Identifying Bird Remains Using Ancient DNA Barcoding
Abstract
:1. Introduction
2. Materials and Methods
2.1. Sample Sites
2.2. Design of Avian Barcodes
2.3. Laboratory Procedures
2.4. Data Analyses
3. Results and Discussion
4. Conclusions
Supplementary Materials
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Hollingsworth, P.M.; Li, D.-Z.; van der Bank, M.; Twyford, A.D. Telling plant species apart with DNA: From barcodes to genomes. Philos. Trans. R. Soc. Lond. Ser. B Biol. Sci. 2016, 371. [Google Scholar] [CrossRef] [PubMed]
- Wasser, S.K.; Shedlock, A.M.; Comstock, K.; Ostrander, E.A.; Mutayoba, B.; Stephens, M. Assigning African elephant DNA to geographic region of origin: Applications to the ivory trade. Proc. Natl. Acad. Sci. USA 2004, 101, 14847–14852. [Google Scholar] [CrossRef] [PubMed]
- Kartzinel, T.R.; Chen, P.A.; Coverdale, T.C.; Erickson, D.L.; Kress, W.J.; Kuzmina, M.L.; Rubenstein, D.I.; Wang, W.; Pringle, R.M. DNA metabarcoding illuminates dietary niche partitioning by African large herbivores. Proc. Natl. Acad. Sci. USA 2015, 112, 8019–8024. [Google Scholar] [CrossRef] [PubMed]
- Castella, V.; Dimo-Simonin, N.; Brandt-Casadevall, C.; Robinson, N.; Saugy, M.; Taroni, F.; Mangin, P. Forensic identification of urine samples: A comparison between nuclear and mitochondrial DNA markers. Int. J. Leg. Med. 2006, 120, 67–72. [Google Scholar] [CrossRef] [PubMed]
- Dalén, L.; Götherström, A.; Meijer, T.; Shapiro, B. Recovery of DNA from footprints in the snow. Can. Field-Nat. 2007, 121, 321–324. [Google Scholar] [CrossRef]
- Hebert, P.D.N.; Cywinska, A.; Ball, S.L.; deWaard, J.R. Biological identifications through DNA barcodes. Proc. R. Soc. Lond. Ser. B Biol. Sci. 2003, 270, 313–321. [Google Scholar] [CrossRef] [PubMed]
- Deagle, B.E.; Jarman, S.N.; Coissac, E.; Pompanon, F.; Taberlet, P. DNA metabarcoding and the cytochrome c oxidase subunit I marker: Not a perfect match. Biol. Lett. 2014, 10. [Google Scholar] [CrossRef] [PubMed]
- Dalén, L.; Götherström, A.; Angerbjörn, A. Identifying species from pieces of faeces. Conserv. Genet. 2004, 5, 109–111. [Google Scholar] [CrossRef]
- Epp, L.S.; Boessenkool, S.; Bellemain, E.P.; Haile, J.; Esposito, A.; Riaz, T.; Erséus, C.; Gusarov, V.I.; Edwards, M.E.; Johnsen, A.; et al. New environmental metabarcodes for analysing soil DNA: Potential for studying past and present ecosystems. Mol. Ecol. 2012, 21, 1821–1833. [Google Scholar] [CrossRef] [PubMed]
- Patel, S.; Waugh, J.; Millar, C.D.; Lambert, D.M. Conserved primers for DNA barcoding historical and modern samples from New Zealand and Antarctic birds. Mol. Ecol. Res. 2010, 10, 431–438. [Google Scholar] [CrossRef] [PubMed]
- Meusnier, I.; Singer, G.A.; Landry, J.-F.; Hickey, D.A.; Hebert, P.D.; Hajibabaei, M. A universal DNA mini-barcode for biodiversity analysis. BMC Genom. 2008, 9, 214. [Google Scholar] [CrossRef] [PubMed]
- Galbraith, M.; Tennyson, A.; Shepherd, L.; Robinson, P.; Fraser, F. High altitude New Zealand record for a long-tailed skua (Stercorarius longicaudus). Notornis 2013, 60, 245–248. [Google Scholar]
- Bramwell, D. Some Research into Bird Distribution during the Late Glacial and Post-Glacial Periods. Bird Report (Merseyside Naturalists’ Association) 1960, 51–58. [Google Scholar]
- Jánossy, D. Lower Pleistocene bird remains from Beremend (S-Hungary, Loc. 15. and 16.). Aquila 1992, 99, 9–25. [Google Scholar]
- Serjeantson, D. Subsistence and symbol: the interpretation of bird remains in archaeology. Int. J. Osteoarchaeol. 1997, 7, 255–259. [Google Scholar] [CrossRef]
- Stewart, J.R. An Evolutionary Study of Some Archaeologically Significant Avian Taxa in the Quaternary of the Western Palaearctic; Hadrian Books Ltd.: Oxford, UK, 2007. [Google Scholar]
