Volatile Organic Compounds in a Petrochemical Region in Arid of NW China: Chemical Reactivity and Source Apportionment
Abstract
:1. Introduction
2. Experiment and Methods
2.1. Sample Collection
2.2. Chemical Analysis
2.3. Quality Assurance and Quality Control
2.4. Data Analysis
2.4.1. Estimation of the Initial Concentration of VOCs
2.4.2. Analysis of Ozone Formation Potential
2.4.3. OH Loss Rate
2.4.4. Source Analysis with Positive Matrix Factorization
3. Results and Discussion
3.1. Characteristics of VOCs
3.2. Chemical Reactivity of VOCs
3.3. Average Reactivity
3.4. Source Apportionment by PMF
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
References
- Guo, H.; Ling, Z.H.; Cheng, H.R.; Guo, H.; Ling, Z.H.; Cheng, H.R.; Simpson, I.J.; Lyu, X.P.; Wang, X.M. Tropospheric volatile organic compounds in China. Sci. Total Environ. 2017, 574, 1021–1043. [Google Scholar] [CrossRef]
- Kumar, A.; Alaimo, C.P.; Horowitz, R.; Mitloehner, F.M.; Kleeman, M.J.; Green, P.G. Volatile organic compound emissions from green waste composting: Characterization and ozone formation. Atmos. Environ. 2010, 45, 1841–1848. [Google Scholar] [CrossRef]
- Tsai, J.H.; Hsu, Y.C.; Yang, J.Y. The relationship between volatile organic profiles and emission sources in ozone episode region—A case study in Southern Taiwan. Sci. Total Environ. 2004, 328, 131–142. [Google Scholar] [CrossRef]
- Atkinson, R. Atmospheric chemistry of VOCs and NOx [Review]. Atmos. Environ. 2000, 34, 2063–2101. [Google Scholar] [CrossRef]
- Whittemore, A.S.; Korn, E.L. Asthma and air pollution in the Los Angeles area. Am. J. Public Health 1980, 70, 687–696. [Google Scholar] [CrossRef] [PubMed]
- Ware, J.H.; Spengler, J.D.; Neas, L.M.; Samet, J.M.; Wagner, G.R.; Coultas, D. Respiratory and Irritant Health Effects of Ambient Volatile Organic Compounds: The Kanawha County Health Study. Am. J. Epidemiol. 1993, 137, 1287–1301. [Google Scholar] [CrossRef] [PubMed]
- Phillips, M.; Gleeson, K.; Hughes, J.M.; Greenberg, J.; Cataneo, R.N.; Baker, L. Volatile organic compounds in breath as markers of lung cancer: A cross-sectional study. Lancet 1999, 353, 1930–1933. [Google Scholar] [CrossRef]
- Thepanondh, S.; Varoonphan, J.; Sarutichart, P.; Makkasap, T. Airborne Volatile Organic Compounds and Their Potential Health Impact on the Vicinity of Petrochemical Industrial Complex. Water Air Soil Pollut. 2011, 214, 83–92. [Google Scholar] [CrossRef]
- Chen, Y.; Mou, G.; Jiang, X. On VOCs Control and Countermeasures to the Petrochemical Industry. Manag. Obs. 2015, 4, 67–68. (In Chinese) [Google Scholar]
- Gao, S.; Gao, S.; Gao, Z.J.; Hu, X.C.; Guang, L.X. Development of Source Profiles and Source Tracing of Volatile Organic Compounds in Petrochemical Industry Park. Chem. World 2016, 57, 798–805. (In Chinese) [Google Scholar]
- Mo, Z.; Shao, M.; Lu, S.; Qu, H.; Zhou, M.; Sun, J. Process-specific emission characteristics of volatile organic compounds (VOCs) from petrochemical facilities in the Yangtze River Delta, China. Sci. Total Environ. 2015, 533, 422–431. [Google Scholar] [CrossRef] [PubMed]
