote Sens. 1994, 9, 161–173. [Google Scholar] [CrossRef]
- Carlson, T.N.; Gillies, R.R.; Schmugge, T.J. An Interpretation of Methodologies for Indirect Measurement of Soil-Water Content. Agric. For. Meteorol. 1995, 77, 191–205. [Google Scholar] [CrossRef]
- Gillies, R.R.; Carlson, T.N.; Cui, J.; Kustas, W.P.; Humes, K.S. A verification of the ‘triangle’ method for obtaining surface soil water content and energy fluxes from remote measurements of the Normalized Difference Vegetation Index (NDVI) and surface radiant temperature. Int. J. Remote Sens. 1997, 18, 3145–3166. [Google Scholar] [CrossRef]
- Goetz, S.J. Multi-sensor analysis of NDVI, surface temperature, and biophysical variables at a mixed grassland site. Int. J. Remote Sens. 1997, 18, 71–94. [Google Scholar] [CrossRef]
- Karnieli, A.; Agam, N.; Pinker, R.T.; Anderson, M.; Imhoff, M.L.; Gutman, G.G.; Panov, N.; Goldberg, A. Use of NDVI and land surface temperature for drought assessment: Merits and limitations. J. Clim. 2010, 23, 618–633. [Google Scholar] [CrossRef]
- Cunha, A.P.M.A.; Alvalá, R.C.; Nobre, C.A.; Carvalho, M.A. Monitoring vegetative drought dynamics in the Brazilian Semiarid Region. Agric. For. Meteorol. 2015, 214, 494–505. [Google Scholar] [CrossRef]
- Seiler, R.A.; Kogan, F.; Sullivan, J. AVHRR-Based vegetation and temperature condition indices for drought detection in Argentina. Adv. Space Res. 1998, 21, 481–484. [Google Scholar] [CrossRef]
- Guttman, G.B. Comparing the Palmer Drought Index and the Standardized Precipitation Index. J. Am. Water Resour. 1998, 34, 113–121. [Google Scholar] [CrossRef]
- Hosseini-Moghari, S.M.; Shahab, A. Monthly and seasonal drought forecasting using statistical neural networks. Environ. Earth Sci. 2015, 74, 397–412. [Google Scholar] [CrossRef]
- Santos, S.R.Q.; Braga, C.C.; Sansigolo, C.A.; Santos, A.P.P. Determinação de Regiões Homogêneas do Índice de Precipitação Normalizada (SPI) na Amazônia Oriental. Rev. Bras. Meteorol. 2017, 32, 111–122. [Google Scholar] [CrossRef]
- Santos, S.R.Q.; Cunha, A.P.M.A.; Ribeiro Neto, G.G. Avaliação de dados de precipitação para o monitoramento do padrão espaço-temporal da seca no nordeste do Brasil. Rev. Bras. Clim. 2019, 25, 90–100. [Google Scholar]
- Rozante, J.R.; Moreira, D.S.; Gonçalves, L.G.G.; Vila, D.A. Combining TRMM and Surface Observations of Precipitation: Technique and Validation Over South America. Weather Forecast. 2010, 25, 885–894. [Google Scholar] [CrossRef]
- Matheron, G. Le krigeage universel. In Cahiers du Centre de Morphologie Mathematique; Ecole des Mines de Paris: Paris, France, 1969; Volume 1, p. 83. [Google Scholar]
- Wang, H.; Lin, H.; Liu, D. Remotely sensed drought index and its responses to meteorological drought in Southwest China. Remote Sens. Lett. 2014, 5, 413–422. [Google Scholar] [CrossRef]
- Bhuiyan, C.; Singh, R.P.; Kogan, F.N. Monitoring drought dynamics in the Aravalli region (India) using different indices based on ground and remote sensing data. Int. J. Appl. Earth Obs. Geoinf. 2006, 8, 289–302. [Google Scholar] [CrossRef]
- Kogan, F.N. World droughts in the new millennium from AVHRR-based Vegetation Health Indices. Eos Trans. Am. Geophys. Union 2002, 83, 557–563. [Google Scholar] [CrossRef]
- Sridhar, V.; Hubbard, K.G.; You, J.; Hunt, E.D. Development of the Soil Moisture Index to Quantify Agricultural Drought and Its “User Friendliness” in Severity-Area-Duration Assessment. J. Hydrol. 2008, 9, 660–676. [Google Scholar] [CrossRef]
- Zeri, M.; Alvalá, R.C.S.; Carneiro, R.; Cunha-Zeri, G.; Costa, J.M.; Spatafora, L.R.; Urbano, D.; Vall-Llossera, M.; Marengo, J. Tools for communicating agricultural drought over the Brazilian Semiarid using the soil moisture index. Water 2018, 10, 1421. [Google Scholar] [CrossRef]
- MODIS Collection 6 NRT Hotspot/Active Fire Detections MCD14DL. Available online: https://earthdata.nasa.gov/firms (accessed on 29 August 2019).
