Sex- and Exercise-Dependent Modulation of Hypertrophic Remodeling by the MCT1 rs1049434 Polymorphism
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Population
2.2. Clinical Phenotyping
2.3. Genetic Analysis
2.4. Exercise Classification
2.5. Statistical Analysis
3. Results
3.1. Cohort Characteristics
3.2. Sex-Specific Metabolic–Phenotypic Interaction
3.3. Influence of Vigorous Physical Activity on Male HCM Severity
3.4. Arrhythmic Burden and Event-Free Survival
4. Discussion
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
| CMR | cardiac magnetic resonance |
| ECG | electrocardiogram |
| HCM | hypertrophic cardiomyopathy. |
| LVOT | left ventricular outflow tract |
| MCT1 | monocarboxylate transporter 1 |
References
- Ommen, S.R.; Mital, S.; Burke, M.A.; Day, S.M.; Deswal, A.; Elliott, P.; Evanovich, L.L.; Hung, J.; Joglar, J.A.; Kantor, P.; et al. 2020 AHA/ACC guideline for the diagnosis and treatment of patients with hypertrophic cardiomyopathy. J. Am. Coll. Cardiol. 2020, 76, e159–e240. [Google Scholar] [CrossRef] [PubMed]
- Elliott, P.M.; Anastasakis, A.; Borger, M.A.; Borggrefe, M.; Cecchi, F.; Charron, P.; Hagege, A.A.; Lafont, A.; Limongelli, G.; Mahrholdt, H.; et al. 2014 ESC guidelines on diagnosis and management of hypertrophic cardiomyopathy. Eur. Heart J. 2014, 35, 2733–2779. [Google Scholar] [CrossRef] [PubMed]
- Jóhannsson, E.; Lunde, P.K.; Heddle, C.; Sjaastad, I.; Thomas, M.J.; Bergersen, L.; Halestrap, A.P.; Blackstad, T.W.; Ottersen, O.P.; Sejersted, O.M. Upregulation of the cardiac monocarboxylate transporter MCT1 in a rat model of congestive heart failure. Circulation 2001, 104, 729–734. [Google Scholar] [CrossRef] [PubMed]
- Crilley, J.G.; Boehm, E.A.; Blair, E.; Rajagopalan, B.; Blamire, A.M.; Styles, P.; McKenna, W.J.; Ostman-Smith, I.; Clarke, K.; Watkins, H. Hypertrophic cardiomyopathy due to sarcomeric gene mutations is characterized by impaired energy metabolism irrespective of the degree of hypertrophy. J. Am. Coll. Cardiol. 2003, 41, 1776–1782. [Google Scholar] [CrossRef]
- Nollet, E.E.; Schuldt, M.; Sequeira, V.; Binek, A.; Pham, T.V.; Schoonvelde, S.A.C.; Jansen, M.; Schomakers, B.V.; van Weeghel, M.; Vaz, F.M.; et al. Integrating clinical phenotype with multiomics analyses of human cardiac tissue unveils divergent metabolic remodeling in genotype-positive and genotype-negative patients with hypertrophic cardiomyopathy. Circ. Genom. Precis. Med. 2024, 17, e004369. [Google Scholar] [CrossRef]
- Gladden, L.B. Lactate transport and metabolism during exercise. In Exercise: Regulation and Integration of Multiple Systems; Rowell, L.B., Shepherd, J.T., Eds.; Oxford University Press: New York, NY, USA, 1996; pp. 614–648. [Google Scholar]
- Halestrap, A.P.; Price, N.T. The proton-linked monocarboxylate transporter (MCT) family: Structure, function and regulation. Biochem. J. 1999, 343, 281–299. [Google Scholar] [CrossRef]
- Sasaki, S.; Futagi, Y.; Kobayashi, M.; Ogura, J.; Iseki, K. Functional characterization of 5-oxoproline transport via SLC16A1/MCT1. J. Biol. Chem. 2015, 290, 2303–2311. [Google Scholar] [CrossRef]
- Cupeiro, R.; González-Lamuño, D.; Amigo, T.; Peinado, A.B.; Ruiz, J.R.; Ortega, F.B.; Benito, P.J. Influence of the MCT1-T1470A polymorphism (rs1049434) on blood lactate accumulation during different circuit weight trainings in men and women. J. Sci. Med. Sport 2012, 15, 541–547. [Google Scholar] [CrossRef]
