The Structural Determinants behind the Epigenetic Role of Histone Variants
Abstract
:1. Histones, Canonical Histones, Histone Variants and Epigenetics
Histone | Number of introns | polyA+/− | Chromosome location |
---|---|---|---|
H2A.Z.1 | 4 introns | polyA+ | 4q23 |
H2A.Z.2 | 4 introns | polyA+ | 7p13 |
H2A.Z.2.2 | 4 Introns (Alternative Splicing) | polyA+ | 7p13 |
H2A.X | 0 introns | polyA−/polyA+ | 11q23.3 |
H2A.B (H2A.Bbd) | 0 introns in human | polyA+ | Xq28 |
MacroH2A.1.1 | 10 introns (Alternative splicing) | polyA+ | 5q31.1 |
MacroH2A.1.2 | 10 introns (Alternative splicing) | 5q31.1 | |
(9 coding exons) | |||
MacroH2A.2 | 8 introns (8 coding exons) | polyA+ | 10q22.1 |
TH2B | 0 introns | polyA− | 6p22.2 |
H2BFWT | 2 introns | polyA+ | Xq22.2 |
H3.3 | 2 introns | polyA+ | 1p42.12/17q25.1 |
CenH3 | 4 introns | polyA+ | 2p23.3 |
Human H1.0 | 0 introns | polyA+ | 22q13.1 |
Human H1.4 | 0 introns | polyA− | 6p21.3 |
Human H1x | 0 introns | polyA+ | 3q21.3 |
Chicken H5 | 0 introns | PolyA+ | 1 |
M. surmuletus PL-I | Unknown | PolyA+ | Unknown |
2. Histone Variants as Epigenetic Markers
3. The Structural Epigenetic Importance of the H2A-H2B Dimer
3.1. H2A.Z Variants: The Structural and Functional Role of the Many Subtypes of H2A.Z
3.2. H2A.X: A Variant Guardian of the Genome
3.3. H2A.B: A Sperm-Specific Histone Variant with Potential Implications for Transcription and Cell Proliferation (?)
3.4. MacroH2A: The Longest Most Variable Histone Variant, Indispensable for Survival
4. Histone H2B Variants for the Germline
5. Histone H3 Variants: H3.3 and CenH3
5.1. H3.3: A Transcriptional Histone Mark that Accumulates with Age
5.2. CenH3: True Histone Epigenetics with Controversial Nucleosome Organization
6. Histone H1 Variants: Cell Differentiation and Developmental Histone Regulators of Chromatin Folding
7. The Structure and the Function. A Brief Look at the Transcription Start Site
8. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
Abbreviations
CDEII | Centromere DNA element II |
ChIP | Chromatin immune-precipitation |
DNA-PK | DNA-dependent protein kinase |
CTD | C-terminal domain |
DAXX | Death-domain associated |
EST | Expressed sequence tag |
FRAP | Fluorescence-recovery after photobleaching |
GFP | Green fluorescent protein |
HFD | histone fold domain |
HIRA | Histone cell cycle regulation defective homolog A |
NCP | nucleosome core particle |
NHD | Non-histone domain |
NRL | nucleosome repeat length |
SDS-PAGE | sodium dodecyl sulfate-polyacrylamide gel electrophoresis |
NTD | N-terminal domain |
PTMs | Post-translational modifications |
RSC | Remodel structure of chromatin |
SWR | Sick with RSC/Rat1 complex |
TSS | Transcription start site |
WHD | winged helix domain |
References
- Kossel, A. Uber einen peptonartigen bestandteil des zellkerns. Z. Physiol. Chem. 1884, 8, 511–515. [Google Scholar]
- Shechter, D.; Dormann, H.L.; Allis, C.D.; Hake, S.B. Extraction, purification and analysis of histones. Nat. Protocols 2007, 2, 1445–1457. [Google Scholar] [CrossRef] [PubMed]
- Ausió, J.; Moore, S.C. Reconstitution of chromatin complexes from high-performance liquid chromatography-purified histones. Methods 1998, 15, 333–342. [Google Scholar] [CrossRef] [PubMed]
- Arents, G.; Moudrianakis, E.N. The histone fold: A ubiquitous architectural motif utilized in DNA compaction and protein dimerization. Proc. Natl. Acad. Sci. USA 1995, 92, 11170–11174. [Google Scholar] [CrossRef] [PubMed]
- Oudet, P.; Gross-Bellard, M.; Chambon, P. Electron microscopic and biochemical evidence that chromatin structure is a repeating unit. Cell 1975, 4, 281–300. [Google Scholar] [CrossRef]
- Noll, M. DNA folding in the nucleosome. J. Mol. Biol. 1977, 116, 49–71. [Google Scholar] [CrossRef]
- Ausio, J. The shades of gray of the chromatin fiber: Recent literature provides new insights into the structure of chromatin. Bioessays 2015, 37, 46–51. [Google Scholar] [CrossRef] [PubMed]
- Marzluff, W.F.; Wagner, E.J.; Duronio, R.J. Metabolism and regulation of canonical histone mRNAs: Life without a poly(A) tail. Nat. Rev. Genet. 2008, 9, 843–854. [Google Scholar] [CrossRef] [PubMed]
- Zweidler, A. Histone Genes: Structure, Organization and Regulation; Wiley and Sons: New York, NY, USA, 1984; pp. 339–371. [Google Scholar]
- Grove, G.W.; Zweidler, A. Regulation of nucleosomal core histone variant levels in differentiating murine erythroleukemia cells. Biochemistry 1984, 23, 4436–4443. [Google Scholar] [CrossRef] [PubMed]
- Zweidler, A. Resolution of histones by polyacrylamide gel electrophoresis in presence of nonionic detergents. Methods Cell Biol. 1978, 17, 223–233. [Google Scholar] [PubMed]
- Baker, L.A.; Allis, C.D.; Wang, G.G. PhD fingers in human diseases: Disorders arising from misinterpreting epigenetic marks. Mutat. Res. 2008, 647, 3–12. [Google Scholar] [CrossRef] [PubMed]
- Strahl, B.D.; Allis, C.D. The language of covalent histone modifications. Nature 2000, 403, 41–45. [Google Scholar] [CrossRef] [PubMed]
