Neurotoxic Doses of Chronic Methamphetamine Trigger Retrotransposition of the Identifier Element in Rat Dorsal Dentate Gyrus
Abstract
:1. Introduction
2. Materials and Methods
2.1. Animals
2.2. Administration of Methamphetamine
2.3. Tissue Collection
2.4. Polymerase Chain Reaction and Pyrosequencing
2.5. Immunohistochemistry
2.6. Next-Generation Sequencing and Sequence Diversity Analysis
2.7. Statistical Analysis
3. Results
3.1. The ID Element Is Similarly Methylated in Different Rat Brain Regions
3.2. Binge and Chronic High-Dose METH-Induced Hyperthermia in the Rat
3.3. Binge and Chronic METH Differentially Alter the Methylation Status of the ID Element
3.4. PABP1 Protein Levels Are Increased by METH in the Dentate Gyrus
3.5. Chronic METH Induces a Persistent Difference in ID Element Amplification in the Dentate Gyrus
4. Discussion
5. Strengths and Limitations
6. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
Abbreviations
DMT | DNA methyltransferase |
ID element | Identifier element |
LINEs | Long interspersed elements |
METH | Methamphetamine |
PABP | Poly(A)-binding protein |
SAL | Saline |
SINEs | Short interspersed elements |
References
- Hancks, D.C.; Kazazian, H.H., Jr. Active human retrotransposons: Variation and disease. Curr. Opin. Genet. Dev. 2012, 22, 191–203. [Google Scholar] [CrossRef] [PubMed]
- Hata, K.; Sakaki, Y. Identification of critical CpG sites for repression of L1 transcription by DNA methylation. Gene 1997, 189, 227–234. [Google Scholar] [CrossRef]
- Schulz, W.A.; Steinhoff, C.; Florl, A.R. Methylation of endogenous human retroelements in health and disease. Curr. Top. Microbiol. Immunol. 2006, 310, 211–250. [Google Scholar] [PubMed]
- Liu, W.M.; Maraia, R.J.; Rubin, C.M.; Schmid, C.W. Alu transcripts: Cytoplasmic localisation and regulation by DNA methylation. Nucleic Acids Res. 1994, 22, 1087–1095. [Google Scholar] [CrossRef] [PubMed]
- Beck, C.R.; Garcia-Perez, J.L.; Badge, R.M.; Moran, J.V. LINE-1 elements in structural variation and disease. Annu. Rev. Genom. Hum. Genet. 2011, 12, 187–215. [Google Scholar] [CrossRef] [PubMed]
- Muotri, A.R.; Zhao, C.; Marchetto, M.C.; Gage, F.H. Environmental influence on L1 retrotransposons in the adult hippocampus. Hippocampus 2009, 19, 1002–1007. [Google Scholar] [CrossRef] [PubMed]
- Erwin, J.A.; Marchetto, M.C.; Gage, F.H. Mobile DNA elements in the generation of diversity and complexity in the brain. Nat. Rev. Neurosci. 2014, 15, 497–506. [Google Scholar] [CrossRef] [PubMed]
- Deininger, P.L.; Batzer, M.A. Mammalian retroelements. Genome Res. 2002, 12, 1455–1465. [Google Scholar] [CrossRef] [PubMed]
- Kramerov, D.A.; Vassetzky, N.S. Short retroposons in eukaryotic genomes. Int. Rev. Cytol. 2005, 247, 165–221. [Google Scholar] [CrossRef]
- Dewannieux, M.; Esnault, C.; Heidmann, T. LINE-mediated retrotransposition of marked Alu sequences. Nat. Genet. 2003, 35, 41–48. [Google Scholar] [CrossRef] [PubMed]
- Hagan, C.R.; Sheffield, R.F.; Rudin, C.M. Human Alu element retrotransposition induced by genotoxic stress. Nat. Genet. 2003, 35, 219–220. [Google Scholar] [CrossRef] [PubMed]
- Okada, N.; Hamada, M.; Ogiwara, I.; Ohshima, K. SINEs and LINEs share common 3′ sequences: A review. Gene 1997, 205, 229–243. [Google Scholar] [CrossRef]