- Fedotovskaya, O.N.; Mustafina, L.J.; Popov, D.V.; Vinogradova, O.L.; Ahmetov, I.I. A common polymorphism of the MCT1 gene and athletic performance. Int. J. Sports Physiol. Perform. 2014, 9, 173–180. [Google Scholar] [CrossRef]
- Gasser, B.; Dössegger, A.; Giraud, M.N.; Flück, M. T-allele carriers of monocarboxylate transporter 1 gene polymorphism rs1049434 demonstrate altered substrate metabolization during exhaustive exercise. Genes 2024, 15, 918. [Google Scholar] [CrossRef]
- Maculewicz, E.; Mastalerz, A.; Mróz, A.; Johne, M.; Krawczak-Wójcik, K.; Pabin, A.; Garbacz, A.; Komar, K.; Massidda, M.; Stastny, P.; et al. Interactions Between Monocarboxylate Transporter MCT1 Gene Variants and the Kinetics of Blood Lactate Production and Removal After High-Intensity Efforts: A Cross-Sectional Study. Genes 2025, 16, 1160. [Google Scholar] [CrossRef]
- Granata, C.; Jamnick, N.A.; Bishop, D.J. Training-induced changes in mitochondrial content and respiratory function in human skeletal muscle. Sports Med. 2018, 48, 1809–1828. [Google Scholar] [CrossRef]
- Weissler-Snir, A.; Connelly, K.A.; Goodman, J.M.; Dorian, D.; Dorian, P. Exercise in hypertrophic cardiomyopathy: Restrict or rethink. Am. J. Physiol. Heart Circ. Physiol. 2021, 320, H2101–H2111. [Google Scholar] [CrossRef] [PubMed]
- Dejgaard, L.A.; Haland, T.F.; Lie, O.H.; Ribe, M.; Bjune, T.; Leren, I.S.; Berge, K.E.; Edvardsen, T.; Haugaa, K.H. Vigorous exercise in patients with hypertrophic cardiomyopathy. Int. J. Cardiol. 2018, 250, 157–163. [Google Scholar] [CrossRef] [PubMed]
- World Medical Association. World Medical Association Declaration of Helsinki: Ethical principles for medical research involving human subjects. JAMA 2013, 310, 2191–2194. [Google Scholar] [CrossRef] [PubMed]
- Maron, B.J.; Udelson, J.E.; Bonow, R.O.; Nishimura, R.A.; Ackerman, M.J.; Estes, N.A.M.; Cooper, L.T.; Link, M.S.; Maron, M.S. Eligibility and disqualification recommendations for competitive athletes with cardiovascular abnormalities: Task Force 3. J. Am. Coll. Cardiol. 2015, 66, 2362–2371. [Google Scholar] [CrossRef]
- McKay, A.K.A.; Stellingwerff, T.; Smith, E.S.; Martin, D.T.; Mujika, I.; Goosey-Tolfrey, V.L.; Sheppard, J.; Burke, L.M. Defining training and performance caliber: A participant classification framework. Int. J. Sports Physiol. Perform. 2022, 17, 317–331. [Google Scholar] [CrossRef]
- Fogante, M.; Agliata, G.; Basile, M.C.; Compagnucci, P.; Volpato, G.; Falanga, U.; Stronati, G.; Guerra, F.; Vignale, D.; Esposito, A.; et al. Cardiac Imaging in Athlete’s Heart: The Role of the Radiologist. Medicina 2021, 57, 455. [Google Scholar] [CrossRef]
- Gizak, A.; McCubrey, J.A.; Rakus, D. Cell-to-cell lactate shuttle operates in heart and is important in age-related heart failure. Aging 2020, 12, 3388–3406. [Google Scholar] [CrossRef]
- Ordoño, J.; Pérez-Amodio, S.; Ball, K.; Aguirre, A.; Engel, E. The generation of a lactate-rich environment stimulates cell cycle progression and modulates gene expression on neonatal and hiPSC-derived cardiomyocytes. Biomater. Adv. 2022, 139, 213035. [Google Scholar] [CrossRef]
- Peterson, L.R.; Soto, P.F.; Herrero, P.; Schechtman, K.B.; Dence, C.; Gropler, R.J. Sex differences in myocardial oxygen and glucose metabolism. J. Nucl. Cardiol. 2007, 14, 573–581. [Google Scholar] [CrossRef]