- Jenuwein, T.; Allis, C.D. Translating the histone code. Science 2001, 293, 1074–1080. [Google Scholar] [CrossRef] [PubMed]
- Laird, P.W.; Jaenisch, R. The role of DNA methylation in cancer genetic and epigenetics. Ann. Rev. Genet. 1996, 30, 441–464. [Google Scholar] [CrossRef] [PubMed]
- Holliday, R. DNA methylation and epigenetic mechanisms. Cell Biophys. 1989, 15, 15–20. [Google Scholar] [CrossRef] [PubMed]
- Holliday, R. DNA methylation and epigenetic inheritance. Philos. Trans. R. Soc. Lond. 1990, 326, 329–338. [Google Scholar] [CrossRef]
- He, Y.F.; Li, B.Z.; Li, Z.; Liu, P.; Wang, Y.; Tang, Q.; Ding, J.; Jia, Y.; Chen, Z.; Li, L.; et al. Tet-mediated formation of 5-carboxylcytosine and its excision by tdg in mammalian DNA. Science 2011, 333, 1303–1307. [Google Scholar] [CrossRef] [PubMed]
- Kriaucionis, S.; Heintz, N. The nuclear DNA base 5-hydroxymethylcytosine is present in purkinje neurons and the brain. Science 2009, 324, 929–930. [Google Scholar] [CrossRef] [PubMed]
- Spruijt, C.G.; Gnerlich, F.; Smits, A.H.; Pfaffeneder, T.; Jansen, P.W.; Bauer, C.; Munzel, M.; Wagner, M.; Muller, M.; Khan, F.; et al. Dynamic readers for 5-(hydroxy)methylcytosine and its oxidized derivatives. Cell 2013, 152, 1146–1159. [Google Scholar] [CrossRef]
- Ptashne, M. Epigenetics: Core misconcept. Proc. Natl. Acad. Sci. USA 2013, 110, 7101–7103. [Google Scholar] [CrossRef] [PubMed]
- Ptashne, M. Faddish stuff: Epigenetics and the inheritance of acquired characteristics. FASEB J. 2013, 27, 1–2. [Google Scholar] [CrossRef] [PubMed]
- Petruk, S.; Black, K.L.; Kovermann, S.K.; Brock, H.W.; Mazo, A. Stepwise histone modifications are mediated by multiple enzymes that rapidly associate with nascent DNA during replication. Nat. Commun. 2013. [Google Scholar] [CrossRef] [PubMed]
- Petruk, S.; Sedkov, Y.; Johnston, D.M.; Hodgson, J.W.; Black, K.L.; Kovermann, S.K.; Beck, S.; Canaani, E.; Brock, H.W.; Mazo, A. Trxg and pcg proteins but not methylated histones remain associated with DNA through replication. Cell 2012, 150, 922–933. [Google Scholar] [CrossRef] [PubMed]
- Alabert, C.; Barth, T.K.; Reveron-Gomez, N.; Sidoli, S.; Schmidt, A.; Jensen, O.N.; Imhof, A.; Groth, A. Two distinct modes for propagation of histone ptms across the cell cycle. Genes Dev. 2015, 29, 585–590. [Google Scholar] [CrossRef] [PubMed]
- Ragunathan, K.; Jih, G.; Moazed, D. Epigenetics. Epigenetic inheritance uncoupled from sequence-specific recruitment. Science 2015. [Google Scholar] [CrossRef] [PubMed]
- Audergon, P.N.; Catania, S.; Kagansky, A.; Tong, P.; Shukla, M.; Pidoux, A.L.; Allshire, R.C. Epigenetics. Restricted epigenetic inheritance of h3k9 methylation. Science 2015, 348, 132–135. [Google Scholar] [CrossRef] [PubMed]
- Skinner, M.K.; Guerrero-Bosagna, C. Environmental signals and transgenerational epigenetics. Epigenomics 2009, 1, 111–117. [Google Scholar] [CrossRef] [PubMed]
- Brasset, E.; Chambeyron, S. Epigenetics and transgenerational inheritance. Genome Biol. 2013. [Google Scholar] [CrossRef]
- D’Urso, A.; Brickner, J.H. Mechanisms of epigenetic memory. Trends Genet. 2014, 30, 230–236. [Google Scholar] [CrossRef] [PubMed]
- Ausió, J.; Abbott, D.W. The many tales of a tail: Carboxyl-terminal tail heterogeneity specializes histone H2A variants for defined chromatin function. Biochemistry 2002, 41, 5945–5949. [Google Scholar] [CrossRef] [PubMed]
- Gurard-Levin, Z.A.; Almouzni, G. Histone modifications and a choice of variant: A language that helps the genome express itself. F1000prime Rep. 2014. [Google Scholar] [CrossRef] [PubMed]
- Maze, I.; Noh, K.M.; Soshnev, A.A.; Allis, C.D. Every amino acid matters: Essential contributions of histone variants to mammalian development and disease. Nat. Rev. Genet. 2014, 15, 259–271. [Google Scholar] [CrossRef] [PubMed]
- Henikoff, S.; Smith, M.M. Histone variants and epigenetics. Cold Spring Harbor Perspect. Biol. 2015. [Google Scholar] [CrossRef] [PubMed]
- Talbert, P.B.; Henikoff, S. Histone variants—Ancient wrap artists of the epigenome. Nat. Rev. Mol. Cell Biol. 2010, 11, 264–275. [Google Scholar] [CrossRef] [PubMed]
- Talbert, P.B.; Ahmad, K.; Almouzni, G.; Ausio, J.; Berger, F.; Bhalla, P.L.; Bonner, W.M.; Cande, W.Z.; Chadwick, B.P.; Chan, S.W.; et al. A unified phylogeny-based nomenclature for histone variants. Epigenetics Chromatin 2012. [Google Scholar] [CrossRef] [PubMed]
- Cheung, P.; Lau, P. Epigenetic regulation by histone methylation and histone variants. Mol. Endocrinol. 2005, 19, 563–573. [Google Scholar] [CrossRef] [PubMed]
- Henikoff, S.; Furuyama, T.; Ahmad, K. Histone variants, nucleosome assembly and epigenetic inheritance. Trends Genet. 2004, 20, 320–326. [Google Scholar] [CrossRef] [PubMed]
- Vardabasso, C.; Hasson, D.; Ratnakumar, K.; Chung, C.Y.; Duarte, L.F.; Bernstein, E. Histone variants: Emerging players in cancer biology. Cell Mol. Life Sci. 2014, 71, 379–404. [Google Scholar] [CrossRef] [PubMed]
