ArGD: An Integrated Database and Analysis Platform for Artocarpus Genomics and Transcriptomics
Abstract
1. Introduction
2. Materials and Methods
2.1. Genome Data Collection and Annotation
2.2. RNA-Seq Data Processing
2.3. Comparative Genomics Analysis
2.4. Metabolic Pathway Prediction
2.5. Database Architecture and Implementation
3. Results and Utility
3.1. Overview of ArGD
3.2. Search and Homology Alignment
3.3. Gene Expression Visualization
3.4. Genome Browser and Synteny Viewer
3.5. Enrichment Analysis
3.6. Aroma-Related Gene Families
3.7. Integrated Analysis Tools: MISA, Primer3, and ArtocarpusCYC
3.8. Case Study: A Workflow for Analyzing Monoterpene Synthase Genes Using ArGD
4. Discussion and Future Perspectives
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Khan, A.U.; Ema, I.J.; Faruk, M.R.; Tarapder, S.A.; Khan, A.U.; Noreen, S.; Adnan, M. A Review on Importance of Artocarpus heterophyllus L. (Jackfruit). J. Multidiscip. Appl. Nat. Sci. 2021, 1, 106–116. [Google Scholar] [CrossRef]
- Chaurasia, S.; Pandey, A. Phytochemistry and Pharmacology of Genus Artocarpus: A Review on Current Status of Knowledge. Russ. J. Bioorganic Chem. 2023, 49, 481–514. [Google Scholar] [CrossRef]
- Sahu, S.; Liu, M.; Yssel, A.; Kariba, R.; Muthemba, S.; Jiang, S.; Song, B.; Hendre, P.; Muchugi, A.; Jamnadass, R.; et al. Draft Genomes of Two Artocarpus Plants, Jackfruit (A. heterophyllus) and Breadfruit (A. altilis). Genes 2019, 11, 27. [Google Scholar] [CrossRef]
- Mehta, K.A.; Quek, Y.C.R.; Henry, C.J. Breadfruit (Artocarpus altilis): Processing, nutritional quality, and food applications. Front. Nutr. 2023, 10, 1156155. [Google Scholar] [CrossRef]
- Pertiwi, D.; Hartati, R.; Julianti, E.; Fidrianny, I. Study Antioxidant and Antibacterial activity of Artocarpus: A Review. Res. J. Pharm. Technol. 2023, 16, 2531–2536. [Google Scholar] [CrossRef]
- Jose, S.S.; Jancy, V.J.J. Review and pharmacology of: Artocarpus sericicarpus. J. Pharmacogn. Phytochem. 2024, 13, 658–659. [Google Scholar] [CrossRef]
- Huang, R.L.; Tang, W.; Wang, C.; Yan, C.; Hu, Y.; Yang, H.X.; Xiang, H.Y.; Huang, X.J.; Hu, L.J.; Ye, W.C.; et al. Antiviral C-geranylated flavonoids from Artocarpus communis. Phytochemistry 2024, 225, 114165. [Google Scholar] [CrossRef] [PubMed]
- Grimm, J.E.; Steinhaus, M. Characterization of the Major Odor-Active Compounds in Jackfruit Pulp. J. Agric. Food Chem. 2019, 67, 5838–5846. [Google Scholar] [CrossRef]
- Lu, H.; Zhao, H.; Zhong, T.; Chen, D.; Wu, Y.; Xie, Z. Molecular Regulatory Mechanisms Affecting Fruit Aroma. Foods 2024, 13, 1870. [Google Scholar] [CrossRef]
- Buddhisuharto, A.K.; Pramastya, H.; Insanu, M.; Fidrianny, I.J.B.R.A.C. An updated review of phytochemical compounds and pharmacology activities of Artocarpus genus. Biointerface Res. Appl. Chem. 2021, 11, 14898–14905. [Google Scholar] [CrossRef]
- Zhou, F.; Pichersky, E. More is better: The diversity of terpene metabolism in plants. Curr. Opin. Plant Biol. 2020, 55, 1–10. [Google Scholar] [CrossRef]
- Li, C.; Zha, W.; Li, W.; Wang, J.; You, A. Advances in the Biosynthesis of Terpenoids and Their Ecological Functions in Plant Resistance. Int. J. Mol. Sci. 2023, 24, 11561. [Google Scholar] [CrossRef] [PubMed]
- Sun, P.; Chen, X.; Chantarasuwan, B.; Zhu, X.; Deng, X.; Bao, Y.; Yu, H. Composition Diversity and Expression Specificity of the TPS Gene Family among 24 Ficus Species. Diversity 2022, 14, 721. [Google Scholar] [CrossRef]
- Bouwmeester, H.; Schuurink, R.C.; Bleeker, P.M.; Schiestl, F. The role of volatiles in plant communication. Plant J. 2019, 100, 892–907. [Google Scholar] [CrossRef] [PubMed]
