Caenorhabditis elegans BRICHOS Domain–Containing Protein C09F5.1 Maintains Thermotolerance and Decreases Cytotoxicity of Aβ42 by Activating the UPR
Abstract
:1. Introduction
2. Materials and Methods
2.1. Caenorhabditis elegans and Mammalian Cell Cultures
2.2. Protein Domain Analysis
2.3. RNA Interference
2.4. Thermotolerance Assay
2.5. Immunoblot Analysis
2.6. Immunoprecipitation of C09F5.1 and Aβ42 in 293T Cells
2.7. Aβ42 Paralysis Assay and Thioflavin T Staining
2.8. Detection of UPR Activity Using the ERAI System
2.9. Subcellular Localization of C09F5.1 Variants in COS7
3. Results
3.1. Characteristics of C09F5.1
3.2. Expression of C09F5.1 and Localization of Its Product In Vivo
3.3. C09F5.1-Dependent Thermotolerance and HSF-1-Dependent C09F5.1 Expression
3.4. N-Terminal-Dependent Interaction of C09F5.1 with Aβ42
3.5. Amyloid Toxicity Assay in C. elegans Alzheimer’s Disease Model Expressing C09F5.1-NTD
3.6. Subcellular Localization and Unfolded Protein Response
4. Discussion
Supplementary Materials
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Bukau, B.; Weissman, J.; Horwich, A. Molecular chaperones and protein quality control. Cell 2006, 125, 443–451. [Google Scholar] [CrossRef] [PubMed]
- Pallepati, P.; Averill-Bates, D.A. Activation of ER stress and apoptosis by hydrogen peroxide in HeLa cells: Protective role of mild heat preconditioning at 40°C. Biochim. Biophys. Acta 2011, 1813, 1987–1999. [Google Scholar] [CrossRef] [PubMed]
- Wang, M.; Xu, Q.; Yuan, M. The unfolded protein response induced by salt stress in Arabidopsis. Methods Enzymol 2011, 489, 319–328. [Google Scholar] [PubMed]
- Homma, T.; Fujii, J. Heat stress promotes the down-regulation of IRE1α in cells: An atypical modulation of the UPR pathway. Exp. Cell Res. 2016, 349, 128–138. [Google Scholar] [CrossRef] [PubMed]
- Ellis, R.J. Molecular chaperones: Assisting assembly in addition to folding. Trends Biochem. Sci. 2006, 31, 395–401. [Google Scholar] [CrossRef] [PubMed]
- Ellis, R.J.; van der Vies, S.M. Molecular chaperones. Annu. Rev. Biochem. 1991, 60, 321–347. [Google Scholar] [CrossRef] [PubMed]
- Evstigneeva, Z.; Solov’eva, N.; Sidel’nikova, L. Structures and functions of chaperones and chaperonins (review). Appl. Biochem. Microbiol. 2001, 37, 1–13. [Google Scholar] [CrossRef]
- Sánchez-Pulido, L.; Devos, D.; Valencia, A. BRICHOS: A conserved domain in proteins associated with dementia, respiratory distress and cancer. Trends Biochem. Sci. 2002, 27, 329–332. [Google Scholar] [CrossRef]
- Hedlund, J.; Johansson, J.; Persson, B. BRICHOS—A superfamily of multidomain proteins with diverse functions. BMC Res. Notes 2009, 2, 180. [Google Scholar] [CrossRef] [PubMed]
- Willander, H.; Askarieh, G.; Landreh, M.; Westermark, P.; Nordling, K.; Keränen, H.; Hermansson, E.; Hamvas, A.; Nogee, L.M.; Bergman, T. High-resolution structure of a BRICHOS domain and its implications for anti-amyloid chaperone activity on lung surfactant protein c. Proc. Natl. Acad. Sci. USA 2012, 109, 2325–2329. [Google Scholar] [CrossRef] [PubMed]
- Del Campo, M.; Teunissen, C.E. Role of BRI2 in dementia. J. Alzheimer’s Dis. 2014, 40, 481–494. [Google Scholar]