- Monteiro, F.L.; Baptista, T.; Amado, F.; Vitorino, R.; Jeronimo, C.; Helguero, L.A. Expression and functionality of histone H2A variants in cancer. Oncotarget 2014, 5, 3428–3443. [Google Scholar] [PubMed]
- Dryhurst, D.; Ausio, J. Histone H2A.Z deregulation in prostate cancer. Cause or effect? Cancer Metastasis Rev. 2014, 33, 429–439. [Google Scholar] [CrossRef] [PubMed]
- Skene, P.J.; Henikoff, S. Histone variants in pluripotency and disease. Development 2013, 140, 2513–2524. [Google Scholar] [CrossRef] [PubMed]
- Cantarino, N.; Douet, J.; Buschbeck, M. MacroH2A-an epigenetic regulator of cancer. Cancer Lett. 2013, 336, 247–252. [Google Scholar] [CrossRef] [PubMed]
- Svotelis, A.; Gevry, N.; Gaudreau, L. Regulation of gene expression and cellular proliferation by histone H2A.Z. Biochem. Cell Biol. 2009, 87, 179–188. [Google Scholar] [CrossRef] [PubMed]
- Eirin-Lopez, J.M.; Ausio, J. Origin and evolution of chromosomal sperm proteins. Bioessays 2009, 31, 1062–1070. [Google Scholar] [CrossRef] [PubMed]
- Ausio, J.; Eirin-Lopez, J.M.; Frehlick, L.J. Evolution of vertebrate chromosomal sperm proteins: Implications for fertility and sperm competition. Soc. Reprod. Fertil. Suppl. 2007, 65, 63–79. [Google Scholar] [PubMed]
- Jayaramaiah Raja, S.; Renkawitz-Pohl, R. Replacement by drosophila melanogaster protamines and mst77f of histones during chromatin condensation in late spermatids and role of sesame in the removal of these proteins from the male pronucleus. Mol. Cell. Biol. 2005, 25, 6165–6177. [Google Scholar] [CrossRef] [PubMed]
- Wykes, S.M.; Krawetz, S.A. The structural organization of sperm chromatin. J. Biol. Chem. 2003, 278, 29471–29477. [Google Scholar] [CrossRef] [PubMed]
- Palmer, D.K.; O’Day, K.; Margolis, R.L. The centromere specific histone CENP-A is selectively retained in discrete foci in mammalian sperm nuclei. Chromosoma 1990, 100, 32–36. [Google Scholar] [CrossRef] [PubMed]
- Dunleavy, E.M.; Beier, N.L.; Gorgescu, W.; Tang, J.; Costes, S.V.; Karpen, G.H. The cell cycle timing of centromeric chromatin assembly in drosophila meiosis is distinct from mitosis yet requires cal1 and CENP-C. PLoS Biol. 2012, 10, e1001460. [Google Scholar] [CrossRef] [PubMed]
- Dong, F.; van Holde, K.E. Nucleosome positioning is determined by the (H3-H4)2 tetramer. Proc. Natl. Acad. Sci. USA 1991, 88, 10596–10600. [Google Scholar] [CrossRef] [PubMed]
- Lee, M.S.; Garrard, W.T. Transcription-induced nucleosome “splitting”: An underlying structure for DNase I sensitive chromatin. EMBO J. 1991, 10, 607–615. [Google Scholar] [PubMed]
- Rhee, H.S.; Bataille, A.R.; Zhang, L.; Pugh, B.F. Subnucleosomal structures and nucleosome asymmetry across a genome. Cell 2014, 159, 1377–1388. [Google Scholar] [CrossRef] [PubMed]
- Ausio, J. Histone variants—The structure behind the function. Brief. Funct. Genomics Proteomics 2006, 5, 228–243. [Google Scholar] [CrossRef] [PubMed]
- Shaytan, A.K.; Landsman, D.; Panchenko, A.R. Nucleosome adaptability conferred by sequence and structural variations in histone H2A-H2B dimers. Curr. Opin. Struct. Biol. 2015, 32C, 48–57. [Google Scholar] [CrossRef] [PubMed]
- Guillemette, B.; Gaudreau, L. Reuniting the contrasting functions of H2A.Z. Biochem. Cell Biol. 2006, 84, 528–535. [Google Scholar] [CrossRef] [PubMed]
- Zlatanova, J.; Thakar, A. H2A.Z: View from the top. Structure 2008, 16, 166–179. [Google Scholar] [CrossRef] [PubMed]
- Subramanian, V.; Fields, P.A.; Boyer, L.A. H2A.Z: A molecular rheostat for transcriptional control. F1000prime Rep. 2015. [Google Scholar] [CrossRef] [PubMed]
- Park, Y.J.; Dyer, P.N.; Tremethick, D.J.; Luger, K. A new fluorescence resonance energy transfer approach demonstrates that the histone variant H2AZ stabilizes the histone octamer within the nucleosome. J. Biol. Chem. 2004, 279, 24274–24282. [Google Scholar] [CrossRef] [PubMed]
- Thambirajah, A.A.; Dryhurst, D.; Ishibashi, T.; Li, A.; Maffey, A.H.; Ausio, J. H2A.Z stabilizes chromatin in a way that is dependent on core histone acetylation. J. Biol. Chem. 2006, 281, 20036–20044. [Google Scholar] [CrossRef] [PubMed]
- Luk, E.; Ranjan, A.; Fitzgerald, P.C.; Mizuguchi, G.; Huang, Y.; Wei, D.; Wu, C. Stepwise histone replacement by swr1 requires dual activation with histone H2A.Z and canonical nucleosome. Cell 2010, 143, 725–736. [Google Scholar] [CrossRef] [PubMed]
- Viens, A.; Mechold, U.; Brouillard, F.; Gilbert, C.; Leclerc, P.; Ogryzko, V. Analysis of human histone H2AZ deposition in vivo argues against its direct role in epigenetic templating mechanisms. Mol. Cell. Biol. 2006, 26, 5325–5335. [Google Scholar] [CrossRef] [PubMed]
- Weber, C.M.; Henikoff, J.G.; Henikoff, S. H2A.Z nucleosomes enriched over active genes are homotypic. Nat. Struct. Mol. Biol. 2010, 17, 1500–1507. [Google Scholar] [CrossRef] [PubMed]
- Ishibashi, T.; Dryhurst, D.; Rose, K.L.; Shabanowitz, J.; Hunt, D.F.; Ausio, J. Acetylation of vertebrate H2A.Z and its effect on the structure of the nucleosome. Biochemistry 2009, 48, 5007–5017. [Google Scholar] [CrossRef] [PubMed]