- Cetin, E.; Odabasi, M.; Seyfioglu, R. Ambient volatile organic compound (VOC) concentrations around a petrochemical complex and a petroleum refinery. Sci. Total Environ. 2003, 312, 103–112. [Google Scholar] [CrossRef]
- Dong, H.; Zhu, L.; Bian, W.; Jingyun, G.; Kui, C. Pollution characteristics of volatile organic compounds in the summer of Binhai New Aera, Tianjin. Environ. Pollut. Control 2016, 38, 77–81. (In Chinese) [Google Scholar]
- Han, D.; Gao, S.; Fu, Q.; Cheng, J.; Chen, X.; Xu, H. Do volatile organic compounds (VOCs) emitted from petrochemical industries affect regional PM 2.5? Atmos. Res. 2018, 209, 123–130. [Google Scholar] [CrossRef]
- Moghadam, R.M.; Bahrami, A.; Ghorbani, F. Investigation of qualitative and quantitative of volatile organic compounds of ambient air in the mahshahr petrochemical complex in 2009. J. Res. Health Sci. 2013, 13, 69–74. [Google Scholar]
- Tiwari, V.; Hanai, Y.; Masunaga, S. Ambient levels of volatile organic compounds in the vicinity of petrochemical industrial area of Yokohama, Japan. Air Qual. Atmos. Health 2010, 3, 65–75. [Google Scholar] [CrossRef] [PubMed]
- Mao, Y.; Gang, L.I.; Tian-Peng, H.U.; Zheng, H.; An, Y.W.; Min, Y. Characteristics of VOCs Pollution in the Winter Atmosphere of a Typical Petrochemical Industry Park. Environ. Sci. 2018, 39, 525. [Google Scholar] [CrossRef]
- Yusan, T.; Abulizi, A.; Maihemuti, M.; Tursun, Y. Temporal distribution and source apportionment of PM2.5 chemical composition in Xinjiang, NW-China. Atmos. Res. 2019, 218, 257–268. [Google Scholar] [CrossRef]
- Nakashima, Y.; Kamei, N.; Kobayashi, S.; Kajii, Y. Total OH reactivity and VOC analyses for gasoline vehicular exhaust with a chassis dynamometer. Atmos. Environ. 2010, 44, 468–475. [Google Scholar] [CrossRef]
- Turap, Y.; Talifu, D.; Wang, X.; Tuergong, A.; Suwubinuer, R.; Hao, S. Concentration characteristics, source apportionment, and oxidative damage of PM2.5-bound PAHs in petrochemical region in Xinjiang, NW China. Environ. Sci. Pollut. Res. Int. 2018, 25, 22629–22640. [Google Scholar] [CrossRef]
- Yan, Y.; Peng, L.; Li, R.; Li, Y.; Li, L.; Bai, H. Concentration, ozone formation potential and source analysis of volatile organic compounds (VOCs) in a thermal power station centralized area: A study in Shuozhou, China. Environ. Pollut. 2017, 223, 295–304. [Google Scholar] [CrossRef]
- Wang, H.L.; Chen, C.H.; Wang, Q.; Huang, C.; Su, L.Y.; Huang, H.Y. Chemical loss of volatile organic compounds and its impact on the source analysis through a two-year continuous measurement. Atmos. Environ. 2013, 80, 488–498. [Google Scholar] [CrossRef]
- Atkinson, R.; Arey, J. Atmospheric degradation of volatile organic compounds. Chem. Rev. 2003, 103, 4605. [Google Scholar] [CrossRef] [PubMed]