- West, N.; Roy-Engel, A.M.; Imataka, H.; Sonenberg, N.; Deininger, P. Shared protein components of SINE RNPs. J. Mol. Biol. 2002, 321, 423–432. [Google Scholar] [CrossRef]
- Kass, D.H.; Kim, J.; Deininger, P.L. Sporadic amplification of ID elements in rodents. J. Mol. Evol. 1996, 42, 7–14. [Google Scholar] [CrossRef] [PubMed]
- Kim, J.; Martignetti, J.A.; Shen, M.R.; Brosius, J.; Deininger, P. Rodent BC1 RNA gene as a master gene for ID element amplification. Proc. Natl. Acad. Sci. USA 1994, 91, 3607–3611. [Google Scholar] [CrossRef] [PubMed]
- Kim, H.H.; Park, J.H.; Jeong, K.S.; Lee, S. Determining the global DNA methylation status of rat according to the identifier repetitive elements. Electrophoresis 2007, 28, 3854–3861. [Google Scholar] [CrossRef] [PubMed]
- Ichiyanagi, K. Epigenetic regulation of transcription and possible functions of mammalian short interspersed elements, SINEs. Genes Genet. Syst. 2013, 88, 19–29. [Google Scholar] [CrossRef] [PubMed]
- Chen, D.; Jin, K.; Kawaguchi, K.; Nakayama, M.; Zhou, X.; Xiong, Z.; Zhou, A.; Mao, X.O.; Greenberg, D.A.; Graham, S.H.; et al. Ero1-L, an ischemia-inducible gene from rat brain with homology to global ischemia-induced gene 11 (Giig11), is localized to neuronal dendrites by a dispersed identifier (ID) element-dependent mechanism. J. Neurochem. 2003, 85, 670–679. [Google Scholar] [CrossRef] [PubMed]
- Gillen, C.; Gleichmann, M.; Spreyer, P.; Muller, H.W. Differentially expressed genes after peripheral nerve injury. J. Neurosci. Res. 1995, 42, 159–171. [Google Scholar] [CrossRef] [PubMed]
- Rudin, C.M.; Thompson, C.B. Transcriptional activation of short interspersed elements by DNA-damaging agents. Genes Chromosomes Cancer 2001, 30, 64–71. [Google Scholar] [CrossRef]
- Li, T.; Spearow, J.; Rubin, C.M.; Schmid, C.W. Physiological stresses increase mouse short interspersed element (SINE) RNA expression in vivo. Gene 1999, 239, 367–372. [Google Scholar] [CrossRef]
- Mandyam, C.D.; Wee, S.; Crawford, E.F.; Eisch, A.J.; Richardson, H.N.; Koob, G.F. Varied access to intravenous methamphetamine self-administration differentially alters adult hippocampal neurogenesis. Biol. Psychiatry 2008, 64, 958–965. [Google Scholar] [CrossRef] [PubMed]
- Thompson, P.M.; Hayashi, K.M.; Simon, S.L.; Geaga, J.A.; Hong, M.S.; Sui, Y.; Lee, J.Y.; Toga, A.W.; Ling, W.; London, E.D. Structural abnormalities in the brains of human subjects who use methamphetamine. J. Neurosci. 2004, 24, 6028–6036. [Google Scholar] [CrossRef] [PubMed]
- Deng, X.; Wang, Y.; Chou, J.; Cadet, J.L. Methamphetamine causes widespread apoptosis in the mouse brain: Evidence from using an improved TUNEL histochemical method. Brain Res. Mol. Brain Res. 2001, 93, 64–69. [Google Scholar] [CrossRef]
- Hori, N.; Kadota, M.T.; Watanabe, M.; Ito, Y.; Akaike, N.; Carpenter, D.O. Neurotoxic effects of methamphetamine on rat hippocampus pyramidal neurons. Cell. Mol. Neurobiol. 2010, 30, 849–856. [Google Scholar] [CrossRef] [PubMed]
- Thanos, P.K.; Kim, R.; Delis, F.; Ananth, M.; Chachati, G.; Rocco, M.J.; Masad, I.; Muniz, J.A.; Grant, S.C.; Gold, M.S.; et al. Chronic Methamphetamine Effects on Brain Structure and Function in Rats. PLoS ONE 2016, 11, e0155457. [Google Scholar] [CrossRef] [PubMed]