- Chakravarthy, S.; Bao, Y.; Roberts, V.A.; Tremethick, D.; Luger, K. Structural characterization of histone H2A variants. Cold Spring Harbor Symp. Quant. Biol. 2004, 69, 227–234. [Google Scholar] [CrossRef] [PubMed]
- Dryhurst, D.; Ishibashi, T.; Rose, K.L.; Eirin-Lopez, J.M.; McDonald, D.; Silva-Moreno, B.; Veldhoen, N.; Helbing, C.C.; Hendzel, M.J.; Shabanowitz, J.; et al. Characterization of the histone H2A.Z-1 and H2A.Z-2 isoforms in vertebrates. BMC Biol. 2009. [Google Scholar] [CrossRef] [PubMed]
- Horikoshi, N.; Sato, K.; Shimada, K.; Arimura, Y.; Osakabe, A.; Tachiwana, H.; Hayashi-Takanaka, Y.; Iwasaki, W.; Kagawa, W.; Harata, M.; et al. Structural polymorphism in the l1 loop regions of human H2A.Z.1 and H2A.Z.2. Acta Crystallogr. Sect. D Biol. Crystallogr. 2013, 69, 2431–2439. [Google Scholar] [CrossRef] [PubMed]
- Thakar, A.; Gupta, P.; Ishibashi, T.; Finn, R.; Silva-Moreno, B.; Uchiyama, S.; Fukui, K.; Tomschik, M.; Ausio, J.; Zlatanova, J. H2A.Z and H3.3 histone variants affect nucleosome structure: Biochemical and biophysical studies. Biochemistry 2009, 48, 10852–10857. [Google Scholar] [CrossRef] [PubMed]
- Chen, P.B.; Zhu, L.J.; Hainer, S.J.; McCannell, K.N.; Fazzio, T.G. Unbiased chromatin accessibility profiling by red-seq uncovers unique features of nucleosome variants in vivo. BMC Genomics 2014. [Google Scholar] [CrossRef] [PubMed]
- Jin, C.; Zang, C.; Wei, G.; Cui, K.; Peng, W.; Zhao, K.; Felsenfeld, G. H3.3/H2A.Z double variant-containing nucleosomes mark “nucleosome-free regions” of active promoters and other regulatory regions. Nat. Genet. 2009, 41, 941–945. [Google Scholar] [CrossRef] [PubMed]
- Sarcinella, E.; Zuzarte, P.C.; Lau, P.N.; Draker, R.R.; Cheung, P. Mono-ubiquitylation of H2A.Z distinguishes its association with euchromatin or facultative heterochromatin. Mol. Cell. Biol. 2007, 27, 6457–6468. [Google Scholar] [CrossRef] [PubMed]
- Millar, C.B.; Grunstein, M. Genome-wide patterns of histone modifications in yeast. Nat. Rev. Mol. Cell Biol. 2006, 7, 657–666. [Google Scholar] [CrossRef] [PubMed]
- Bruce, K.; Myers, F.A.; Mantouvalou, E.; Lefevre, P.; Greaves, I.; Bonifer, C.; Tremethick, D.J.; Thorne, A.W.; Crane-Robinson, C. The replacement histone H2A.Z in a hyperacetylated form is a feature of active genes in the chicken. Nucleic Acids Res. 2005, 33, 5633–5639. [Google Scholar] [CrossRef] [PubMed]
- Law, C.; Cheung, P. Expression of non-acetylatable H2A.Z in myoblast cells blocks myoblast differentiation through disruption of myod expression. J. Biol. Chem. 2015. [Google Scholar] [CrossRef] [PubMed]
- Bonisch, C.; Hake, S.B. Histone H2A variants in nucleosomes and chromatin: More or less stable? Nucleic Acids Res. 2012, 40, 10719–10741. [Google Scholar] [CrossRef] [PubMed]
- Wratting, D.; Thistlethwaite, A.; Harris, M.; Zeef, L.A.; Millar, C.B. A conserved function for the H2A.Z C terminus. J. Biol. Chem. 2012, 287, 19148–19157. [Google Scholar] [CrossRef] [PubMed]
- Hatch, C.L.; Bonner, W.M.; Moudrianakis, E.N. Differential accessibility of the amino and carboxy termini of histone H2A in the nucleosome and its histone subunits. Biochemistry 1983, 22, 3016–3023. [Google Scholar] [CrossRef] [PubMed]
- Luger, K.; Mader, A.W.; Richmond, R.K.; Sargent, D.F.; Richmond, T.J. Crystal structure of the nucleosome core particle at 2.8 A resolution. Nature 1997, 389, 251–260. [Google Scholar] [PubMed]
- Suto, R.K.; Clarkson, M.J.; Tremethick, D.J.; Luger, K. Crystal structure of a nucleosome core particle containing the variant histone H2A.Z. Nat. Struct. Biol. 2000, 7, 1121–1124. [Google Scholar] [PubMed]
- Placek, B.J.; Harrison, L.N.; Villers, B.M.; Gloss, L.M. The H2A.Z/H2B dimer is unstable compared to the dimer containing the major H2A isoform. Protein Sci. 2005, 14, 514–522. [Google Scholar] [CrossRef] [PubMed]
- Wu, R.S.; Bonner, W.M. Separation of basal histone synthesis from s-phase histone synthesis in dividing cells. Cell 1981, 27, 321–330. [Google Scholar] [CrossRef]
- Nagata, T.; Kato, T.; Morita, T.; Nozaki, M.; Kubota, H.; Yagi, H.; Matsushiro, A. Polyadenylated and 3' processed mRNAs are transcribed from the mouse histone H2A.X gene. Nucleic Acids Res. 1991, 19, 2441–2447. [Google Scholar] [CrossRef] [PubMed]
- Li, A.; Eirin-Lopez, J.M.; Ausio, J. H2AX: Tailoring histone H2A for chromatin-dependent genomic integrity. Biochem. Cell Biol. 2005, 83, 505–515. [Google Scholar] [CrossRef] [PubMed]
- Fernandez-Capetillo, O.; Lee, A.; Nussenzweig, M.; Nussenzweig, A. H2AX: The histone guardian of the genome. DNA Repair 2004, 3, 959–967. [Google Scholar] [CrossRef] [PubMed]
- Turinetto, V.; Giachino, C. Multiple facets of histone variant H2AX: A DNA double-strand-break marker with several biological functions. Nucleic Acids Res. 2015, 43, 2489–2498. [Google Scholar] [CrossRef] [PubMed]
- Lowndes, N.F.; Toh, G.W. DNA repair: The importance of phosphorylating histone H2AX. Curr. Biol. 2005, 15, R99–R102. [Google Scholar] [CrossRef] [PubMed]