- Gouw, J.A.D.; Middlebrook, A.M.; Warneke, C.; Goldan, P.D.; Kuster, W.C.; Roberts, J.M. Budget of organic carbon in a polluted atmosphere: Results from the New England Air Quality Study in 2002. J. Geophys. Res. 2005, 110, D16305. [Google Scholar] [CrossRef]
- Nelson, P.F.; Quigley, S.M. The m, p-xylenes: Ethylbenzene ratio. A technique to estimating hydrocarbon age in ambient atmospheres. Atmos. Environ. 1983, 17, 659–662. [Google Scholar] [CrossRef]
- Mckeen, S.A.; Liu, S.C. Hydrocarbon ratios and photochemical history of air masses. Geophys. Res. Lett. 2013, 20, 2363–2366. [Google Scholar] [CrossRef]
- Liu, Y.; Shao, M.; Fu, L.; Lu, S.; Zeng, L.; Tang, D. Source profiles of volatile organic compounds (VOCs) measured in China: Part, I. Atmos. Environ. 2008, 42, 6247–6260. [Google Scholar] [CrossRef]
- Wang, H.; Qiao, Y.; Chen, C.; Lu, J.; Dai, H.X.; Qiao, L.P.; Wu, J.P. Source profiles and chemical reactivity of volatile organic compounds from solvent use in Shanghai, China. Aerosol. Air Qual. Res. 2014, 14, 301–310. [Google Scholar] [CrossRef]
- Carter, W.P.L. Development of the SAPRC-07 chemical mechanism. Atmos. Environ. 2010, 44, 5324–5335. [Google Scholar] [CrossRef]
- Paatero, P.; Tapper, U. Positive matrix factorization: A non-negative factor model with optimal utilization of error estimates of data values. Environmetrics. 1994, 5, 111–126. [Google Scholar] [CrossRef]
- Norris, G.R.; Duvall, S.; Brown, A.N.D.; Bai, S. EPA Positive Matrix Factorization (PMF) 5.0 Fundamentals and User Guide; EPA/600/R-14/108 (NTIS PB2015-105147); U.S. Environmental Protection Agency: Washington, DC, USA, 2014. [Google Scholar]
- Brown, S.G.; Frankel, A.; Hafner, H.R. Source apportionment of VOCs in the Los Angeles area using positive matrix factorization. Atmos. Environ. 2007, 41, 227–237. [Google Scholar] [CrossRef]
- Atkinson, R. Gas-phase degradation of organic compounds in the troposphere. Pure Appl. Chem. 1998, 70, 1327–1334. [Google Scholar] [CrossRef]
- Goss, K.U. Effects of temperature and relative-humidity on the sorption of organic vapors on quartz sand. Environ. Sci. Technol. 1992, 26, 868. [Google Scholar] [CrossRef]
- Ras, M.R.; Marcé, R.M.; Borrull, F. Characterization of ozone precursor volatile organic compounds in urban atmospheres and around the petrochemical industry in the Tarragona region. Sci. Total Environ. 2009, 407, 4312–4319. [Google Scholar] [CrossRef]
- Gao, J.; Zhang, C.L.; Wang, B.G.; Zhi, J.Z.; Dao, C.G. Emission characteristics of volatile organic compounds emitted from an ethylene process unit in petrochemical industry based on blow-through method. China Environ. Sci. 2016, 36, 694–701. (In Chinese) [Google Scholar]
- Li, J.; Wu, R.; Li, Y.; Hao, Y.; Xie, S.; Zeng, L. Effects of rigorous emission controls on reducing ambient volatile organic compounds in Beijing, China. Sci. Total Environ. 2016, 557–558, 531–541. [Google Scholar] [CrossRef]
- Xia, L.; Cai, C.; Zhu, B. Source apportionment of VOCs in a suburb of Nanjing, China, in autumn and winter. J. Atmos. Chem. 2014, 71, 175–193. [Google Scholar] [CrossRef]