- Teuchert-Noodt, G.; Dawirs, R.R.; Hildebrandt, K. Adult treatment with methamphetamine transiently decreases dentate granule cell proliferation in the gerbil hippocampus. J. Neural Transm. 2000, 107, 133–143. [Google Scholar] [CrossRef] [PubMed]
- Yuan, C.J.; Quiocho, J.M.; Kim, A.; Wee, S.; Mandyam, C.D. Extended access methamphetamine decreases immature neurons in the hippocampus which results from loss and altered development of neural progenitors without altered dynamics of the S-phase of the cell cycle. Pharmacol. Biochem. Behav. 2011, 100, 98–108. [Google Scholar] [CrossRef] [PubMed]
- Hart, C.L.; Marvin, C.B.; Silver, R.; Smith, E.E. Is cognitive functioning impaired in methamphetamine users? A critical review. Neuropsychopharmacology 2012, 37, 586–608. [Google Scholar] [CrossRef] [PubMed]
- Moszczynska, A.; Flack, A.; Qiu, P.; Muotri, A.R.; Killinger, B.A. Neurotoxic Methamphetamine Doses Increase LINE-1 Expression in the Neurogenic Zones of the Adult Rat Brain. Sci. Rep. 2015, 5, 14356. [Google Scholar] [CrossRef] [PubMed]
- Gorlach, M.; Burd, C.G.; Dreyfuss, G. The mRNA poly(A)-binding protein: Localization, abundance, and RNA-binding specificity. Exp. Cell Res. 1994, 211, 400–407. [Google Scholar] [CrossRef] [PubMed]
- Kilkenny, C.; Browne, W.J.; Cuthill, I.C.; Emerson, M.; Altman, D.G. Improving bioscience research reporting: The ARRIVE guidelines for reporting animal research. PLoS Biol. 2010, 8, e1000412. [Google Scholar] [CrossRef] [PubMed]
- Yamamoto, B.K.; Moszczynska, A.; Gudelsky, G.A. Amphetamine toxicities: Classical and emerging mechanisms. Ann. N. Y. Acad. Sci. 2010, 1187, 101–121. [Google Scholar] [CrossRef] [PubMed]
- Hagihara, H.; Toyama, K.; Yamasaki, N.; Miyakawa, T. Dissection of hippocampal dentate gyrus from adult mouse. J. Vis. Exp. 2009. [Google Scholar] [CrossRef] [PubMed]
- Tost, J.; Gut, I.G. DNA methylation analysis by pyrosequencing. Nat. Protoc. 2007, 2, 2265–2275. [Google Scholar] [CrossRef] [PubMed]
- Treangen, T.J.; Salzberg, S.L. Repetitive DNA and next-generation sequencing: Computational challenges and solutions. Nat. Rev. Genet. 2011, 13, 36–46. [Google Scholar] [CrossRef] [PubMed]
- Langmead, B.; Salzberg, S.L. Fast gapped-read alignment with Bowtie 2. Nat. Methods 2012, 9, 357–359. [Google Scholar] [CrossRef] [PubMed]
- Ali, S.F.; Newport, G.D.; Holson, R.R.; Slikker, W., Jr.; Bowyer, J.F. Low environmental temperatures or pharmacologic agents that produce hypothermia decrease methamphetamine neurotoxicity in mice. Brain Res. 1994, 658, 33–38. [Google Scholar] [CrossRef]
- Bowyer, J.F.; Davies, D.L.; Schmued, L.; Broening, H.W.; Newport, G.D.; Slikker, W., Jr.; Holson, R.R. Further studies of the role of hyperthermia in methamphetamine neurotoxicity. J. Pharmacol. Exp. Ther. 1994, 268, 1571–1580. [Google Scholar] [PubMed]
- Kurnosov, A.A.; Ustyugova, S.V.; Nazarov, V.I.; Minervina, A.A.; Komkov, A.Y.; Shugay, M.; Pogorelyy, M.V.; Khodosevich, K.V.; Mamedov, I.Z.; Lebedev, Y.B. The evidence for increased L1 activity in the site of human adult brain neurogenesis. PLoS ONE 2015, 10, e0117854. [Google Scholar] [CrossRef] [PubMed]