- Bochenski, Z.M. Identification of skeletal remains of closely related species: The pitfalls and solutions. J. Archaeol. Sci. 2008, 35, 1247–1250. [Google Scholar] [CrossRef]
- Ericson, P.G.P.; Tyrberg, T. The Early History of the Swedish Avifauna: A Review of the Subfossil Record and Early Written Sources; Antikvariska serien 45; Kungl. Vitterhets Historie och Antikvitets Akademiens Handlingar: Stockholm, Sweden, 2004. [Google Scholar]
- Stewart, J.R. The evidence for the timing of speciation of modern continental birds and the taxonomic ambiguity of the Quaternary fossil record. In Proceedings of the 5th Symposium of the Society of Avian Paleontology and Evolution, Beijing, China, 1–4 June 2000; Zhou, Z., Zhang, F., Eds.; Science Press: Beijing, China, 2002; pp. 261–282. [Google Scholar]
- Tomek, T.; Bochenski, Z.M. The Comparative Osteology of European Corvids (Aves: Corvidae), with a Key to the Identification of Their Skeletal Elements; Institute of Systemics and Evolution of Animals; Polish Academy of Sciences: Krakow, Poland, 2000. [Google Scholar]
- Serjeantson, D. Birds; Cambridge University Press: Cambridge, UK, 2009; p. 512. [Google Scholar]
- Ersmark, E.; Orlando, L.; Sandoval-Castellanos, E.; Barnes, I.; Barnett, R.; Stuart, A.; Lister, A.; Dalén, L. Population demography and genetic diversity in the Pleistocene cave lion. Open Quat. 2015, 1, 1–15. [Google Scholar] [CrossRef]
- Bochenski, Z.; Bochenski, Z.M.; Tomek, T. A History of Polish Birds; Institute of Systematics and Evolution of Animals; Polish Academy of Sciences: Krakow, Poland, 2012. [Google Scholar]
- Harrison, C.J.O. An Atlas of the Birds of the Western Palaearctic; Collins: London, UK, 1982. [Google Scholar]
- Stewart, J.R.; Jacobi, R.M. The long term response of birds to climate change: New results from a cold stage avifauna in northern England. PLoS ONE 2015, 10, e0122617. [Google Scholar] [CrossRef] [PubMed]
- Tyrberg, T. Arctic, montane and steppe birds as glacial relicts in West Palearctic. Ornithol. Verhandlungen 1991, 25, 29–49. [Google Scholar]
- Tyrberg, T. Palaeobiogeography of the genus Lagopus in the West Palearctic. Cour. Forsch. Senckenberg 1995, 181, 275–291. [Google Scholar]
- Tyrberg, T. Pleistocene Birds of the Palearctic: A Catalogue; Nuttall Ornithological Club Cambridge: Cambridge, MA, USA, 1998; Volume 27. [Google Scholar]
- Birdlife International. Emberiza Calandra; The IUCN Red List of Threatened Species: Cambridge, UK, 2016. [Google Scholar]
- Förschler, M.I.; Khoury, F.; Bairlein, F.; Aliabadian, M. Phylogeny of the mourning wheatear Oenanthe lugens complex. Mol. Phylogenet. Evol. 2010, 56, 758–767. [Google Scholar] [CrossRef] [PubMed]
- Förschler, M.I.; Khoury, F.; Bairlein, F.; Aliabadian, M. Corrigendum to “Phylogeny of the mourning wheatear Oenanthe lugens complex”. Mol. Phylogenet. Evol. 2010, 57, 483–484. [Google Scholar] [CrossRef]
- Stewart, J.R. The use of modern geographical ranges in the identification of archaeological bird remains. In Feathers, Grit and Symbolisms. Birds and Archaeology in the Old and New Worlds. Proceedings of the ICAZ Bird Remains Working Group Meeting in Munich, Germany, 26–28 July 2004; Grupe, G., Peters, J., Eds.; Documenta Archaeobiologiae 3: Rahden, Germany, 2005; pp. 43–54. [Google Scholar]
- Newton, I. The Migration Ecology of Birds; Academic Press: Oxford, UK, 2007; p. 984. [Google Scholar]
- Zhan, S.; Zhang, W.; Niitepold, K.; Hsu, J.; Haeger, J.F.; Zalucki, M.P.; Altizer, S.; de Roode, J.C.; Reppert, S.M.; Kronforst, M.R. The genetics of monarch butterfly migration and warning colouration. Nature 2014, 514, 317–321. [Google Scholar] [CrossRef] [PubMed]
- Parker, A.J. The birds of Roman Britain. Oxf. J. Archaeol. 1988, 7, 197–226. [Google Scholar] [CrossRef]