- Wei, T.; Guo, Y.; Huang, C.; Sun, M.; Zhou, B.; Gao, J.; Shen, W. Fibroblast-to-cardiomyocyte lactate shuttle modulates hypertensive cardiac remodelling. Cell Biosci. 2023, 13, 151. [Google Scholar] [CrossRef]
- Cluntun, A.A.; Badolia, R.; Lettlova, S.; Parnell, K.M.; Shankar, T.S.; Diakos, N.A.; Olson, K.A.; Taleb, I.; Tatum, S.M.; Berg, J.A.; et al. The pyruvate–lactate axis modulates cardiac hypertrophy and heart failure. Cell Metab. 2021, 33, 629–648.e10. [Google Scholar] [CrossRef]
- Kindel, S.J.; Miller, E.M.; Gupta, R.; Cripe, L.H.; Hinton, R.B.; Spicer, R.L.; Towbin, J.A.; Ware, S.M. Pediatric cardiomyopathy: Importance of genetic and metabolic evaluation. J. Card. Fail. 2012, 18, 396–403. [Google Scholar] [CrossRef] [PubMed]
- Carrier, L.; Bonne, G.; Bahrend, E.; Yu, B.; Richard, P.; Niel, F.; Hainque, B.; Cruaud, C.; Gary, F.; Labeit, S.; et al. Organization and sequence of human cardiac myosin binding protein C gene (MYBPC3) and identification of mutations predicted to produce truncated proteins in familial hypertrophic cardiomyopathy. Circ. Res. 1997, 80, 427–434. [Google Scholar] [CrossRef] [PubMed]
- Lin, J.; Zheng, D.-D.; Tao, Q.; Yang, J.-H.; Jiang, W.-P.; Yang, X.-J.; Song, J.-P.; Jiang, T.-B.; Li, X. Two novel mutations of the MYBPC3 gene identified in Chinese families with hypertrophic cardiomyopathy. Can. J. Cardiol. 2010, 26, 518–522. [Google Scholar] [CrossRef] [PubMed]
- Ripoll Vera, T.; Monserrat Iglesias, L.; Hermida Prieto, M.; Ortiz, M.; Rodriguez Garcia, I.; Govea Callizo, N.; Navarro, C.G.; Andreo, J.R.; Martínez, J.M.G.; Lladó, G.P.; et al. The R820W mutation in the MYBPC3 gene, associated with hypertrophic cardiomyopathy in cats, causes hypertrophic cardiomyopathy and left ventricular noncompaction in humans. Int. J. Cardiol. 2010, 145, 405–407. [Google Scholar] [CrossRef]
- Erdmann, J.; Daehmlow, S.; Wischke, S.; Senyuva, M.; Werner, U.; Raible, J.; Tanis, N.; Dyachenko, S.; Hummel, M.; Hetzer, R.; et al. Mutation spectrum in a large cohort of unrelated consecutive patients with hypertrophic cardiomyopathy. Clin. Genet. 2003, 64, 339–349. [Google Scholar] [CrossRef]
- Gómez, J.; Lorca, R.; Reguero, J.R.; Morís, C.; Martín, M.; Tranche, S.; Alonso, B.; Iglesias, S.; Alvarez, V.; Díaz-Molina, B.; et al. Screening of the filamin C gene in a large cohort of hypertrophic cardiomyopathy patients. Circ. Cardiovasc. Genet. 2017, 10, e001584. [Google Scholar] [CrossRef]
- Gomez, J.; Reguero, J.R.; Morís, C.; Martin, M.; Alvarez, V.; Alonso, B.; Iglesias, S.; Coto, E. Mutation analysis of the main hypertrophic cardiomyopathy genes using multiplex amplification and semiconductor next-generation sequencing. Circ. J. 2014, 78, 2963–2971. [Google Scholar] [CrossRef]
- Yu, B.; A French, J.; Carrier, L.; Jeremy, R.W.; McTaggart, D.R.; Nicholson, M.R.; Hambly, B.; Semsarian, C.; Richmond, D.R.; Schwartz, K.; et al. Molecular pathology of familial hypertrophic cardiomyopathy caused by mutations in the cardiac myosin binding protein C gene. J. Med. Genet. 1998, 35, 205–210. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Van Driest, S.L.; Vasile, V.C.; Ommen, S.R.; Will, M.L.; Tajik, A.J.; Gersh, B.J.; Ackerman, M.J. Myosin binding protein C mutations and compound heterozygosity in hypertrophic cardiomyopathy. J. Am. Coll. Cardiol. 2004, 44, 1903–1910. [Google Scholar] [CrossRef] [PubMed]