- Ma, S.; Bhattacharjee, R.B.; Bag, J. Expression of poly(A)-binding protein is upregulated during recovery from heat shock in HeLa cells. FEBS J. 2009, 276, 552–570. [Google Scholar] [CrossRef] [PubMed]
- Deininger, P. Alu elements: Know the SINEs. Genome Biol. 2011, 12, 236. [Google Scholar] [CrossRef] [PubMed]
- Xing, J.; Hedges, D.J.; Han, K.; Wang, H.; Cordaux, R.; Batzer, M.A. Alu element mutation spectra: Molecular clocks and the effect of DNA methylation. J. Mol. Biol. 2004, 344, 675–682. [Google Scholar] [CrossRef] [PubMed]
- Meissner, A.; Mikkelsen, T.S.; Gu, H.; Wernig, M.; Hanna, J.; Sivachenko, A.; Zhang, X.; Bernstein, B.E.; Nusbaum, C.; Jaffe, D.B.; et al. Genome-scale DNA methylation maps of pluripotent and differentiated cells. Nature 2008, 454, 766–770. [Google Scholar] [CrossRef] [PubMed]
- Sati, S.; Tanwar, V.S.; Kumar, K.A.; Patowary, A.; Jain, V.; Ghosh, S.; Ahmad, S.; Singh, M.; Reddy, S.U.; Chandak, G.R.; et al. High resolution methylome map of rat indicates role of intragenic DNA methylation in identification of coding region. PLoS ONE 2012, 7, e31621. [Google Scholar] [CrossRef] [PubMed]
- Lister, R.; Pelizzola, M.; Dowen, R.H.; Hawkins, R.D.; Hon, G.; Tonti-Filippini, J.; Nery, J.R.; Lee, L.; Ye, Z.; Ngo, Q.M.; et al. Human DNA methylomes at base resolution show widespread epigenomic differences. Nature 2009, 462, 315–322. [Google Scholar] [CrossRef] [PubMed]
- Liu, W.M.; Chu, W.M.; Choudary, P.V.; Schmid, C.W. Cell stress and translational inhibitors transiently increase the abundance of mammalian SINE transcripts. Nucleic Acids Res. 1995, 23, 1758–1765. [Google Scholar] [CrossRef] [PubMed]
- Kimura, R.H.; Choudary, P.V.; Schmid, C.W. Silk worm Bm1 SINE RNA increases following cellular insults. Nucleic Acids Res. 1999, 27, 3380–3387. [Google Scholar] [CrossRef] [PubMed]
- Allen, T.A.; von Kaenel, S.; Goodrich, J.A.; Kugel, J.F. The SINE-encoded mouse B2 RNA represses mRNA transcription in response to heat shock. Nat. Struct. Mol. Biol. 2004, 11, 816–821. [Google Scholar] [CrossRef] [PubMed]
- Pal, A.; Srivastava, T.; Sharma, M.K.; Mehndiratta, M.; Das, P.; Sinha, S.; Chattopadhyay, P. Aberrant methylation and associated transcriptional mobilization of Alu elements contributes to genomic instability in hypoxia. J. Cell. Mol. Med. 2010, 14, 2646–2654. [Google Scholar] [CrossRef] [PubMed]
- Numachi, Y.; Yoshida, S.; Yamashita, M.; Fujiyama, K.; Naka, M.; Matsuoka, H.; Sato, M.; Sora, I. Psychostimulant alters expression of DNA methyltransferase mRNA in the rat brain. Ann. N. Y. Acad. Sci. 2004, 1025, 102–109. [Google Scholar] [CrossRef] [PubMed]
- Sirivanichsuntorn, P.; Keelawat, S.; Danuthai, K.; Mutirangura, A.; Subbalekha, K.; Kitkumthorn, N. LINE-1 and Alu hypomethylation in mucoepidermoid carcinoma. BMC Clin. Pathol. 2013, 13, 10. [Google Scholar] [CrossRef] [PubMed]
- Park, S.Y.; Seo, A.N.; Jung, H.Y.; Gwak, J.M.; Jung, N.; Cho, N.Y.; Kang, G.H. Alu and LINE-1 hypomethylation is associated with HER2 enriched subtype of breast cancer. PLoS ONE 2014, 9, e100429. [Google Scholar] [CrossRef] [PubMed]