- Downs, J.A.; Lowndes, N.F.; Jackson, S.P. A role for saccharomyces cerevisiae histone H2A in DNA repair. Nature 2000, 408, 1001–1004. [Google Scholar] [PubMed]
- Fink, M.; Imholz, D.; Thoma, F. Contribution of the serine 129 of histone H2A to chromatin structure. Mol. Cell. Biol. 2007, 27, 3589–3600. [Google Scholar] [CrossRef] [PubMed]
- Li, A.; Yu, Y.; Lee, S.C.; Ishibashi, T.; Lees-Miller, S.P.; Ausio, J. Phosphorylation of histone H2A.X by DNA-dependent protein kinase is not affected by core histone acetylation, but it alters nucleosome stability and histone H1 binding. J. Biol. Chem. 2010, 285, 17778–17788. [Google Scholar] [CrossRef] [PubMed]
- Pineiro, M.; Puerta, C.; Palacian, E. Yeast nucleosomal particles: Structural and transcriptional properties. Biochemistry 1991, 30, 5805–5810. [Google Scholar] [CrossRef] [PubMed]
- Chadwick, B.P.; Willard, H.F. A novel chromatin protein, distantly related to histone H2A, is largely excluded from the inactive x chromosome. J. Cell Biol. 2001, 152, 375–384. [Google Scholar] [CrossRef] [PubMed]
- Ishibashi, T.; Li, A.; Eirin-Lopez, J.M.; Zhao, M.; Missiaen, K.; Abbott, D.W.; Meistrich, M.; Hendzel, M.J.; Ausio, J. H2A.Bbd: An X-chromosome-encoded histone involved in mammalian spermiogenesis. Nucleic Acids Res. 2010, 38, 1780–1789. [Google Scholar] [CrossRef] [PubMed]
- Nekrasov, M.; Soboleva, T.A.; Jack, C.; Tremethick, D.J. Histone variant selectivity at the transcription start site: H2A.Z or H2A.Lap1. Nucleus 2013, 4, 431–438. [Google Scholar] [CrossRef] [PubMed]
- Castillo, J.; Amaral, A.; Azpiazu, R.; Vavouri, T.; Estanyol, J.M.; Ballesca, J.L.; Oliva, R. Genomic and proteomic dissection and characterisation of the human sperm chromatin. Mol. Hum. Reprod. 2014, 20, 1041–1053. [Google Scholar] [CrossRef] [PubMed]
- Hammoud, S.S.; Nix, D.A.; Zhang, H.; Purwar, J.; Carrell, D.T.; Cairns, B.R. Distinctive chromatin in human sperm packages genes for embryo development. Nature 2009, 460, 473–478. [Google Scholar] [CrossRef] [PubMed]
- Tolstorukov, M.Y.; Goldman, J.A.; Gilbert, C.; Ogryzko, V.; Kingston, R.E.; Park, P.J. Histone variant H2A.Bbd is associated with active transcription and mRNA processing in human cells. Mol. Cell 2012, 47, 596–607. [Google Scholar] [CrossRef] [PubMed]
- Sansoni, V.; Casas-Delucchi, C.S.; Rajan, M.; Schmidt, A.; Bonisch, C.; Thomae, A.W.; Staege, M.S.; Hake, S.B.; Cardoso, M.C.; Imhof, A. The histone variant H2A.Bbd is enriched at sites of DNA synthesis. Nucleic Acids Res. 2014, 42, 6405–6420. [Google Scholar] [CrossRef] [PubMed]
- Bao, Y.; Konesky, K.; Park, Y.J.; Rosu, S.; Dyer, P.N.; Rangasamy, D.; Tremethick, D.J.; Laybourn, P.J.; Luger, K. Nucleosomes containing the histone variant H2A.Bbd organize only 118 base pairs of DNA. EMBO J. 2004, 23, 3314–3324. [Google Scholar] [CrossRef] [PubMed]
- Gautier, T.; Abbott, D.W.; Molla, A.; Verdel, A.; Ausio, J.; Dimitrov, S. Histone variant H2ABbd confers lower stability to the nucleosome. EMBO Rep. 2004, 5, 715–720. [Google Scholar] [CrossRef] [PubMed]
- Eirin-Lopez, J.M.; Ishibashi, T.; Ausio, J. H2A.Bbd: A quickly evolving hypervariable mammalian histone that destabilizes nucleosomes in an acetylation-independent way. Faseb J. 2008, 22, 316–326. [Google Scholar] [CrossRef] [PubMed]
- Arimura, Y.; Kimura, H.; Oda, T.; Sato, K.; Osakabe, A.; Tachiwana, H.; Sato, Y.; Kinugasa, Y.; Ikura, T.; Sugiyama, M.; et al. Structural basis of a nucleosome containing histone H2A.B/H2A.Bbd that transiently associates with reorganized chromatin. Sci. Rep. 2013. [Google Scholar] [CrossRef] [PubMed]
- Shukla, M.S.; Syed, S.H.; Goutte-Gattat, D.; Richard, J.L.; Montel, F.; Hamiche, A.; Travers, A.; Faivre-Moskalenko, C.; Bednar, J.; Hayes, J.J.; et al. The docking domain of histone H2A is required for H1 binding and RSC-mediated nucleosome remodeling. Nucleic Acids Res. 2011, 39, 2559–2570. [Google Scholar] [CrossRef] [PubMed]
- Pehrson, J.R.; Changolkar, L.N.; Costanzi, C.; Leu, N.A. Mice without macroH2A histone variants. Mol. Cell. Biol. 2014, 34, 4523–4533. [Google Scholar] [CrossRef] [PubMed]
- Pehrson, J.R.; Fried, V.A. MacroH2A, a core histone containing a large nonhistone region. Science 1992, 257, 1398–1400. [Google Scholar] [CrossRef] [PubMed]
- Costanzi, C.; Pehrson, J.R. Histone macroH2A1 is concentrated in the inactive x chromosome of female mammals. Nature 1998, 393, 599–601. [Google Scholar] [CrossRef] [PubMed]
- Rasmussen, T.P.; Huang, T.; Mastrangelo, M.A.; Loring, J.; Panning, B.; Jaenisch, R. Messenger RNAs encoding mouse histone macroH2A1 isoforms are expressed at similar levels in male and female cells and result from alternative splicing. Nucleic Acids Res. 1999, 27, 3685–3689. [Google Scholar] [CrossRef] [PubMed]
- Zhang, R.; Poustovoitov, M.V.; Ye, X.; Santos, H.A.; Chen, W.; Daganzo, S.M.; Erzberger, J.P.; Serebriiskii, I.G.; Canutescu, A.A.; Dunbrack, R.L.; et al. Formation of macroH2A-containing senescence-associated heterochromatin foci and senescence driven by ASF1A and HIRA. Dev. Cell 2005, 8, 19–30. [Google Scholar] [CrossRef] [PubMed]