- Brito, S.S.B.; Cunha, A.P.M.A.; Cunningham, C.C.; Alvalá, R.C.; Marengo, J.A.; Araujo, M. Frequency, duration and severity of drought in the Brazilian Semiarid. Int. J. Climatol. 2018, 38, 517–529. [Google Scholar] [CrossRef]
- Spinoni, J.; Naumann, G.; Carrão, H.; Barbosa, P.; Vogt, J. World drought frequency, duration, and severity for 1951–2010. Int. J. Climatol. 2014, 34, 2792–2804. [Google Scholar] [CrossRef]
- Alvalá, R.C.; Cunha, A.P.M.A.; Brito, S.B.; Seluchi, M.E.; Marengo, J.A.; Moraes, O.L.L.; Carvalho, M.A. Drought Monitoring in the Brazilian Semiarid Region. Annais Acad. Bras. Cienc. Bras. 2017. [Google Scholar] [CrossRef]
- Marengo, J.A.; Alves, L.M.; Soares, W.R.; Rodriguez, D.A. Two contrasting severe seasonal extremes in tropical South America in 2012: Flood in Amazonia and drought in Northeast Brazil. J. Clim. 2013, 26, 9137–9154. [Google Scholar] [CrossRef]
- Cunha, A.P.M.; Tomasella, J.; Ribeiro-Neto, G.; Brown, M.; Garcia, S.; Brito, S.B.; Carvalho, M.A. Changes in the spatial–temporal patterns of droughts in the Brazilian Northeast. Atmos. Sci. Lett. 2018, 19, 855. [Google Scholar] [CrossRef]
- Espinoza, J.C.; Ronchail, J.; Frappart, F.; Lavado-Casimiro, W.; Santini, W.; Guyot, J.L. The major floods in the Amazonas river and tributaries (Western Amazon basin) during the 1970–2012 period: A focus on the 2012 flood. J. Hydrometeorol. 2013, 14, 1000–1008. [Google Scholar] [CrossRef]
- Moura, A.D.; Shukla, J. On the dynamics of droughts in northeast Brazil: Observations, theory, and numerical experiments with a general circulation model. J. Atmos. Sci. 1981, 38, 2653–2675. [Google Scholar] [CrossRef]
- Carvalho, L.M.V.; Cavalcanti, I.F.A. The South American Monsoon System (SAMS). In The Monsoons and Climate Change: Observations and Modeling, 1st ed.; Carvalho, L.M.V., Jones, C., Eds.; Springer: Menai, Australia, 2016; Volume 1, pp. 121–148. [Google Scholar] [CrossRef]
- Kane, R.P. Prediction of droughts in Northeast Brazil: Role of ENSO and use of periodicities. Int. J. Clim. 1997, 17, 655–665. [Google Scholar] [CrossRef]
- Erfanian, A.; Wang, G.; Fomenko, L. Unprecedented drought over tropical South America in 2016: Significantly under-predicted by tropical SST. Sci. Rep. 2017, 7, 5811. [Google Scholar] [CrossRef] [PubMed]
- Anderson, L.O.; Ribeiro Neto, G.; Cunha, A.P.M.A.; Fonseca, M.G.; Mendes De Moura, Y.; Dalagnol, R.; Wagner, F.H.; Aragão, L.E.O. Vulnerability of Amazonian forests to repeated droughts. Philos. Trans. R. Soc. B: Boil. Sci. 2018, 373, 20170411. [Google Scholar] [CrossRef]
- Getirana, A. Extreme Water Deficit in Brazil Detected from Space. J. Hydrometeorol. 2016, 17, 591–599. [Google Scholar] [CrossRef]
- S2ID; Brasil, Ministério da Integração Nacional, Secretaria Nacional de Proteção e Defesa Civil. Relatório de Gestão, Exercício 2016. Brasília, 2017. Available online: http://www.mi.gov.br (accessed on 18 June 2018).