- Matsuda, S.; Matsuda, Y.; Snapp, E.L.; D’Adamio, L. Maturation of BRI2 generates a specific inhibitor that reduces APP processing at the plasma membrane and in endocytic vesicles. Neurobiol. Aging 2011, 32, 1400–1408. [Google Scholar] [CrossRef] [PubMed]
- Aoyama, T.; Okamoto, T.; Nagayama, S.; Nishijo, K.; Ishibe, T.; Yasura, K.; Tsuboyama, T.; Nakayama, T.; Nakashima, Y.; Nakamura, T. Expression of the chondromodulin-I gene in chondrosarcomas. Cancer Lett. 2004, 204, 61–68. [Google Scholar] [CrossRef] [PubMed]
- Hayami, T.; Shukunami, C.; Mitsui, K.; Endo, N.; Tokunaga, K.; Kondo, J.; Takahashi, H.E.; Hiraki, Y. Specific loss of chondromodulin-I gene expression in chondrosarcoma and the suppression of tumor angiogenesis and growth by its recombinant protein in vivo. FEBS Lett. 1999, 458, 436–440. [Google Scholar] [CrossRef]
- Haitsma, J.J.; Papadakos, P.J.; Lachmann, B. Surfactant therapy for acute lung injury/acute respiratory distress syndrome. Curr. Opin. Crit. Care 2004, 10, 18–22. [Google Scholar] [CrossRef] [PubMed]
- Soraisham, A.; Tierney, A.; Amin, H. Neonatal respiratory failure associated with mutation in the surfactant protein C gene. J. Perinatol. 2006, 26, 67–70. [Google Scholar] [CrossRef] [PubMed]
- Martin, L.; Fluhrer, R.; Reiss, K.; Kremmer, E.; Saftig, P.; Haass, C. Regulated intramembrane proteolysis of BRI2 (Itm2b) by ADAM10 and SPPL2a/SPPL2b. J. Biol. Chem. 2008, 283, 1644–1652. [Google Scholar] [CrossRef] [PubMed]
- Dolfe, L.; Winblad, B.; Johansson, J.; Presto, J. BRICHOS binds to a designed amyloid-forming β-protein and reduces proteasomal inhibition and aggresome formation. Biochem. J. 2016, 473, 167–178. [Google Scholar] [CrossRef] [PubMed]
- Kihara, M.; Kiyoshima, T.; Nagata, K.; Wada, H.; Fujiwara, H.; Hasegawa, K.; Someya, H.; Takahashi, I.; Sakai, H. Itm2a expression in the developing mouse first lower molar, and the subcellular localization of Itm2a in mouse dental epithelial cells. PLoS ONE 2014, 9, e103928. [Google Scholar] [CrossRef] [PubMed]
- Azizan, A.; Holaday, N.; Neame, P.J. Post-translational processing of bovine chondromodulin-I. J. Biol. Chem. 2001, 276, 23632–23638. [Google Scholar] [CrossRef] [PubMed]
- Beers, M.F.; Lomax, C.A.; Russo, S.J. Synthetic processing of surfactant protein C by alevolar epithelial cells the COOH terminus of proSP-C is required for post-translational targeting and proteolysis. J. Biol. Chem. 1998, 273, 15287–15293. [Google Scholar] [CrossRef] [PubMed]
- Kim, S.-H.; Wang, R.; Gordon, D.J.; Bass, J.; Steiner, D.F.; Lynn, D.G.; Thinakaran, G.; Meredith, S.C.; Sisodia, S.S. Furin mediates enhanced production of fibrillogenic ABri peptides in familial British dementia. Nat. Neurosci. 1999, 2, 984–988. [Google Scholar] [CrossRef] [PubMed]
- Mitsui, S.; Osako, Y.; Yuri, K. Mental retardation-related protease, motopsin (prss12), binds to the BRICHOS domain of the integral membrane protein 2a. Cell Biol. Int. 2014, 38, 117–123. [Google Scholar] [CrossRef] [PubMed]
- Gustafsson, M.; Thyberg, J.; Näslund, J.; Eliasson, E.; Johansson, J. Amyloid fibril formation by pulmonary surfactant protein C. FEBS Lett. 1999, 464, 138–142. [Google Scholar] [CrossRef]
- Knight, S.D.; Presto, J.; Linse, S.; Johansson, J. The BRICHOS domain, amyloid fibril formation, and their relationship. Biochemistry 2013, 52, 7523–7531. [Google Scholar] [CrossRef] [PubMed]