- Gamble, M.J.; Kraus, W.L. Multiple facets of the unique histone variant macroH2A: From genomics to cell biology. Cell Cycle 2010, 9, 2568–2574. [Google Scholar] [CrossRef] [PubMed]
- Kustatscher, G.; Hothorn, M.; Pugieux, C.; Scheffzek, K.; Ladurner, A.G. Splicing regulates nad metabolite binding to histone macroH2A. Nat. Struct. Mol. Biol. 2005, 12, 624–625. [Google Scholar] [CrossRef] [PubMed]
- Abbott, D.W.; Chadwick, B.P.; Thambirajah, A.A.; Ausio, J. Beyond the xi: MacroH2A chromatin distribution and post-translational modification in an avian system. J. Biol. Chem. 2005, 280, 16437–16445. [Google Scholar] [CrossRef] [PubMed]
- Chakravarthy, S.; Gundimella, S.K.; Caron, C.; Perche, P.Y.; Pehrson, J.R.; Khochbin, S.; Luger, K. Structural characterization of the histone variant macroH2A. Mol. Cell. Biol. 2005, 25, 7616–7624. [Google Scholar] [CrossRef] [PubMed]
- Chakravarthy, S.; Patel, A.; Bowman, G.D. The basic linker of macroH2A stabilizes DNA at the entry/exit site of the nucleosome. Nucleic Acids Res. 2012, 40, 8285–8295. [Google Scholar] [CrossRef] [PubMed]
- Abbott, D.W.; Laszczak, M.; Lewis, J.D.; Su, H.; Moore, S.C.; Hills, M.; Dimitrov, S.; Ausio, J. Structural characterization of macroH2A containing chromatin. Biochemistry 2004, 43, 1352–1359. [Google Scholar] [CrossRef] [PubMed]
- Olins, A.L.; Carlson, R.D.; Wright, E.B.; Olins, D.E. Chromatin nu bodies: Isolation, subfractionation and physical characterization. Nucleic Acids Res. 1976, 3, 3271–3291. [Google Scholar] [CrossRef] [PubMed]
- Muthurajan, U.M.; McBryant, S.J.; Lu, X.; Hansen, J.C.; Luger, K. The linker region of macroH2A promotes self-association of nucleosomal arrays. J. Biol. Chem. 2011, 286, 23852–23864. [Google Scholar] [CrossRef] [PubMed]
- Churikov, D.; Siino, J.; Svetlova, M.; Zhang, K.; Gineitis, A.; Morton Bradbury, E.; Zalensky, A. Novel human testis-specific histone H2B encoded by the interrupted gene on the X chromosome. Genomics 2004, 84, 745–756. [Google Scholar] [CrossRef] [PubMed]
- Montellier, E.; Boussouar, F.; Rousseaux, S.; Zhang, K.; Buchou, T.; Fenaille, F.; Shiota, H.; Debernardi, A.; Hery, P.; Curtet, S.; et al. Chromatin-to-nucleoprotamine transition is controlled by the histone H2B variant tH2B. Genes Dev. 2013, 27, 1680–1692. [Google Scholar] [CrossRef] [PubMed]
- De Mateo, S.; Castillo, J.; Estanyol, J.M.; Ballesca, J.L.; Oliva, R. Proteomic characterization of the human sperm nucleus. Proteomics 2011, 11, 2714–2726. [Google Scholar] [CrossRef] [PubMed]
- Shires, A.; Carpenter, M.P.; Chalkley, R. A cysteine-containing H2B-like histone found in mature mammalian testis. J. Biol. Chem. 1976, 251, 4155–4158. [Google Scholar] [PubMed]
- Li, A.; Maffey, A.H.; Abbott, W.D.; Conde e Silva, N.; Prunell, A.; Siino, J.; Churikov, D.; Zalensky, A.O.; Ausio, J. Characterization of nucleosomes consisting of the human testis/sperm-specific histone H2B variant (hTSH2B). Biochemistry 2005, 44, 2529–2535. [Google Scholar] [CrossRef] [PubMed]
- Boulard, M.; Gautier, T.; Mbele, G.O.; Gerson, V.; Hamiche, A.; Angelov, D.; Bouvet, P.; Dimitrov, S. The NH2 tail of the novel histone variant h2bfwt exhibits properties distinct from conventional H2B with respect to the assembly of mitotic chromosomes. Mol. Cell. Biol. 2006, 26, 1518–1526. [Google Scholar] [CrossRef] [PubMed]
- Sadakierska-Chudy, A.; Kostrzewa, R.M.; Filip, M. A comprehensive view of the epigenetic landscape part I: DNA methylation, passive and active DNA demethylation pathways and histone variants. Neurotox. Res. 2015, 27, 84–97. [Google Scholar] [CrossRef] [PubMed]
- Szenker, E.; Ray-Gallet, D.; Almouzni, G. The double face of the histone variant H3.3. Cell Res. 2011, 21, 421–434. [Google Scholar] [CrossRef] [PubMed]
- Venkatesh, S.; Workman, J.L. Histone exchange, chromatin structure and the regulation of transcription. Nat. Rev. Mol. Cell Biol. 2015, 16, 178–189. [Google Scholar] [CrossRef] [PubMed]
- Filipescu, D.; Szenker, E.; Almouzni, G. Developmental roles of histone H3 variants and their chaperones. Trends Genet. 2013, 29, 630–640. [Google Scholar] [CrossRef] [PubMed]
- Saade, E.; Pirozhkova, I.; Aimbetov, R.; Lipinski, M.; Ogryzko, V. Molecular turnover, the H3.3 dilemma and organismal aging (hypothesis). Aging Cell 2015, 14, 322–333. [Google Scholar] [CrossRef] [PubMed]
- Pina, B.; Suau, P. Changes in histones H2A and H3 variant composition in differentiating and mature rat brain cortical neurons. Dev. Biol. 1987, 123, 51–58. [Google Scholar] [CrossRef]
- Tachiwana, H.; Osakabe, A.; Shiga, T.; Miya, Y.; Kimura, H.; Kagawa, W.; Kurumizaka, H. Structures of human nucleosomes containing major histone H3 variants. Acta Crystallogr. Sect. D Biol. Crystallogr. 2011, 67, 578–583. [Google Scholar] [CrossRef] [PubMed]
- Drane, P.; Ouararhni, K.; Depaux, A.; Shuaib, M.; Hamiche, A. The death-associated protein DAXX is a novel histone chaperone involved in the replication-independent deposition of H3.3. Genes Dev. 2010, 24, 1253–1265. [Google Scholar] [CrossRef] [PubMed]