- Ripoll-Vera, T.; Gámez, J.M.; Govea, N.; Gómez, Y.; Núñez, J.; Socías, L.; Escandell, Á.; Rosell, J. Clinical and prognostic profiles of cardiomyopathies caused by mutations in the troponin T gene. Rev. Espanola Cardiol. 2016, 69, 149–158. [Google Scholar] [CrossRef]
- Restrepo-Cordoba, M.A.; Campuzano, O.; Ripoll-Vera, T.; Cobo-Marcos, M.; Mademont-Soler, I.; Gámez, J.M.; Dominguez, F.; Gonzalez-Lopez, E.; Padron-Barthe, L.; Lara-Pezzi, E.; et al. Usefulness of genetic testing in hypertrophic cardiomyopathy: An analysis using real-world data. J. Cardiovasc. Transl. Res. 2017, 10, 35–46. [Google Scholar] [CrossRef]
- Refaat, M.M.; Lubitz, S.A.; Makino, S.; Islam, Z.; Frangiskakis, J.M.; Mehdi, H.; Gutmann, R.; Zhang, M.L.; Bloom, H.L.; MacRae, C.A.; et al. Genetic variation in the alternative splicing regulator RBM20 is associated with dilated cardiomyopathy. Hear. Rhythm. 2012, 9, 390–396. [Google Scholar] [CrossRef]
- Richard, P.; Charron, P.; Carrier, L.; Ledeuil, C.; Cheav, T.; Pichereau, C.; Benaiche, A.; Isnard, R.; Dubourg, O.; Burban, M.; et al. Hypertrophic cardiomyopathy: Distribution of disease genes, spectrum of mutations, and implications for a molecular diagnosis strategy. Circulation 2003, 107, 2227–2232. [Google Scholar] [CrossRef]
- Tesson, F.; Richard, P.; Charron, P.; Mathieu, B.; Cruaud, C.; Carrier, L.; Dubourg, O.; Lautié, N.; Desnos, M.; Millaire, A.; et al. Genotype-phenotype analysis in four families with mutations in beta-myosin heavy chain gene responsible for familial hypertrophic cardiomyopathy. Hum. Mutat. 1998, 12, 385–392. [Google Scholar] [CrossRef]
- Moolman, J.C.; Brink, P.A.; Corfield, V.A. Identification of a novel Ala797Thr mutation in exon 21 of the beta-myosin heavy chain gene in hypertrophic cardiomyopathy. Hum. Mutat. 1995, 6, 197–198. [Google Scholar] [CrossRef]
- Olson, T.M.; Karst, M.L.; Whitby, F.G.; Driscoll, D.J. Myosin light chain mutation causes autosomal recessive cardiomyopathy with mid-cavitary hypertrophy and restrictive physiology. Circulation 2002, 105, 2337–2340. [Google Scholar] [CrossRef]
- Morita, H.; Rehm, H.L.; Menesses, A.; McDonough, B.; Roberts, A.E.; Kucherlapati, R.; Towbin, J.A.; Seidman, J.; Seidman, C.E. Shared genetic causes of cardiac hypertrophy in children and adults. N. Engl. J. Med. 2008, 358, 1899–1908. [Google Scholar] [CrossRef]
- Kimura, A.; Harada, H.; Park, J.-E.; Nishi, H.; Satoh, M.; Takahashi, M.; Hiroi, S.; Sasaoka, T.; Ohbuchi, N.; Nakamura, T.; et al. Mutations in the cardiac troponin I gene associated with hypertrophic cardiomyopathy. Nat. Genet. 1997, 16, 379–382. [Google Scholar] [CrossRef]
- Mogensen, J.; Murphy, R.T.; Kubo, T.; Bahl, A.; Moon, J.C.; Klausen, I.C.; Elliott, P.M.; McKenna, W.J. Frequency and clinical expression of cardiac troponin I mutations in 748 consecutive families with hypertrophic cardiomyopathy. J. Am. Coll. Cardiol. 2004, 44, 2315–2325. [Google Scholar] [CrossRef]
| Variable | Total Cohort (n = 56) |
|---|---|
| Age, years | 32 ± 17 (range 5–65) |
| Female sex | 27 (48.2%) |
| Male sex | 29 (51.8%) |
| Sarcomeric variant carriers with HCM | 26 (46.4%) |
| Sarcomeric variant carriers without HCM | 30 (53.6%) |
| Vigorous physical activity | 14 (25.0%) |
| Non-athletes | 42 (75.0%) |
| Index cases | 12 (21.4%) |
| Relatives identified by cascade screening | 44 (78.6%) |