- Landreh, M.; Rising, A.; Presto, J.; Jörnvall, H.; Johansson, J. Specific chaperones and regulatory domains in control of amyloid formation. J. Biol. Chem. 2015, 290, 26430–26436. [Google Scholar] [CrossRef] [PubMed]
- Peng, S.; Fitzen, M.; Jörnvall, H.; Johansson, J. The extracellular domain of Bri2 (ITM2B) binds the abri peptide (1–23) and amyloid β-peptide (aβ1-40): Implications for Bri2 effects on processing of amyloid precursor protein and Aβ aggregation. Biochem. Biophys. Res. Commun. 2010, 393, 356–361. [Google Scholar] [CrossRef] [PubMed]
- Poska, H.; Haslbeck, M.; Kurudenkandy, F.R.; Hermansson, E.; Chen, G.; Kostallas, G.; Abelein, A.; Biverstål, H.; Crux, S.; Fisahn, A. Dementia-related Bri2 BRICHOS is a versatile molecular chaperone that efficiently inhibits Aβ42 toxicity in Drosophila. Biochem. J. 2016, 473, 3683–3704. [Google Scholar] [CrossRef] [PubMed]
- Willander, H.; Hermansson, E.; Johansson, J.; Presto, J. BRICHOS domain associated with lung fibrosis, dementia and cancer–a chaperone that prevents amyloid fibril formation? FEBS J. 2011, 278, 3893–3904. [Google Scholar] [CrossRef] [PubMed]
- Kim, J.; Miller, V.M.; Levites, Y.; West, K.J.; Zwizinski, C.W.; Moore, B.D.; Troendle, F.J.; Bann, M.; Verbeeck, C.; Price, R.W. Bri2 (ITM2B) inhibits Aβ deposition in vivo. J. Neurosci. 2008, 28, 6030–6036. [Google Scholar] [CrossRef] [PubMed]
- Glasser, S.; Baatz, J.; Korfhagen, T. Surfactant protein-C in the maintenance of lung integrity and function. J. Allergy Ther. 2011, 7, 001. [Google Scholar] [CrossRef]
- Mulugeta, S.; Nguyen, V.; Russo, S.J.; Muniswamy, M.; Beers, M.F. A surfactant protein C precursor protein BRICHOS domain mutation causes endoplasmic reticulum stress, proteasome dysfunction, and caspase 3 activation. Am. J. Respir. Cell Mol. Biol. 2005, 32, 521–530. [Google Scholar] [CrossRef] [PubMed]
- Nerelius, C.; Gustafsson, M.; Nordling, K.; Larsson, A.; Johansson, J. Anti-amyloid activity of the C-terminal domain of proSP-C against amyloid β-peptide and medin. Biochemistry 2009, 48, 3778–3786. [Google Scholar] [CrossRef] [PubMed]
- Stiernagle, T. Maintenance of C. elegans. C. elegans 1999, 2, 51–67. [Google Scholar] [CrossRef] [PubMed]
- Mello, C.C.; Kramer, J.M.; Stinchcomb, D.; Ambros, V. Efficient gene transfer in C. elegans: Extrachromosomal maintenance and integration of transforming sequences. EMBO J. 1991, 10, 3959–3970. [Google Scholar] [PubMed]
- Krogh, A.; Larsson, B.; Von Heijne, G.; Sonnhammer, E.L. Predicting transmembrane protein topology with a hidden markov model: application to complete genomes1. J. Mol. Biol. 2001, 305, 567–580. [Google Scholar] [CrossRef] [PubMed]
- Pagni, M.; Ioannidis, V.; Cerutti, L.; Zahn-Zabal, M.; Jongeneel, C.V.; Hau, J.; Martin, O.; Kuznetsov, D.; Falquet, L. MyHits: improvements to an interactive resource for analyzing protein sequences. Nucleic Acids Res. 2007, 35, W433–W437. [Google Scholar] [CrossRef] [PubMed]
- Kamath, R.S.; Martinez-Campos, M.; Zipperlen, P.; Fraser, A.G.; Ahringer, J. Effectiveness of specific RNA-mediated interference through ingested double-stranded RNA in Caenorhabditis elegans. Genome Biol. 2000, 2, research0002. [Google Scholar] [CrossRef] [PubMed]