- Pchelintsev, N.A.; McBryan, T.; Rai, T.S.; van Tuyn, J.; Ray-Gallet, D.; Almouzni, G.; Adams, P.D. Placing the HIRA histone chaperone complex in the chromatin landscape. Cell Rep. 2013, 3, 1012–1019. [Google Scholar] [CrossRef] [PubMed]
- Guo, R.; Zheng, L.; Park, J.W.; Lv, R.; Chen, H.; Jiao, F.; Xu, W.; Mu, S.; Wen, H.; Qiu, J.; et al. BS69/ZMYND11 reads and connects histone H3.3 lysine 36 trimethylation-decorated chromatin to regulated pre-mRNA processing. Mol. Cell 2014, 56, 298–310. [Google Scholar] [CrossRef] [PubMed]
- Yukawa, M.; Akiyama, T.; Franke, V.; Mise, N.; Isagawa, T.; Suzuki, Y.; Suzuki, M.G.; Vlahovicek, K.; Abe, K.; Aburatani, H.; et al. Genome-wide analysis of the chromatin composition of histone H2A and H3 variants in mouse embryonic stem cells. PLoS ONE 2014, 9, e92689. [Google Scholar] [CrossRef] [PubMed]
- Jin, C.; Felsenfeld, G. Nucleosome stability mediated by histone variants H3.3 and H2A.Z. Genes Dev. 2007, 21, 1519–1529. [Google Scholar] [CrossRef] [PubMed]
- Tachiwana, H.; Kagawa, W.; Osakabe, A.; Kawaguchi, K.; Shiga, T.; Hayashi-Takanaka, Y.; Kimura, H.; Kurumizaka, H. Structural basis of instability of the nucleosome containing a testis-specific histone variant, human H3T. Proc. Natl. Acad. Sci. USA 2010, 107, 10454–10459. [Google Scholar] [CrossRef] [PubMed]
- Ausió, J.; Dong, F.; van Holde, K.E. Use of selectively trypsinized nucleosome core particles to analyze the role of the histone “tails” in the stabilization of the nucleosome. J. Mol. Biol. 1989, 206, 451–463. [Google Scholar] [CrossRef]
- Black, B.E.; Brock, M.A.; Bedard, S.; Woods, V.L., Jr.; Cleveland, D.W. An epigenetic mark generated by the incorporation of CENP-A into centromeric nucleosomes. Proc. Natl. Acad. Sci. USA 2007, 104, 5008–5013. [Google Scholar] [CrossRef] [PubMed]
- Niikura, Y.; Kitagawa, R.; Ogi, H.; Abdulle, R.; Pagala, V.; Kitagawa, K. CENP-A k124 ubiquitylation is required for CENP-A deposition at the centromere. Dev. Cell 2015, 32, 589–603. [Google Scholar] [CrossRef] [PubMed]
- Bui, M.; Walkiewicz, M.P.; Dimitriadis, E.K.; Dalal, Y. The CENP-A nucleosome: A battle between Dr Jekyll and Mr Hyde. Nucleus 2013, 4, 37–42. [Google Scholar] [CrossRef] [PubMed]
- Dalal, Y.; Wang, H.; Lindsay, S.; Henikoff, S. Tetrameric structure of centromeric nucleosomes in interphase drosophila cells. PLoS Biol. 2007, 5, e218. [Google Scholar] [CrossRef] [PubMed]
- Henikoff, S.; Furuyama, T. The unconventional structure of centromeric nucleosomes. Chromosoma 2012, 121, 341–352. [Google Scholar] [CrossRef] [PubMed]
- Furuyama, T.; Henikoff, S. Centromeric nucleosomes induce positive DNA supercoils. Cell 2009, 138, 104–113. [Google Scholar] [CrossRef] [PubMed]
- Sekulic, N.; Bassett, E.A.; Rogers, D.J.; Black, B.E. The structure of (CENP-A-H4)2 reveals physical features that mark centromeres. Nature 2010, 467, 347–351. [Google Scholar] [CrossRef] [PubMed]
- Tachiwana, H.; Kagawa, W.; Shiga, T.; Osakabe, A.; Miya, Y.; Saito, K.; Hayashi-Takanaka, Y.; Oda, T.; Sato, M.; Park, S.Y.; et al. Crystal structure of the human centromeric nucleosome containing CENP-A. Nature 2011, 476, 232–235. [Google Scholar] [CrossRef] [PubMed]
- Furuyama, T.; Codomo, C.A.; Henikoff, S. Reconstitution of hemisomes on budding yeast centromeric DNA. Nucleic Acids Res. 2013, 41, 5769–5783. [Google Scholar] [CrossRef] [PubMed]
- Henikoff, S.; Ramachandran, S.; Krassovsky, K.; Bryson, T.D.; Codomo, C.A.; Brogaard, K.; Widom, J.; Wang, J.P.; Henikoff, J.G. The budding yeast centromere DNA element II wraps a stable Cse4 hemisome in either orientation in vivo. eLife 2014, 3, e01861. [Google Scholar] [CrossRef] [PubMed]
- Falk, S.J.; Guo, L.Y.; Sekulic, N.; Smoak, E.M.; Mani, T.; Logsdon, G.A.; Gupta, K.; Jansen, L.E.; van Duyne, G.D.; Vinogradov, S.A.; et al. CENP-C reshapes and stabilizes CENP-A nucleosomes at the centromere. Science 2015, 348, 699–703. [Google Scholar] [CrossRef] [PubMed]
- Izzo, A.; Kamieniarz, K.; Schneider, R. The histone H1 family: Specific members, specific functions? Biol. Chem. 2008, 389, 333–343. [Google Scholar] [CrossRef] [PubMed]
- Gonzalez-Romero, R.; Ausio, J. Dbigh1, a second histone H1 in, and the consequences for histone fold nomenclature. Epigenetics 2014, 9, 791–797. [Google Scholar] [CrossRef] [PubMed]
- Kasinsky, H.E.; Lewis, J.D.; Dacks, J.B.; Ausió, J. Origin of H1 linker histones. Faseb J. 2001, 15, 34–42. [Google Scholar] [CrossRef] [PubMed]
- Ellen, T.P.; van Holde, K.E. Linker histone interaction shows divalent character with both supercoiled and linear DNA. Biochemistry 2004, 43, 7867–7872. [Google Scholar] [CrossRef] [PubMed]
- Varga-Weisz, P.; van Holde, K.; Zlatanova, J. Preferential binding of histone H1 to four-way helical junction DNA. J. Biol. Chem. 1993, 268, 20699–20700. [Google Scholar] [PubMed]
- Carter, G.J.; van Holde, K. Self-association of linker histone H5 and of its globular domain: Evidence for specific self-contacts. Biochemistry 1998, 37, 12477–12488. [Google Scholar] [CrossRef] [PubMed]