| Main sarcomeric genes involved | MYBPC3, MYH7, ACTC1, MYL3, TNNI3, TTN |
| Variable | All Women with HCM (n = 10) | TT/TA Genotype (n = 6) | AA Genotype (n = 4) | p Value |
|---|---|---|---|---|
| Current age, years | 42 ± 10 | 46 ± 7 | 37 ± 14 | 0.209 |
| Age at diagnosis, years | 32 ± 13 | 32 ± 15 | 32 ± 11 | 1.00 |
| Maximal interventricular septal thickness, mm | 19.6 ± 7.0 | 23.2 ± 6.8 | 14.2 ± 2.6 | 0.037 |
| Maximal posterior wall thickness, mm | 9.8 ± 3.2 | 10.3 ± 4.6 | 9.3 ± 1.3 | 0.688 |
| Hypertrophy pattern | 0.999 | |||
| –Apical | 1 (10%) | 1 (16.7%) | 0 (0%) | |
| –Asymmetric septal | 8 (80%) | 4 (66.7%) | 4 (100%) | |
| –Concentric | 1 (10%) | 1 (16.7%) | 0 (0%) | |
| Abnormal ECG | 5 (50%) | 4 (66.7%) | 1 (25%) | 0.524 |
| LV outflow tract obstruction | 3 (30%) | 3 (50%) | 0 (0%) | 0.200 |
| Systolic dysfunction | 2 (20%) | 2 (33.3%) | 0 (0%) | 0.467 |
| Diastolic dysfunction | 8 (80%) | 5 (83.3%) | 3 (75%) | 1.00 |
| Left atrial dilation (≥45 mm) | 4 (40%) | 3 (50%) | 1 (25%) | 0.571 |
| Myocardial fibrosis on CMR | 2 (25%) | 2 (50%) | 0 (0%) | 0.429 |
| Any arrhythmia | 4 (40%) | 2 (33.3%) | 2 (50%) | 1.00 |
| Variable | All Men with HCM (n = 16) | Athletes (n = 12) | Non-Athletes (n = 4) | p Value |
|---|---|---|---|---|
| Current age, years | 40 ± 16 | 40 ± 16 | 39 ± 15 | 0.914 |
| Age at diagnosis, years | 28 ± 11 | 27 ± 11 | 30 ± 13 | 0.657 |
| Maximal interventricular septal thickness, mm | 18.7 ± 4.8 | 18.3 ± 4.1 | 19.9 ± 6.9 | 0.585 |
| Maximal posterior wall thickness, mm | 12.4 ± 2.9 | 12.2 ± 2.2 | 13.0 ± 4.7 | 0.652 |
| Hypertrophy pattern—asymmetric septal | 10 (66.7%) | 8 (72.7%) | 2 (50%) | 0.564 |
| Abnormal ECG | 16 (100%) | 12 (100%) | 4 (100%) | 1.00 |
| LV outflow tract obstruction | 3 (18.7%) | 1 (8.3%) | 2 (50%) | 0.136 |
| Systolic dysfunction | 4 (25%) | 3 (25%) | 1 (25%) | 1.00 |
| Diastolic dysfunction | 11 (68.7%) | 8 (66.7%) | 3 (75%) | 1.00 |
| Left atrial dilation (≥45 mm) | 6 (37.5%) | 4 (33.3%) | 2 (50%) | 0.604 |
| Myocardial fibrosis on CMR | 8 (72.7%) | 5 (71.4%) | 3 (75%) | 1.00 |
| Any arrhythmia | 5 (31.2%) | 3 (25%) | 2 (50%) | 0.547 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2026 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license.
Share and Cite
Fernández-Suárez, N.; Viadero, M.T.; Amigo, T.; Benitez-Muñoz, J.A.; Cupeiro, R.; González-Lamuño, D. Sex- and Exercise-Dependent Modulation of Hypertrophic Remodeling by the MCT1 rs1049434 Polymorphism. Genes 2026, 17, 188. https://doi.org/10.3390/genes17020188
Fernández-Suárez N, Viadero MT, Amigo T, Benitez-Muñoz JA, Cupeiro R, González-Lamuño D. Sex- and Exercise-Dependent Modulation of Hypertrophic Remodeling by the MCT1 rs1049434 Polymorphism. Genes. 2026; 17(2):188. https://doi.org/10.3390/genes17020188
Chicago/Turabian StyleFernández-Suárez, Natalia, María Teresa Viadero, Teresa Amigo, José Antonio Benitez-Muñoz, Rocío Cupeiro, and Domingo González-Lamuño. 2026. "Sex- and Exercise-Dependent Modulation of Hypertrophic Remodeling by the MCT1 rs1049434 Polymorphism" Genes 17, no. 2: 188. https://doi.org/10.3390/genes17020188
APA StyleFernández-Suárez, N., Viadero, M. T., Amigo, T., Benitez-Muñoz, J. A., Cupeiro, R., & González-Lamuño, D. (2026). Sex- and Exercise-Dependent Modulation of Hypertrophic Remodeling by the MCT1 rs1049434 Polymorphism. Genes, 17(2), 188. https://doi.org/10.3390/genes17020188