- Timmons, L.; Fire, A. Specific interference by ingested dsRNA. Nature 1998, 395, 854. [Google Scholar] [CrossRef] [PubMed]
- Hsu, A.L.; Murphy, C.T.; Kenyon, C. Regulation of aging and age-related disease by DAF-16 and heat-shock factor. Sci. Signal. 2003, 300, 1142–1145. [Google Scholar] [CrossRef] [PubMed]
- Wu, Y.; Wu, Z.; Butko, P.; Christen, Y.; Lambert, M.P.; Klein, W.L.; Link, C.D.; Luo, Y. Amyloid-β-induced pathological behaviors are suppressed by Ginkgo biloba extract EGb 761 and ginkgolides in transgenic Caenorhabditis elegans. J. Neurosci. 2006, 26, 13102–13113. [Google Scholar] [CrossRef] [PubMed]
- Iwawaki, T.; Akai, R.; Kohno, K.; Miura, M. A transgenic mouse model for monitoring endoplasmic reticulum stress. Nat. Med. 2004, 10, 98–102. [Google Scholar] [CrossRef] [PubMed]
- Fliegel, L.; Burns, K.; MacLennan, D.; Reithmeier, R.; Michalak, M. Molecular cloning of the high affinity calcium-binding protein (calreticulin) of skeletal muscle sarcoplasmic reticulum. J. Biol. Chem. 1989, 264, 21522–21528. [Google Scholar] [PubMed]
- Pelham, H.R. The dynamic organisation of the secretory pathway. Cell Struct. Funct. 1996, 21, 413–419. [Google Scholar] [CrossRef] [PubMed]
- Llopis, J.; McCaffery, J.M.; Miyawaki, A.; Farquhar, M.G.; Tsien, R.Y. Measurement of cytosolic, mitochondrial, and Golgi PH in single living cells with green fluorescent proteins. Proc. Natl. Acad. Sci. USA 1998, 95, 6803–6808. [Google Scholar] [CrossRef] [PubMed]
- Rual, J.-F.; Ceron, J.; Koreth, J.; Hao, T.; Nicot, A.-S.; Hirozane-Kishikawa, T.; Vandenhaute, J.; Orkin, S.H.; Hill, D.E.; van den Heuvel, S. Toward improving Caenorhabditis elegans phenome mapping with an orfeome-based RNAi library. Genome Res. 2004, 14, 2162–2168. [Google Scholar] [CrossRef] [PubMed]
- Hall, D.H.; Altun, Z.F. Introduction to C. elegans anatomy. C. elegans Atlas; Cold Spring Harbor Laboratory Press: Cold Spring Harbor, New York, NY, USA, 2008; pp. 1–15. [Google Scholar]
- Ward, S.; Thomson, N.; White, J.G.; Brenner, S. Electron microscopical reconstruction of the anterior sensory anatomy of the nematode Caenorhabditis elegans. J. Comp. Neurol. 1975, 160, 313–337. [Google Scholar] [CrossRef] [PubMed]
- Glover-Cutter, K.M.; Lin, S.; Blackwell, T.K. Integration of the unfolded protein and oxidative stress responses through SKN-1/NRF. PLoS Genet. 2013, 9, e1003701. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mertenskötter, A.; Keshet, A.; Gerke, P.; Paul, R.J. The p38 MAPK PMK-1 shows heat-induced nuclear translocation, supports chaperone expression, and affects the heat tolerance of Caenorhabditis elegans. Cell Stress Chaperones 2013, 18, 293–306. [Google Scholar] [CrossRef] [PubMed]
- Pitoniak, A.; Bohmann, D. Mechanisms and functions of NRF2 signaling in Drosophila. Free Radic. Biol. Med. 2015, 88, 302–313. [Google Scholar] [CrossRef] [PubMed]
- Sykiotis, G.P.; Bohmann, D. Stress-activated cap’n’collar transcription factors in aging and human disease. Sci. Signal. 2010, 3, re3. [Google Scholar] [CrossRef] [PubMed]
- Crombie, T.A.; Tang, L.; Choe, K.P.; Julian, D. Inhibition of the oxidative stress response by heat stress in Caenorhabditis elegans. J. Exp. Biol. 2016, 219, 2201–2211. [Google Scholar] [CrossRef] [PubMed]