- Viana, J.; Pidsley, R.; Troakes, C.; Spiers, H.; Wong, C.C.; Al-Sarraj, S.; Craig, I.; Schalkwyk, L.; Mill, J. Epigenomic and transcriptomic signatures of a Klinefelter syndrome (47, XXY) karyotype in the brain. Epigenetics 2014, 9, 587–599. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Miousse, I.R.; Chalbot, M.C.; Aykin-Burns, N.; Wang, X.; Basnakian, A.; Kavouras, I.G.; Koturbash, I. Epigenetic alterations induced by ambient particulate matter in mouse macrophages. Environ. Mol. Mutagen. 2014, 55, 428–435. [Google Scholar] [CrossRef] [PubMed]
- Varshney, D.; Vavrova-Anderson, J.; Oler, A.J.; Cowling, V.H.; Cairns, B.R.; White, R.J. SINE transcription by RNA polymerase III is suppressed by histone methylation but not by DNA methylation. Nat. Commun. 2015, 6, 6569. [Google Scholar] [CrossRef] [PubMed]
- Mychasiuk, R.; Muhammad, A.; Ilnytskyy, S.; Kolb, B. Persistent gene expression changes in NAc, mPFC, and OFC associated with previous nicotine or amphetamine exposure. Behav. Brain Res. 2013, 256, 655–661. [Google Scholar] [CrossRef] [PubMed]
- Numachi, Y.; Shen, H.; Yoshida, S.; Fujiyama, K.; Toda, S.; Matsuoka, H.; Sora, I.; Sato, M. Methamphetamine alters expression of DNA methyltransferase 1 mRNA in rat brain. Neurosci. Lett. 2007, 414, 213–217. [Google Scholar] [CrossRef] [PubMed]
- Jayanthi, S.; McCoy, M.T.; Chen, B.; Britt, J.P.; Kourrich, S.; Yau, H.J.; Ladenheim, B.; Krasnova, I.N.; Bonci, A.; Cadet, J.L. Methamphetamine downregulates striatal glutamate receptors via diverse epigenetic mechanisms. Biol. Psychiatry 2014, 76, 47–56. [Google Scholar] [CrossRef] [PubMed]
- Krasnova, I.N.; Chiflikyan, M.; Justinova, Z.; McCoy, M.T.; Ladenheim, B.; Jayanthi, S.; Quintero, C.; Brannock, C.; Barnes, C.; Adair, J.E.; et al. CREB phosphorylation regulates striatal transcriptional responses in the self-administration model of methamphetamine addiction in the rat. Neurobiol. Dis. 2013, 58, 132–143. [Google Scholar] [CrossRef] [PubMed]
- Gelfand, B.D.; Wright, C.B.; Kim, Y.; Yasuma, T.; Yasuma, R.; Li, S.; Fowler, B.J.; Bastos-Carvalho, A.; Kerur, N.; Uittenbogaard, A.; et al. Iron Toxicity in the Retina Requires Alu RNA and the NLRP3 Inflammasome. Cell Rep. 2015, 11, 1686–1693. [Google Scholar] [CrossRef] [PubMed]
- Goncalves, J.; Baptista, S.; Martins, T.; Milhazes, N.; Borges, F.; Ribeiro, C.F.; Malva, J.O.; Silva, A.P. Methamphetamine-induced neuroinflammation and neuronal dysfunction in the mice hippocampus: Preventive effect of indomethacin. Eur. J. Neurosci. 2010, 31, 315–326. [Google Scholar] [CrossRef] [PubMed]
- Venkatesan, A.; Uzasci, L.; Chen, Z.; Rajbhandari, L.; Anderson, C.; Lee, M.H.; Bianchet, M.A.; Cotter, R.; Song, H.; Nath, A. Impairment of adult hippocampal neural progenitor proliferation by methamphetamine: Role for nitrotyrosination. Mol. Brain 2011, 4, 28. [Google Scholar] [CrossRef] [PubMed]
- Baptista, S.; Lasgi, C.; Benstaali, C.; Milhazes, N.; Borges, F.; Fontes-Ribeiro, C.; Agasse, F.; Silva, A.P. Methamphetamine decreases dentate gyrus stem cell self-renewal and shifts the differentiation towards neuronal fate. Stem Cell Res. 2014, 13, 329–341. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Smith, K.J.; Butler, T.R.; Self, R.L.; Braden, B.B.; Prendergast, M.A. Potentiation of N-methyl-d-aspartate receptor-mediated neuronal injury during methamphetamine withdrawal in vitro requires co-activation of IP3 receptors. Brain Res. 2008, 1187, 67–73. [Google Scholar] [CrossRef] [PubMed]