- CONAB. Companhia Nacional de Abastecimento. Boletim da Safra de Grãos. Available online: https://www.conab.gov.br/info-agro/safras/graos/boletim-da-safra-de-graos?start=10 (accessed on 24 August 2019).
- Nys, E.D.; Engle, N.L.; Magalhães, A.R. Drought in Brazil: Proactive Management and Policy; CRC Press: Boca Raton, FL, USA, 2016; p. 230. [Google Scholar] [CrossRef]
- Deusdará-Leal, K.R.; Cuartas, L.A.; Zhang, R.; Mohor, G.S.; Carvalho, L.V.C.; Nobre, C.; Mendiondo, E.M.; Broedel, E.; Seluchi, M.; Alvalá, R. Implication of the new operation rules for Cantareira System: Re-reading of the 2014/2015 water crisis. Water Resour. Res. 2019, in press. [Google Scholar]
- Carvalho, L.M.V.; Jones, C.; Liebmann, B. The South Atlantic convergence zone: Intensity, form, persistence, and relationships with intraseasonal to interannual activity and extreme rainfall. J. Clim. 2004, 17, 88–108. [Google Scholar] [CrossRef]
- Souza, E.B.; Ambrizzi, T. Modulation of the intraseasonal rainfall over tropical Brazil by the Madden-Julian Oscillation. Int. J. Climatol. 2006, 26, 1759–1776. [Google Scholar] [CrossRef]
- Melo, A.B.C.; Cavalcanti, I.F.A.; Souza, P.P. Zona De Convergência Intertropical Do Atlântico. In Tempo e Clima no Brasil; Cavalcanti, I.F.A., Ferreira, N.J., Justi Da Silva, M.G.A., Silva Dias, M.A.F., Eds.; Oficina de Textos: São Paulo, Brazil, 2009; pp. 25–41. [Google Scholar]
- Hunt, E.D.; Svoboda, M.; Wardlow, B.; Hubbard, K.; Hayes, M.; Arkebauer, T. Monitoring the effects of rapid onset of drought on non-irrigated maize with agronomic data and climate-based drought indices. Agric. For. Meteorol. 2014, 191, 1–11. [Google Scholar] [CrossRef]
- Akuraju, V.R.; Ryu, D.; George, B.; Ryu, Y.; Dassanayake, K. Seasonal and inter-annual variability of soil moisture stress function in dryland wheat field, Australia. Agric. For. Meteorol. 2017, 232, 489–499. [Google Scholar] [CrossRef]
- SAF/MDA. Secretaria Especial de Agricultura Familiar e do Desenvolvimento Agrário. 2018. Available online: http://www.mda.gov.br (accessed on 19 August 2018).
- Cunha, A.P.M.A.; Alvalá, R.C.S.; Cuartas, L.A.; Marengo, J.A.; Saito, S.M.; Munos, V.; Leal, K.R.D.; Ribeiro-Neto, G.; Seluchi, M.E.; Zeri, L.M.M.; et al. Brazilian Experience on the Development of Drought Monitoring and Impact Assessment Systems. Contributing Paper to GAR 2019. Available online: https://www.preventionweb.net/publications/view/66570 (accessed on 27 July 2019).