- Barros-Castillo, J.C.; Calderón-Santoyo, M.; Cuevas-Glory, L.F.; Pino, J.A.; Ragazzo-Sánchez, J.A. Volatile profiles of five jackfruit (Artocarpus heterophyllus Lam.) cultivars grown in the Mexican Pacific area. Food Res. Int. 2021, 139, 109961. [Google Scholar] [CrossRef] [PubMed]
- Ante, I.; Aboaba, S.; Siddiqui, H.; Choudhary, M.I. Essential Oils of the Leaf, Stem-Bark, and Nut of Artocarpus camansi: Gas Chromatography-Mass Spectrometry Analysis and Activities against Multidrug-Resistant Bacteria. J. Herbs Spices Med. Plants 2016, 22, 203–210. [Google Scholar] [CrossRef]
- Barros-Castillo, J.C.; Calderón-Santoyo, M.; García-Magaña, M.d.L.; Calderón-Chiu, C.; Ragazzo-Sánchez, J.A. Volatile compounds released by acid hydrolysis in jackfruit (Artocarpus heterophyllus Lam.). A comparative study by using SDE and HS-SPME techniques. J. Food Compos. Anal. 2022, 113, 104701. [Google Scholar] [CrossRef]
- Bhaskaran, B.; Balabhadran, R.; Sreekumar, S. Exploring the morphological and genetic diversity and relationship of elite jackfruit (Artocarpus heterophyllus Lam.) accessions in southern Kerala through comprehensive marker assay. J. Hortic. Sci. Biotechnol. 2025, 100, 702–713. [Google Scholar] [CrossRef]
- Gardner, E.M.; Johnson, M.G.; Ragone, D.; Wickett, N.J.; Zerega, N.J.C. Low-coverage, whole-genome sequencing of Artocarpus camansi (Moraceae) for phylogenetic marker development and gene discovery. Appl. Plant Sci. 2016, 4, apps.1600017. [Google Scholar] [CrossRef]
- He, J.; Bao, S.; Deng, J.; Li, Q.; Ma, S.; Liu, Y.; Cui, Y.; Zhu, Y.; Wei, X.; Ding, X.; et al. A chromosome-level genome assembly of Artocarpus nanchuanensis (Moraceae), an extremely endangered fruit tree. GigaScience 2022, 11, giac042. [Google Scholar] [CrossRef]
- Patil, A.B.; Vajja, S.S.; Raghavendra, S.; Satish, B.N.; Kushalappa, C.G.; Vijay, N. Jack of all trades: Genome assembly of Wild Jack and comparative genomics of Artocarpus. Front. Plant Sci. 2022, 13, 1029540. [Google Scholar] [CrossRef]
- Yang, P.; Yuan, Y.; Yan, C.; Jia, Y.; You, Q.; Da, L.; Lou, A.; Lv, B.; Zhang, Z.; Liu, Y. AlliumDB: A central portal for comparative and functional genomics in Allium. Hortic. Res. 2024, 11, uhad285. [Google Scholar] [CrossRef] [PubMed]
- Yu, J.; Jung, S.; Cheng, C.H.; Lee, T.; Zheng, P.; Buble, K.; Crabb, J.; Humann, J.; Hough, H.; Jones, D.; et al. CottonGen: The Community Database for Cotton Genomics, Genetics, and Breeding Research. Plants 2021, 10, 2085. [Google Scholar] [CrossRef]
- Fang, L.; Liu, T.; Li, M.; Dong, X.; Han, Y.; Xu, C.; Li, S.; Zhang, J.; He, X.; Zhou, Q.; et al. MODMS: A multi-omics database for facilitating biological studies on alfalfa (Medicago sativa L.). Hortic. Res. 2024, 11, uhad245. [Google Scholar] [CrossRef]
- Lin, X.; Feng, C.; Lin, T.; Harris, A.J.; Li, Y.; Kang, M. Jackfruit genome and population genomics provide insights into fruit evolution and domestication history in China. Hortic. Res. 2022, 9, uhac173. [Google Scholar] [CrossRef]
- Islam, T.; Afroz, N.; Koh, C.; Hoque, M.N.; Rahman, M.J.; Gupta, D.R.; Mahmud, N.U.; Nahid, A.A.; Islam, R.; Bhowmik, P.K.; et al. Whole-genome sequencing of a year-round fruiting jackfruit (Artocarpus heterophyllus Lam.) reveals high levels of single nucleotide variation. Front. Plant Sci. 2022, 13, 1044420. [Google Scholar] [CrossRef] [PubMed]
- Chen, B.S.; Yu, T.; Xie, S.; Du, K.Q.; Liang, X.L.; Lan, Y.H.; Sun, C.; Lu, X.M.; Shao, Y.Q. Comparative shotgun metagenomic data of the silkworm gut microbiome. Sci. Data 2018, 5, 180285. [Google Scholar] [CrossRef] [PubMed]