- Baliga, B.S.; Zahringer, J.; Trachtenberg, M.; Moskowitz, M.A.; Munro, H.N. Mechanism of D-amphetamine inhibition of protein synthesis. Biochim. Biophys. Acta 1976, 442, 239–250. [Google Scholar] [CrossRef]
- Gray, N.K.; Hrabalkova, L.; Scanlon, J.P.; Smith, R.W. Poly(A)-binding proteins and mRNA localization: Who rules the roost? Biochem. Soc. Trans. 2015, 43, 1277–1284. [Google Scholar] [CrossRef] [PubMed]
- Dai, L.; Taylor, M.S.; O’Donnell, K.A.; Boeke, J.D. Poly(A) binding protein C1 is essential for efficient L1 retrotransposition and affects L1 RNP formation. Mol. Cell. Biol. 2012, 32, 4323–4336. [Google Scholar] [CrossRef] [PubMed]
- Kim, J.; Kass, D.H.; Deininger, P.L. Transcription and processing of the rodent ID repeat family in germline and somatic cells. Nucleic Acids Res. 1995, 23, 2245–2251. [Google Scholar] [CrossRef] [PubMed]
- Johnson, L.J.; Brookfield, J.F. A test of the master gene hypothesis for interspersed repetitive DNA sequences. Mol. Biol. Evol. 2006, 23, 235–239. [Google Scholar] [CrossRef] [PubMed]
- Deininger, P.L.; Batzer, M.A.; Hutchison, C.A., 3rd; Edgell, M.H. Master genes in mammalian repetitive DNA amplification. Trends Genet. 1992, 8, 307–311. [Google Scholar] [CrossRef]
- Kazazian, H.H., Jr.; Goodier, J.L. LINE drive. retrotransposition and genome instability. Cell 2002, 110, 277–280. [Google Scholar] [CrossRef]
- Joslyn, G.; Wolf, F.W.; Brush, G.; Wu, L.; Schuckit, M.; White, R.L. Glypican Gene GPC5 Participates in the Behavioral Response to Ethanol: Evidence from Humans, Mice, and Fruit Flies. G3 (Bethesda) 2011, 1, 627–635. [Google Scholar] [CrossRef] [PubMed]
- Robison, A.J.; Nestler, E.J. Transcriptional and epigenetic mechanisms of addiction. Nat. Rev. Neurosci. 2011, 12, 623–637. [Google Scholar] [CrossRef] [PubMed]
- Itzhak, Y.; Ergui, I.; Young, J.I. Long-term parental methamphetamine exposure of mice influences behavior and hippocampal DNA methylation of the offspring. Mol. Psychiatry 2015, 20, 232–239. [Google Scholar] [CrossRef] [PubMed]
- Recinto, P.; Samant, A.R.; Chavez, G.; Kim, A.; Yuan, C.J.; Soleiman, M.; Grant, Y.; Edwards, S.; Wee, S.; Koob, G.F.; et al. Levels of neural progenitors in the hippocampus predict memory impairment and relapse to drug seeking as a function of excessive methamphetamine self-administration. Neuropsychopharmacology 2012, 37, 1275–1287. [Google Scholar] [CrossRef] [PubMed]
- Volkow, N.D.; Chang, L.; Wang, G.J.; Fowler, J.S.; Leonido-Yee, M.; Franceschi, D.; Sedler, M.J.; Gatley, S.J.; Hitzemann, R.; Ding, Y.S.; et al. Association of dopamine transporter reduction with psychomotor impairment in methamphetamine abusers. Am. J. Psychiatry 2001, 158, 377–382. [Google Scholar] [CrossRef] [PubMed]
ID Element Subtype a | % Change b | p-Value | Genes Associated with Preferential Amplification c |
---|---|---|---|
28C > T|38G > C | 61 | 0.00828 | Cipc (Chr6:110986686), Slc9a9 (Chr8:102453600), LOC680227 (ChrX:74311735), Ift80 (Chr2:165544369), Mfsd14b (Chr17:2643624), Slc12a2 (Chr18:52921730), Uba6 (Chr14:23511767), Lasp1 (Chr10:85756102), Dcakd (Chr10:91116391), Smpdl3b (Chr5:150930976), Atp2b2 (Chr4:145726282), Smad9 (Chr2:144054261), Asic2 (Chr10:68890335), Abca17 (Chr10:13680892), Rab3c (Chr2:41772443), Ralgps2 (Chr13:74477445), Gtf2e2 (Chr16:62133089), Map3k12 (Chr7:144103811) |