- Johansson, H.; Eriksson, M.; Nordling, K.; Presto, J.; Johansson, J. The BRICHOS domain of prosurfactant protein C can hold and fold a transmembrane segment. Protein Sci. 2009, 18, 1175–1182. [Google Scholar] [CrossRef] [PubMed]
- Altieri, F.; Di Stadio, C.S.; Severino, V.; Sandomenico, A.; Minopoli, G.; Miselli, G.; di Maro, A.; Ruvo, M.; Chambery, A.; Quagliariello, V. Anti-amyloidogenic property of human gastrokine 1. Biochimie 2014, 106, 91–100. [Google Scholar] [CrossRef] [PubMed]
- Fotinopoulou, A.; Tsachaki, M.; Vlavaki, M.; Poulopoulos, A.; Rostagno, A.; Frangione, B.; Ghiso, J.; Efthimiopoulos, S. BRI2 interacts with amyloid precursor protein (APP) and regulates amyloid β (Aβ) production. J. Biol. Chem. 2005, 280, 30768–30772. [Google Scholar] [CrossRef] [PubMed]
- Link, C.D.; Taft, A.; Kapulkin, V.; Duke, K.; Kim, S.; Fei, Q.; Wood, D.E.; Sahagan, B.G. Gene expression analysis in a transgenic Caenorhabditis elegans Alzheimer’s disease model. Neurobiol. Aging 2003, 24, 397–413. [Google Scholar] [CrossRef]
- Fonte, V.; Kapulkin, W.J.; Taft, A.; Fluet, A.; Friedman, D.; Link, C.D. Interaction of intracellular β amyloid peptide with chaperone proteins. Proc. Natl. Acad. Sci. USA 2002, 99, 9439–9444. [Google Scholar] [CrossRef] [PubMed]
- Walsh-Reitz, M.M.; Huang, E.F.; Musch, M.W.; Chang, E.B.; Martin, T.E.; Kartha, S.; Toback, F.G. AMP-18 protects barrier function of colonic epithelial cells: Role of tight junction proteins. Am. J. Physiol. Gastrointest. Liver Physiol. 2005, 289, G163–G171. [Google Scholar] [CrossRef] [PubMed]
- Lee, M.-H.; Padmashali, R.; Koria, P.; Andreadis, S.T. JNK regulates binding of α-catenin to adherens junctions and cell-cell adhesion. FASEB J. 2011, 25, 613–623. [Google Scholar] [CrossRef] [PubMed]
- Dunker, A.K.; Lawson, J.D.; Brown, C.J.; Williams, R.M.; Romero, P.; Oh, J.S.; Oldfield, C.J.; Campen, A.M.; Ratliff, C.M.; Hipps, K.W. Intrinsically disordered protein. J. Mol. Graph. Model. 2001, 19, 26–59. [Google Scholar] [CrossRef]
- Dunker, A.K.; Romero, P.; Obradovic, Z.; Garner, E.C.; Brown, C.J. Intrinsic protein disorder in complete genomes. Genome Inf. 2000, 11, 161–171. [Google Scholar]
- Van Der Lee, R.; Buljan, M.; Lang, B.; Weatheritt, R.J.; Daughdrill, G.W.; Dunker, A.K.; Fuxreiter, M.; Gough, J.; Gsponer, J.; Jones, D.T. Classification of intrinsically disordered regions and proteins. Chem. Rev. 2014, 114, 6589–6631. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dunker, A.K.; Brown, C.J.; Lawson, J.D.; Iakoucheva, L.M.; Obradović, Z. Intrinsic disorder and protein function. Biochemistry 2002, 41, 6573–6582. [Google Scholar] [CrossRef] [PubMed]
- Kriwacki, R.W.; Hengst, L.; Tennant, L.; Reed, S.I.; Wright, P.E. Structural studies of p21Waf1/Cip1/Sdi1 in the free and Cdk2-bound state: Conformational disorder mediates binding diversity. Proc. Natl. Acad. Sci. USA 1996, 93, 11504–11509. [Google Scholar] [CrossRef] [PubMed]
- Wright, P.E.; Dyson, H.J. Intrinsically unstructured proteins: Re-assessing the protein structure-function paradigm. J. Mol. Biol. 1999, 293, 321–331. [Google Scholar] [CrossRef] [PubMed]
- Dyson, H.J.; Wright, P.E. Intrinsically unstructured proteins and their functions. Nat. Rev. Mol. Cell Biol. 2005, 6, 197–208. [Google Scholar] [CrossRef] [PubMed]