- Joshi, P.; Banerjee, S.; Hu, X.; Khade, P.M.; Friedberg, I. GOThresher: A program to remove annotation biases from protein function annotation datasets. Bioinformatics 2023, 39, btad048. [Google Scholar] [CrossRef]
- Conesa, A.; Gotz, S. Blast2GO: A comprehensive suite for functional analysis in plant genomics. Int. J. Plant Genom. 2008, 2008, 619832. [Google Scholar] [CrossRef]
- Brown, J.; Pirrung, M.; McCue, L.A. FQC Dashboard: Integrates FastQC results into a web-based, interactive, and extensible FASTQ quality control tool. Bioinformatics 2017, 33, 3137–3139. [Google Scholar] [CrossRef]
- Bolger, A.M.; Lohse, M.; Usadel, B. Trimmomatic: A flexible trimmer for Illumina sequence data. Bioinformatics 2014, 30, 2114–2120. [Google Scholar] [CrossRef] [PubMed]
- Kim, D.; Paggi, J.M.; Park, C.; Bennett, C.; Salzberg, S.L. Graph-based genome alignment and genotyping with HISAT2 and HISAT-genotype. Nat. Biotechnol. 2019, 37, 907–915. [Google Scholar] [CrossRef]
- Pertea, M.; Pertea, G.M.; Antonescu, C.M.; Chang, T.-C.; Mendell, J.T.; Salzberg, S.L. StringTie enables improved reconstruction of a transcriptome from RNA-seq reads. Nat. Biotechnol. 2015, 33, 290–295. [Google Scholar] [CrossRef]
- Frazee, A.C.; Pertea, G.; Jaffe, A.E.; Langmead, B.; Salzberg, S.L.; Leek, J.T. Ballgown bridges the gap between transcriptome assembly and expression analysis. Nat. Biotechnol. 2015, 33, 243–246. [Google Scholar] [CrossRef]
- Robinson, M.D.; Oshlack, A. A scaling normalization method for differential expression analysis of RNA-seq data. Genome Biol. 2010, 11, R25. [Google Scholar] [CrossRef]
- Buchfink, B.; Reuter, K.; Drost, H.-G. Sensitive protein alignments at tree-of-life scale using DIAMOND. Nat. Methods 2021, 18, 366–368. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Tang, H.; DeBarry, J.D.; Tan, X.; Li, J.; Wang, X.; Lee, T.-h.; Jin, H.; Marler, B.; Guo, H.; et al. MCScanX: A toolkit for detection and evolutionary analysis of gene synteny and collinearity. Nucleic Acids Res. 2012, 40, e49. [Google Scholar] [CrossRef]
- Karp, P.D.; Midford, P.E.; Billington, R.; Kothari, A.; Krummenacker, M.; Latendresse, M.; Ong, W.K.; Subhraveti, P.; Caspi, R.; Fulcher, C.; et al. Pathway Tools version 23.0 update: Software for pathway/genome informatics and systems biology. Brief. Bioinform. 2021, 22, 109–126. [Google Scholar] [CrossRef] [PubMed]
- Kallenborn, F.; Chacon, A.; Hundt, C.; Sirelkhatim, H.; Didi, K.; Cha, S.; Dallago, C.; Mirdita, M.; Schmidt, B.; Steinegger, M. GPU-accelerated homology search with MMseqs2. Nat. Methods 2025, 22, 2024–2027. [Google Scholar] [CrossRef]
- Feng, Y.; Zou, S.; Chen, H.; Yu, Y.; Ruan, Z. BacWGSTdb 2.0: A one-stop repository for bacterial whole-genome sequence typing and source tracking. Nucleic Acids Res. 2021, 49, D644–D650. [Google Scholar] [CrossRef]
- Bostock, M.; Ogievetsky, V.; Heer, J. D3 Data-Driven Documents. IEEE Trans. Vis. Comput. Graph. 2011, 17, 2301–2309. [Google Scholar] [CrossRef]
- Skinner, M.E.; Uzilov, A.V.; Stein, L.D.; Mungall, C.J.; Holmes, I.H. JBrowse: A next-generation genome browser. Genome Res. 2009, 19, 1630–1638. [Google Scholar] [CrossRef]
- Priyam, A.; Woodcroft, B.J.; Rai, V.; Moghul, I.; Munagala, A.; Ter, F.; Chowdhary, H.; Pieniak, I.; Maynard, L.J.; Gibbins, M.A.; et al. Sequenceserver: A Modern Graphical User Interface for Custom BLAST Databases. Mol. Biol. Evol. 2019, 36, 2922–2924. [Google Scholar] [CrossRef]