- Poole, K. Bird introductions. In Extinctions and Invasions: A Social History of British Fauna; O’Connor, T., Sykes, N.J., Eds.; Windgather Press: Oxford, UK, 2010. [Google Scholar]
- Fick, O.K.W. Vergleichend Morphologische Untersuchungen an Einzelknochen Europäischer Taubenarten; Ludwig-Maximilians-Universität: München, Germany, 1974. (In German) [Google Scholar]
- Stewart, J.R. The bird remains from the West Runton Freshwater Bed, Norfolk, England. Quater. Int. 2010, 228, 72–90. [Google Scholar] [CrossRef]
- Binladen, J.; Gilbert, M.T.P.; Bollback, J.P.; Panitz, F.; Bendixen, C.; Nielsen, R.; Willerslev, E. The use of coded PCR primers enables high-throughput sequencing of multiple homolog amplification products by 454 parallel sequencing. PLoS ONE 2007, 2, e197. [Google Scholar] [CrossRef] [PubMed]
- Reich, D.; Green, R.E.; Kircher, M.; Krause, J.; Patterson, N.; Durand, E.Y.; Viola, B.; Briggs, A.W.; Stenzel, U.; Johnson, P.L.F.; et al. Genetic history of an archaic hominin group from Denisova Cave in Siberia. Nature 2010, 468, 1053–1060. [Google Scholar] [CrossRef] [PubMed]
Primer | Sequence (5’-3’) | Amplicon Size |
---|---|---|
Aves-16S-1AF | CATAAGACGAGAAGACCCTGTGGA | c. 125 bp |
Aves-16S-1AR | TCCAAGGTCGCCCCAACCGAA | |
Aves-16S-2AF | CCTTGGAGAAAAACAAANCCTCCAAA | c. 120 bp |
Aves-16S-2AR | TCCCTGGGGTAGCTTGGTCCAT | |
Aves-16S-1A-Block | AGACCCTATGGAGCTTTAATTTATTAATGCAAAC |
Sample ID | Genetic Assignment | Morphological Assignment |
---|---|---|
J2 | Oenanthe lugubris | Fringillidae/Emberizidae (Size of Emberiza calandra, Pinicola enucleator, Coccothraustes coccothraustes) |
J3 | Oenanthe lugubris | Fringillidae/Emberizidae (Size of E. calandra, P. enucleator, C. coccothraustes) |
J4 | Turdus pilaris | Turdus sp.-T. cf. pilaris/viscivorus |
J5 | Turdus merula | Turdus sp.-T. cf. merula |
J6 | Emberiza calandra | Fringillidae/Emberizidae (Size of E. calandra, P. enucleator, C. coccothraustes) |
J7 | Turdus philomelos | Turdus sp.-T. cf. philomelos |
J8 | Emberiza calandra | Passeriformes (Size between Blackbird and House sparrow) |
J9 | Anser anser | cf. Gallus gallus |
J10 | Gallus gallus | cf. Gallus gallus |
J11 | Columba livia | Columbiformes (Looks approx. Columba palumbus size) |
J12 | Gallus gallus | cf. Gallus gallus |
J13 | Anas penelope | Anatinae (ca. Mallard size) |
J14 | Corvus monedula | Corvidae (Corvus monedula size) |
J17 | Lagopus muta | Aves, size of Lagopus? |
J19 | Turdus pilaris | Turdus sp. |
J20 | Turdus pilaris | Turdus viscivorus |
J21 | Turdus merula | Turdus sp. (size T. merula) |
J22 * | Alauda arvensis | Alauda arvensis |
J24 * | Eremophila alpestris | Lullula arborea |
J25 | Eremophila alpestris | Lullula arborea |
© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dalén, L.; Lagerholm, V.K.; Nylander, J.A.A.; Barton, N.; Bochenski, Z.M.; Tomek, T.; Rudling, D.; Ericson, P.G.P.; Irestedt, M.; Stewart, J.R. Identifying Bird Remains Using Ancient DNA Barcoding. Genes 2017, 8, 169. https://doi.org/10.3390/genes8060169
Dalén L, Lagerholm VK, Nylander JAA, Barton N, Bochenski ZM, Tomek T, Rudling D, Ericson PGP, Irestedt M, Stewart JR. Identifying Bird Remains Using Ancient DNA Barcoding. Genes. 2017; 8(6):169. https://doi.org/10.3390/genes8060169
Chicago/Turabian StyleDalén, Love, Vendela K. Lagerholm, Johan A. A. Nylander, Nick Barton, Zbigniew M. Bochenski, Teresa Tomek, David Rudling, Per G. P. Ericson, Martin Irestedt, and John R. Stewart. 2017. "Identifying Bird Remains Using Ancient DNA Barcoding" Genes 8, no. 6: 169. https://doi.org/10.3390/genes8060169
APA StyleDalén, L., Lagerholm, V. K., Nylander, J. A. A., Barton, N., Bochenski, Z. M., Tomek, T., Rudling, D., Ericson, P. G. P., Irestedt, M., & Stewart, J. R. (2017). Identifying Bird Remains Using Ancient DNA Barcoding. Genes, 8(6), 169. https://doi.org/10.3390/genes8060169