- Aragão, L.E.O.C.; Shimabukuro, Y.E.; Cardoso, M.; Anderson, L.O.; Lima, A.; Poulter, B. Frequência de queimadas durante as secas recentes. Secas na Amazônia: Causas e consequências; Borma, L.D.S., Nobre, C.A., Eds.; Oficina de Textos: São Paulo, Brazil, 2013. [Google Scholar]
- Tomasella, J.; Vieira, R.M.S.P.; Barbosa, A.A.; Rodríguez, D.A.; Santana, M.D.O.; Sestini, M.F. Desertification trends in the Northeast of Brazil over the period 2000–2016. Int. J. Appl. Earth Obs. Geoinform. 2018, 73, 197–206. [Google Scholar] [CrossRef]
- Junior, C.H.L.S.; Aragao, L.E.O.C.; Fonseca, M.G.; Almeida, C.T.; Vedovato, L.B.; Anderson, L.O.; Junior, C.S. Deforestation-induced fragmentation increases forest fire occurrence in Central Brazilian Amazonia. Forests 2018, 9, 305. [Google Scholar] [CrossRef]
- Kpienbaareh, D.L. Assessing the relationship between climate and patterns of wildfires in Ghana. Int. J. Hum. Soc. Sci. Res. 2016, 8, 3. [Google Scholar]
- Aragao, L.E.O.C.; Anderson, L.O.; Fonseca, M.G.; Rosan, T.M.; Vedovato, L.B.; Wagner, F.H.; Silva, C.V.J.; Junior, C.H.L.S.; Arai, E.; Aguiar, A.P.; et al. 21st Century drought-related fires counteract the decline of Amazon deforestation carbon emissions. Nat. Commun. 2018, 9, 536. [Google Scholar] [CrossRef]
- Hoffman, C.M.; Canfield, J.; Linn, R.R.; Mell, W.; Sieg, C.H.; Pimont, F.; Ziegler, J. Evaluating crown fire rate of spread predictions from physics-based models. Fire Technol. 2016, 52, 221–237. [Google Scholar] [CrossRef]
- Linn, R.R.; Cunningham, P. Numerical simulations of grass fires using a coupled atmosphere–fire model: Basic fire behavior and dependence on wind speed. J. Geophys. Res. 2005, 110, D13107. [Google Scholar] [CrossRef]
- Flannigan, M.; Harrington, J.B. A study of the relation of meteorological variables to monthly provincial area burned by wildfire in Canada (1953-80). J. Appl. Meteorol. 1988, 247, 441–452. [Google Scholar] [CrossRef]
SPI | VHI | Drought Classification |
---|---|---|
>−0.5 | >40 | Normal |
−0.5 to −0.8 | 30 to 40 | Abnormally Dry |
−0.8 to −1.3 | 20 to 30 | Moderate Drought |
−1.3 to −1.6 | 12 to 20 | Severe Drought |
−1.6 to −2.0 | 6 to 12 | Extreme Drought |
<−2.0 | <6 | Exceptional Drought |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cunha, A.P.M.A.; Zeri, M.; Deusdará Leal, K.; Costa, L.; Cuartas, L.A.; Marengo, J.A.; Tomasella, J.; Vieira, R.M.; Barbosa, A.A.; Cunningham, C.; et al. Extreme Drought Events over Brazil from 2011 to 2019. Atmosphere 2019, 10, 642. https://doi.org/10.3390/atmos10110642
Cunha APMA, Zeri M, Deusdará Leal K, Costa L, Cuartas LA, Marengo JA, Tomasella J, Vieira RM, Barbosa AA, Cunningham C, et al. Extreme Drought Events over Brazil from 2011 to 2019. Atmosphere. 2019; 10(11):642. https://doi.org/10.3390/atmos10110642
Chicago/Turabian StyleCunha, Ana Paula M. A., Marcelo Zeri, Karinne Deusdará Leal, Lidiane Costa, Luz Adriana Cuartas, José Antônio Marengo, Javier Tomasella, Rita Marcia Vieira, Alexandre Augusto Barbosa, Christopher Cunningham, and et al. 2019. "Extreme Drought Events over Brazil from 2011 to 2019" Atmosphere 10, no. 11: 642. https://doi.org/10.3390/atmos10110642
APA StyleCunha, A. P. M. A., Zeri, M., Deusdará Leal, K., Costa, L., Cuartas, L. A., Marengo, J. A., Tomasella, J., Vieira, R. M., Barbosa, A. A., Cunningham, C., Cal Garcia, J. V., Broedel, E., Alvalá, R., & Ribeiro-Neto, G. (2019). Extreme Drought Events over Brazil from 2011 to 2019. Atmosphere, 10(11), 642. https://doi.org/10.3390/atmos10110642