- Diella, F.; Haslam, N.; Chica, C.; Budd, A.; Michael, S.; Brown, N.P.; Travé, G.; Gibson, T.J. Understanding eukaryotic linear motifs and their role in cell signaling and regulation. Front. Biosci. 2008, 13, 6580–6603. [Google Scholar] [CrossRef] [PubMed]
- Galea, C.A.; Wang, Y.; Sivakolundu, S.G.; Kriwacki, R.W. Regulation of cell division by intrinsically unstructured proteins: Intrinsic flexibility, modularity, and signaling conduits. Biochemistry 2008, 47, 7598–7609. [Google Scholar] [CrossRef] [PubMed]
- Weaver, T.E. Synthesis, processing and secretion of surfactant proteins B and C. Biochim. Biophys. Acta (BBA) Mol. Basis Dis. 1998, 1408, 173–179. [Google Scholar] [CrossRef]
- Mulugeta, S.; Maguire, J.A.; Newitt, J.L.; Russo, S.J.; Kotorashvili, A.; Beers, M.F. Misfolded BRICHOS SP-C mutant proteins induce apoptosis via caspase-4-and cytochrome C-related mechanisms. Am. J. Physiol. Lung Cell. Mol. Physiol. 2007, 293, L720–L729. [Google Scholar] [CrossRef] [PubMed]
Strain a | Background Genotype | Transgene |
---|---|---|
N2 | C. elegans wild type | |
VC2139 | C09F5.1(ok2863) III | |
PS3551 | hsf-1(sy441) I | |
CF1038 | daf-16(mu86) I | |
NL2099 | rrf-3(pk1426) II | |
CL802 | smg-1(cc546) I; rol-6(su1006) II | |
CL4176 | smg-1(cc546) I; dvIs27 X b | |
MC9220 | smg-1(cc546) I; rol-6(su1006) II | [myo-3p::HA-C09F5.1 FL::let-858 3′UTR, myo-2p::gfp(S65C), rpl-28p::neoR] |
MC9221 | smg-1(cc546) I; dvIs27 X | [myo-3p::HA-C09F5.1 FL::let-858 3′UTR, myo-2p::gfp(S65C), rpl-28p::neoR] |
MC9222 | smg-1(cc546) I; dvIs27 X | [myo-3p::HA-C09F5.1 NTD::let-858 3′UTR, myo-2p::gfp(S65C), rpl-28p::neoR] |
MC9224 | smg-1(cc546) I; dvIs27 X | [myo-3p::HA-C09F5.1 CTD::let-858 3′UTR, myo-2p::gfp(S65C), rpl-28p::neoR] |
MC9226 | smg-1(cc546) I; dvIs27 X | [myo-3p::gfp(S65C)::let-858 3′UTR, myo-2p::gfp(S65C), rpl-28p::neoR] |
KH0001 | N2 | [C09F5.1p::gfp(S65C)::unc-54 3′UTR, rol-6(su1006)] |
MC0001 | N2 | [C09F5.1p::C09F5.1::gfp(S65C)::unc-54 3′UTR, rol-6(su1006)] |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Song, M.; Song, K.; Kim, S.; Lee, J.; Hwang, S.; Han, C. Caenorhabditis elegans BRICHOS Domain–Containing Protein C09F5.1 Maintains Thermotolerance and Decreases Cytotoxicity of Aβ42 by Activating the UPR. Genes 2018, 9, 160. https://doi.org/10.3390/genes9030160
Song M, Song K, Kim S, Lee J, Hwang S, Han C. Caenorhabditis elegans BRICHOS Domain–Containing Protein C09F5.1 Maintains Thermotolerance and Decreases Cytotoxicity of Aβ42 by Activating the UPR. Genes. 2018; 9(3):160. https://doi.org/10.3390/genes9030160
Chicago/Turabian StyleSong, Myungchul, Kyunghee Song, Sunghee Kim, Jinyoung Lee, Sueyun Hwang, and Chingtack Han. 2018. "Caenorhabditis elegans BRICHOS Domain–Containing Protein C09F5.1 Maintains Thermotolerance and Decreases Cytotoxicity of Aβ42 by Activating the UPR" Genes 9, no. 3: 160. https://doi.org/10.3390/genes9030160
APA StyleSong, M., Song, K., Kim, S., Lee, J., Hwang, S., & Han, C. (2018). Caenorhabditis elegans BRICHOS Domain–Containing Protein C09F5.1 Maintains Thermotolerance and Decreases Cytotoxicity of Aβ42 by Activating the UPR. Genes, 9(3), 160. https://doi.org/10.3390/genes9030160