- Song, F.; Chen, P.; Sun, D.; Wang, M.; Dong, L.; Liang, D.; Xu, R.M.; Zhu, P.; Li, G. Cryo-em study of the chromatin fiber reveals a double helix twisted by tetranucleosomal units. Science 2014, 344, 376–380. [Google Scholar] [CrossRef] [PubMed]
- Goytisolo, F.A.; Gerchman, S.E.; Yu, X.; Rees, C.; Graziano, V.; Ramakrishnan, V.; Thomas, J.O. Identification of two DNA-binding sites on the globular domain of histone H5. EMBO J. 1996, 15, 3421–3429. [Google Scholar] [PubMed]
- Ramakrishnan, V.; Finch, J.T.; Graziano, V.; Lee, P.L.; Sweet, R.M. Crystal structure of globular domain of histone H5 and its implications for nucleosome binding. Nature 1993, 362, 219–223. [Google Scholar] [CrossRef] [PubMed]
- Saperas, N.; Chiva, M.; Casas, M.T.; Campos, J.L.; Eirin-Lopez, J.M.; Frehlick, L.J.; Prieto, C.; Subirana, J.A.; Ausio, J. A unique vertebrate histone H1-related protamine-like protein results in an unusual sperm chromatin organization. FEBS J. 2006, 273, 4548–4561. [Google Scholar] [CrossRef] [PubMed]
- Happel, N.; Schulze, E.; Doenecke, D. Characterisation of human histone H1X. Biol. Chem. 2005, 386, 541–551. [Google Scholar] [CrossRef] [PubMed]
- Neelin, J.M.; Callahan, P.X.; Lamb, D.C.; Murray, K. The histones of chicken erythrocyte nuclei. Can. J. Biochem. Physiol. 1964, 42, 1743–1752. [Google Scholar] [CrossRef]
- Lewis, J.D.; McParland, R.; Ausio, J. Pl-I of spisula solidissima, a highly elongated sperm-specific histone H1. Biochemistry 2004, 43, 7766–7775. [Google Scholar] [CrossRef] [PubMed]
- Lewis, J.D.; Saperas, N.; Song, Y.; Zamora, M.J.; Chiva, M.; Ausio, J. Histone H1 and the origin of protamines. Proc. Natl. Acad. Sci. USA 2004, 101, 4148–4152. [Google Scholar] [CrossRef] [PubMed]
- Cole, R.D. A minireview of microheterogeneity in H1 histone and its possible significance. Anal. Biochem. 1984, 136, 24–30. [Google Scholar] [CrossRef]
- Izzo, A.; Kamieniarz-Gdula, K.; Ramirez, F.; Noureen, N.; Kind, J.; Manke, T.; van Steensel, B.; Schneider, R. The genomic landscape of the somatic linker histone subtypes H1.1 to H1.5 in human cells. Cell Rep. 2013, 3, 2142–2154. [Google Scholar] [CrossRef] [PubMed]
- Millan-Arino, L.; Islam, A.B.; Izquierdo-Bouldstridge, A.; Mayor, R.; Terme, J.M.; Luque, N.; Sancho, M.; Lopez-Bigas, N.; Jordan, A. Mapping of six somatic linker histone H1 variants in human breast cancer cells uncovers specific features of H1.2. Nucleic Acids Res. 2014, 42, 4474–4493. [Google Scholar] [CrossRef] [PubMed]
- Orrego, M.; Ponte, I.; Roque, A.; Buschati, N.; Mora, X.; Suau, P. Differential affinity of mammalian histone H1 somatic subtypes for DNA and chromatin. BMC Biol. 2007. [Google Scholar] [CrossRef] [PubMed]
- Th’ng, J.P.; Sung, R.; Ye, M.; Hendzel, M.J. H1 family histones in the nucleus. Control of binding and localization by the C-terminal domain. J. Biol. Chem. 2005, 280, 27809–27814. [Google Scholar] [CrossRef] [PubMed]
- Soboleva, T.A.; Nekrasov, M.; Ryan, D.P.; Tremethick, D.J. Histone variants at the transcription start-site. Trends Genet 2014, 30, 199–209. [Google Scholar] [CrossRef] [PubMed]
- Barski, A.; Cuddapah, S.; Cui, K.; Roh, T.Y.; Schones, D.E.; Wang, Z.; Wei, G.; Chepelev, I.; Zhao, K. High-resolution profiling of histone methylations in the human genome. Cell 2007, 129, 823–837. [Google Scholar] [CrossRef] [PubMed]
- Ng, R.K.; Gurdon, J.B. Epigenetic memory of an active gene state depends on histone H3.3 incorporation into chromatin in the absence of transcription. Nat. Cell Biol. 2008, 10, 102–109. [Google Scholar] [CrossRef] [PubMed]
- Gross, D.S.; Garrard, W.T. Poising chromatin for transcription. Trends Biochem. Sci. 1987, 12, 293–297. [Google Scholar] [CrossRef]
- Wang, X.; He, C.; Moore, S.C.; Ausió, J. Effects of histone acetylation on the solubility and folding of the chromatin fiber. J. Biol. Chem. 2001, 276, 12764–12768. [Google Scholar] [CrossRef] [PubMed]
- Ridsdale, J.A.; Hendzel, M.J.; Delcuve, G.P.; Davie, J.R. Histone acetylation alters the capacity of the H1 histones to condense transcriptionally active/competent chromatin. J. Biol. Chem. 1990, 265, 5150–5156. [Google Scholar] [PubMed]
© 2015 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cheema, M.S.; Ausió, J. The Structural Determinants behind the Epigenetic Role of Histone Variants. Genes 2015, 6, 685-713. https://doi.org/10.3390/genes6030685
Cheema MS, Ausió J. The Structural Determinants behind the Epigenetic Role of Histone Variants. Genes. 2015; 6(3):685-713. https://doi.org/10.3390/genes6030685
Chicago/Turabian StyleCheema, Manjinder S., and Juan Ausió. 2015. "The Structural Determinants behind the Epigenetic Role of Histone Variants" Genes 6, no. 3: 685-713. https://doi.org/10.3390/genes6030685
APA StyleCheema, M. S., & Ausió, J. (2015). The Structural Determinants behind the Epigenetic Role of Histone Variants. Genes, 6(3), 685-713. https://doi.org/10.3390/genes6030685