29G > A|44G > A|52_53insT | 122 | 0.01785 | Veph1 (Chr2:157964489), Mapk8ip3 (Chr10:14288892) |
33G > A|38G > C|39C > G|40A > G | 23 | 0.01951 | Proximal to Cep162 (Chr8:94937230) |
41A > G | 95 | 0.03976 | Hdac4 (Chr9:99135435), Atg3 (Chr11:60587858), Nutf2 (Chr19:37841169), Urm1 (Chr3:8399609), Rsl1d1 (Chr10:4498654), Kpna3 (Chr15:41704423), Cnga3 (Chr9:43837574), Tfap2d (Chr9:25355932), Crkl (Chr11:87792847), Atp10d (Chr14:38491114), Vegfd (ChrX:31818688), Slc24a3 (Chr3:139780502), Pbx1 (Chr13:86476988), Prpsap1 (Chr10:105447151), Mylk (Chr11:69140146), Synpo Chr18:55910398), Zbtb46 (Chr3:176916873), Rtcd1 (Chr2:219556431), Slit3 (Chr10:20429924), Lcmt1 (Chr1:193375030), Rab30 (Chr1:157633572), Sepw1 (Chr1:77806751), Tjap1 (Chr9:17089159), Laptm4b (Chr7:72935301), Optn (Chr17:77215077), Nup210l (Chr2:189478449), Aaas (Chr7:143939751), Astn2 (Chr5:82045057), Rb1cc1 (Chr5:13068263), Smarcal1 (Chr9:79976755), Gsto2 (Chr1:267621506), Sppl3 (Chr12:47334193), Tctn2 (Chr12:37366571), Impdh1 (Chr4:56485763), Tbc1d14 (Chr14:79314924), Tbc1d8 (Chr9:46159589), Fcgr2b (Chr13:89356250), Scarb1 (Chr12:36712849), Rab3ip (Chr7:59939610), Prpf40a (Chr3:38695276), Utp20 (Chr7:29314493), Arsb (Chr2:23413525), Entpd7 (Chr1:263467744), Capn2 (Chr13:100899435), Txndc11 (Chr10:4613068), Gspt1 (Chr10:4386117), Six4 (Chr6:95989936), Susd5 (Chr8:122359614), Il23r (Chr4:98243720), Casc4 (Chr3:113853687), Ranbp17 (Chr10:18194793), Gabrb1 (Chr14:38814344), Cdc37 (Chr8:22163945), Fam172a (Chr2:5339706), Gtf2f2 (Chr15:57997967), Adra1a Chr15:43354439), Pum2 (Chr6:33799082), Gpr137b (Chr17:90744301), Atp1b3 (Chr8:104217176), Ubap1 (Chr5:57741520), Sgpl1 (Chr20:30724101), Ptprk (Chr1:17762449), Wwp2 (Chr19:39600430), Sbno1 (Chr12:37628774), Zfand3 (Chr20:8810745), Wrn (Chr16:62554494), Kyat3 (Chr2:248661110), Aldh2 (Chr12:40485627), Dpp6 (Chr4:4219884), Plekho2 (Chr8:71098823) |
23delT|29G > A | 162 | 0.04303 | Taar8c (Chr1:22334448) |
28C > G|29G > C|31_32insC|34C > G | 76 | 0.04654 | Ythdf2 (Chr5:150375359) |
© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license ( http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Moszczynska, A.; Burghardt, K.J.; Yu, D. Neurotoxic Doses of Chronic Methamphetamine Trigger Retrotransposition of the Identifier Element in Rat Dorsal Dentate Gyrus. Genes 2017, 8, 96. https://doi.org/10.3390/genes8030096
Moszczynska A, Burghardt KJ, Yu D. Neurotoxic Doses of Chronic Methamphetamine Trigger Retrotransposition of the Identifier Element in Rat Dorsal Dentate Gyrus. Genes. 2017; 8(3):96. https://doi.org/10.3390/genes8030096
Chicago/Turabian StyleMoszczynska, Anna, Kyle J. Burghardt, and Dongyue Yu. 2017. "Neurotoxic Doses of Chronic Methamphetamine Trigger Retrotransposition of the Identifier Element in Rat Dorsal Dentate Gyrus" Genes 8, no. 3: 96. https://doi.org/10.3390/genes8030096
APA StyleMoszczynska, A., Burghardt, K. J., & Yu, D. (2017). Neurotoxic Doses of Chronic Methamphetamine Trigger Retrotransposition of the Identifier Element in Rat Dorsal Dentate Gyrus. Genes, 8(3), 96. https://doi.org/10.3390/genes8030096