- Li, L.J. A Preliminary Study on Characteristics and Source of Volatile Organic Compounds in the Urban Area of Shuozhou; Taiyuan University of Technology: Shanxi, China, 2015. (In Chinese) [Google Scholar]
- Liu, Z.; Li, N.; Wang, N. Characterization and source identification of ambient VOCs in Jinan, China. Air Qual. Atmos. Health 2015, 9, 285–291. [Google Scholar] [CrossRef]
- Mei, W.; Li-Li, G.; Yu-Long, Y.; Qiu-Sheng, H.E.; Wang, X.M. Exposure Characteristics of Atmospheric Toxic Volatile Organic Compounds to Populations in Public Places in Taiyuan, China. Res. Environ. Sci. 2014, 27, 1236–1242. [Google Scholar] [CrossRef]
- Wang, Q.; Chen, C.H.; Wang, H.L.; Zhou, M.; Chen, M.H. Forming potential of secondary organic aerosols and sources apportionment of VOCs in autumn of Shanghai, China. Environ. Sci. 2013, 34, 424–433. (In Chinese) [Google Scholar]
- Lyu, X.P.; Chen, N.; Guo, H.; Zhang, W.H.; Liu, M. Ambient volatile organic compounds and their effect on ozone production in Wuhan, central China. Sci. Total Environ. 2016, 541, 200–209. [Google Scholar] [CrossRef] [PubMed]
- Gao, Z.; Gao, S.; Cui, H.; Fu, Q.; Jin, D.; Liang, G.; Fang, F. Characteristics and chemical reactivity of VOCs during a typical photochemical episode in summer at a chemical industrial area. Acta Sci. Circumstantiae 2017, 37, 1251–1259. (In Chinese) [Google Scholar]
- He, Q.; Yan, Y.; Li, H.; Zhang, Y.; Chen, L.; Wang, Y. Characteristics and reactivity of volatile organic compounds from non-coal emission sources in China. Atmos. Environ. 2015, 115, 153–162. [Google Scholar] [CrossRef]
- Zhang, Y.; Wang, X.; Zhang, Z.; Lü, S.; Huang, Z.; Li, L. Sources of C₂-C₄ alkenes, the most important ozone nonmethane hydrocarbon precursors in the Pearl River Delta region. Sci. Total Environ. 2015, 502, 236–245. [Google Scholar] [CrossRef] [PubMed]
- Yuan, Z.; Lau, A.K.H.; Shao, M.; Louie, P.K.K.; Liu, S.C.; Zhu, T. Source analysis of volatile organic compounds by positive matrix factorization in urban and rural environments in Beijing. J. Geophys. Res. Atmos. 2009, 114, 4723–4734. [Google Scholar] [CrossRef]
- Song, Y.; Dai, W.; Shao, M.; Liu, Y.; Lu, S.; Kuster, W. Comparison of receptor models for source apportionment of volatile organic compounds in Beijing, China. Environ. Pollut. 2008, 156, 174. [Google Scholar] [CrossRef]
- Barletta, B.; Meinardi, S.; Sherwood Rowland, F.; Chan, C.Y.; Wang, X.; Zou, S. Volatile organic compounds in 43 Chinese cities. Atmos. Environ. 2005, 39, 5979–5990. [Google Scholar] [CrossRef] [Green Version]
- Santos, C.Y.M.D. Atmospheric distribution of organic compounds from urban areas near a coal-fired power station. Atmos. Environ. 2004, 38, 1247–1257. [Google Scholar] [CrossRef]
- Fernández-Martínez, G.; López-Vilariño, J.M.; López-Mahía, P.; Muniategui-Lorenzo, S.; Prada-Rodríguez, D.; Fernández-Fernández, E. Determination of Volatile Organic Compounds in Emissions by Coal-Fired Power Stations from Spain. Environ. Technol. 2001, 22, 567–575. [Google Scholar] [CrossRef]
- Fernández-MartíNez, G.; López-MahíA, P.; Muniategui-Lorenzo, S.; Prada-Rodrıguez, D.; Fernandez-Fernandez, E. Distribution of volatile organic compounds during the combustion process in coal-fired power stations. Atmos. Environ. 2001, 35, 5823–5831. [Google Scholar] [CrossRef]
- Liu, P.W.; Yao, Y.C.; Tsai, J.H.; Hsu, Y.C.; Chang, L.P.; Chang, K.H. Source impacts by volatile organic compounds in an industrial city of southern Taiwan. Sci. Total Environ. 2008, 398, 154–163. [Google Scholar] [CrossRef] [PubMed]
- Borbon, A.; Locoge, N.; Veillerot, M.; Galloo, J.C.; Guillermo, R. Characterisation of NMHCs in a French urban atmosphere: Overview of the main sources. Sci. Total Environ. 2002, 292, 177–191. [Google Scholar] [CrossRef]
Species | Avg ppbv | Conversion A μg/m3 | Beijing B ppbv | Nanjing C ppbv | Guangzhou D ppbv | Taiyuan E μg/m3 | Shuozhou F μg/m3 | Jinan G μg/m3 |
---|---|---|---|---|---|---|---|---|
Acetylene | 2.19 | 2.54 | 1.54 | 3.00 | 3.80 | 4.67 | 1.85 | 0.45 |
Ethane | 2.99 | 3.74 | 3.05 | 5.69 | 3.23 | 7.43 | 3.67 | 1.70 |
Propane | 1.75 | 3.43 | 1.90 | 2.96 | 2.85 | 8.69 | 8.08 | 3.69 |
i-Butane | 1.59 | 4.12 | 0.61 | 1.31 | 1.49 | - | 3.31 | 4.43 |
n-Butane | 1.42 | 3.67 | 1.0 8 | 1.49 | 1.80 | 5.08 | 4.77 | 2.65 |
i-Pentane | 1.47 | 4.73 | 0.65 | 0.90 | 1.80 | 6.89 | 2.81 | 3.44 |
n-Pentane | 0.93 | 3.01 | 0.25 | 0.69 | 1.00 | 4.18 | 4.07 | 0.93 |
2,2-Dimethylbutane | 0.02 | 0.08 | 0.01 | 0.49 | 0.08 | - | - | 0.63 |
Cyclopentane | 0.20 | 0.63 | 0.05 | 0.09 | 0.34 | - | - | 0.94 |
2,3-Dimethylbutane | 0.05 | 0.18 | 0.08 | 0.03 | 0.35 | - | - | 0.76 |
2-Methylpentane | 0.32 | 1.23 | 0.05 | 0.25 | 0.71 | 0.66 | - | 1.00 |
3-Methylpentane | 0.36 | 1.40 | 0.06 | 0.25 | 0.67 | - | - | 1.33 |
n-Hexane | 1.85 | 7.10 | 0.25 | 0.47 | 0.54 | - | - | 1.00 |
Methylcyclopentane | 0.37 | 1.38 | 0.10 | 0.03 | 0.24 | - | - | 0.76 |
2,4-Dimethylpentane | 0.04 | 0.17 | 0.01 | 0.02 | 0.07 | - | - | 0.85 |
2,3-Dimethylpentane | 0.03 | 0.11 | 0.05 | 0.05 | 0.27 | - | - | 0.85 |
n-Heptane | 0.07 | 0.31 | 0.07 | 0.22 | 0.54 | - | - | 0.62 |
2-Methylheptane | 0.02 | 0.09 | 0.51 | - | 0.08 | - | - | 1.30 |
n-Octane | 0.03 | 0.16 | 0.04 | 0.05 | 0.68 | - | - | 0.83 |
n-Nonane | 0.08 | 0.48 | 0.03 | 0.05 | 0.06 | - | - | 0.72 |
n-Decane | 0.23 | 1.47 | 0.03 | 0.03 | 0.07 | - | - | - |
Ethylene | 1.51 | 1.89 | 1.28 | 4.45 | 3.55 | 4.29 | 1.68 | 2.10 |
Propene | 1.59 | 2.97 | 0.31 | 1.93 | 1.26 | 1.71 | 1.05 | 3.46 |
1-Butene | 0.22 | 0.55 | 0.08 | 1.94 | 0.79 | 2.29 | 2.31 | 0.93 |
trans-2-Butene | 0.13 | 0.32 | 0.01 | 0.13 | 0.21 | 0.78 | 0.48 | 0.70 |
cis-2-Butene | 0.08 | 0.20 | 0.00 | 0.12 | 0.17 | 0.81 | - | 4.27 |
1-Pentene | 0.12 | 0.36 | 0.01 | 0.09 | - | - | - | 0.52 |
Isoprene | 0.15 | 0.46 | 0.27 | 0.30 | 0.11 | 1.17 | 0.38 | 0.68 |
cis-2-Pentene | 0.02 | 0.06 | 0.00 | 0.01 | 0.08 | - | - | 0.69 |
Benzene | 0.51 | 1.76 | 0.42 | 2.68 | 1.28 | 6.49 | 2.51 | 2.42 |
Toluene | 0.62 | 2.54 | 0.97 | 1.67 | 4.03 | 3.79 | 3.93 | 4.33 |
Ethylbenzene | 0.08 | 0.37 | 0.01 | 1.01 | 0.90 | 2.04 | 2.03 | 1.28 |
m/p-Xylene | 0.13 | 0.64 | 0.28 | 0.80 | 0.85 | 1.10 | 2.26 | 2.74 |
Styrene | 0.62 | 2.87 | 0.03 | 0.26 | - | 1.58 | 0.92 | 1.04 |
o-Xylene | 0.12 | 0.55 | 0.16 | 0.25 | 0.36 | 1.09 | 1.83 | 1.87 |
Non-Heating Period | Heating Period | Sandstorm Period | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
100 × LOH (s−1) | OFP (ppbv) | 100 × LOH (s−1) | OFP (ppbv) | 100 × LOH (s−1) | OFP (ppbv) | ||||||
Propene | 56.39 | Propene | 8.19 | Propene | 169.19 | Propene | 24.56 | Propene | 69.95 | Ethylene | 10.50 |
Isoprene | 49.36 | Ethylene | 6.06 | 1,3-Butadiene | 66.18 | Ethylene | 15.79 | Styrene | 53.27 | Propene | 10.15 |
trans-2-Butene | 33.62 | n-Hexane | 2.37 | Isoprene | 45.12 | 1,3-Butadiene | 4.40 | Ethylene | 29.78 | Toluene | 2.46 |
Styrene | 31.92 | trans-2-Butene | 2.13 | Ethylene | 44.78 | i-Butane | 3.19 | a-Pinene | 26.53 | i-Pentane | 1.69 |
n-Hexane | 30.94 | Toluene | 2.06 | n-Hexane | 25.62 | i-Pentane | 2.58 | 1-Butene | 21.11 | 1-Butene | 1.45 |
1,2,3-Trimethylbenzene | 21.10 | Isoprene | 1.81 | Styrene | 21.55 | n-Butane | 2.43 | Isoprene | 19.69 | m/p-Xylene | 1.39 |
Ethylene | 17.19 | i-Pentane | 1.72 | transv-2-Butene | 19.91 | Methylcyclopentane | 2.11 | 1,3-Butadiene | 13.14 | n-Hexane | 1.21 |
1,2,4-Trimethylbenzene | 14.46 | o-Xylene | 1.71 | cis-2-Butene | 18.36 | n-Hexane | 1.96 | Toluene | 12.61 | Acetylene | 0.98 |
1,3,5-Trimethylbenzene | 14.36 | Acetylene | 1.50 | 1-Butene | 18.21 | n-Pentane | 1.83 | m/p-Xylene | 10.68 | i-Butane | 0.97 |
n-Decane | 12.56 | i-Butane | 1.46 | i-Pentane | 16.60 | Isoprene | 1.65 | trans-2-Butene | 8.95 | 1,3-Butadiene | 0.87 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, X.; Ding, X.; Wang, X.; Talifu, D.; Wang, G.; Zhang, Y.; Abulizi, A. Volatile Organic Compounds in a Petrochemical Region in Arid of NW China: Chemical Reactivity and Source Apportionment. Atmosphere 2019, 10, 641. https://doi.org/10.3390/atmos10110641
Zhang X, Ding X, Wang X, Talifu D, Wang G, Zhang Y, Abulizi A. Volatile Organic Compounds in a Petrochemical Region in Arid of NW China: Chemical Reactivity and Source Apportionment. Atmosphere. 2019; 10(11):641. https://doi.org/10.3390/atmos10110641
Chicago/Turabian StyleZhang, Xiaoxiao, Xiang Ding, Xinming Wang, Dilinuer Talifu, Guo Wang, Yanli Zhang, and Abulikemu Abulizi. 2019. "Volatile Organic Compounds in a Petrochemical Region in Arid of NW China: Chemical Reactivity and Source Apportionment" Atmosphere 10, no. 11: 641. https://doi.org/10.3390/atmos10110641
APA StyleZhang, X., Ding, X., Wang, X., Talifu, D., Wang, G., Zhang, Y., & Abulizi, A. (2019). Volatile Organic Compounds in a Petrochemical Region in Arid of NW China: Chemical Reactivity and Source Apportionment. Atmosphere, 10(11), 641. https://doi.org/10.3390/atmos10110641