- Stajich, J.E.; Block, D.; Boulez, K.; Brenner, S.E.; Chervitz, S.A.; Dagdigian, C.; Fuellen, G.; Gilbert, J.G.; Korf, I.; Lapp, H.; et al. The Bioperl toolkit: Perl modules for the life sciences. Genome Res. 2002, 12, 1611–1618. [Google Scholar] [CrossRef] [PubMed]
- Domingues, D.S.; Oliveira, L.S.; Lemos, S.M.C.; Barros, G.C.C.; Ivamoto-Suzuki, S.T. A Bioinformatics Tool for Efficient Retrieval of High-Confidence Terpene Synthases (TPS) and Application to the Identification of TPS in Coffea and Quillaja. Methods Mol. Biol. 2022, 2469, 43–53. [Google Scholar] [CrossRef]
- Yu, J.; Dossa, K.; Wang, L.; Zhang, Y.; Wei, X.; Liao, B.; Zhang, X. PMDBase: A database for studying microsatellite DNA and marker development in plants. Nucleic Acids Res. 2017, 45, D1046–D1053. [Google Scholar] [CrossRef]
- Sun, P.; Yang, L.; Yu, H.; Chen, L.; Bao, Y. Ficus Genome Database: A Comprehensive Genomics and Transcriptomics Research Platform. Horticulturae 2024, 10, 613. [Google Scholar] [CrossRef]
- Youens-Clark, K.; Faga, B.; Yap, I.V.; Stein, L.; Ware, D. CMap 1.01: A comparative mapping application for the Internet. Bioinformatics 2009, 25, 3040–3042. [Google Scholar] [CrossRef] [PubMed]





| Data Type | Entries No. | Details |
|---|---|---|
| Genome | 7 | Seven whole genome assemblies and annotations from five Artocarpus species *. |
| Species | 5 | Origin, genome groups, germplasm, sequences, and libraries, specific species pages with hyperlinks to various data and tools. |
| Gene | 323,183 | Genes from seven whole genome assemblies were parsed from NCBI nucleotide sequences. |
| mRNA | 331,384 | mRNAs form seven genome assemblies. |
| Protein | 331,384 | Proteins from seven genome assemblies. |
| Function annotation | 8 | Nr, SwissProt, KOG, and eggNOG annotations for seven Artocarpus genomes can be viewed through “Annotation Search” in ArGD; Pfam, InterPro (including CDD, FunFam, Gene3D, PANTHER, PRINTS, SMART, SUPERFAMILY), GO, and KEGG annotations can be viewed through “mRNA/Gene Search” on the ‘Gene Model’ page. |
| Transcriptomic datasets | 7 | RNA-seq datasets derived from five SRA projects (PRJNA311339, PRJNA791757, PRJNA1034797, PRJNA611876, PRJNA788174) and two CNSA projects (CNP0000715 and CNP0000486), including multiple condition-specific expression profiles. |
| Syntenic blocks | 425,439 | 425,439 homologous gene pairs of five Artocarpus (A. altilis, A. nanchuanensis, A. heterophyllus ICRAFF11314, A. heterophyllus S10, A. heterophyllus BARI_K3) genomes. |
| Species | Genome Version | Assembly Size (Mb) | Ploidy | Scaffold N50 (Mb) | Busco V5 (%) | Gene No. | mRNA No. | Protein No. | RNA-Seq Projects |
|---|---|---|---|---|---|---|---|---|---|
| A. altilis | v1 | 833.04 | 2n = 2x = 28 | 1.54 | 95.2 | 34,010 | 34,010 | 34,010 | CNP0000715, PRJNA311319, PRJNA791757 |
| A. heterophyllus | vICRAFF_11314 | 982.02 | 2n = 2x = 28 | 0.548 | 95.0 | 35,858 | 35,858 | 35,858 | CNP0000486 |
| A. heterophyllus | vS10 | 985.63 | 2n = 2x = 28 | 32.8 | 93.5 | 41,997 | 41,997 | 41,997 | PRJNA788174, PRJNA611876 |
| A. heterophyllus | vBARI_K3 | 843.00 | 2n = 2x = 28 | 0.425 | 97.2 | 41,083 | 48,685 | 48,685 | / |
| A. hirsutus | v1 | 796.16 | 2n = 2x = 28 | 0.0499 | 96.7 | 46,137 | 46,137 | 46,137 | / |
| A.nanchuanensis | v1 | 769.44 | 2n = 2x = 28 | 25.2 | 97.9 | 41,636 | 41,636 | 41,636 | PRJNA1034797 |
| A. camansi | v1 | 631.30 | 2n = 2x = 28 | 0.00243 | 96.6 | 82,462 | 83,061 | 83,061 | / |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2026 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license.
Share and Cite
Sun, P.; Xi, H.; Yang, L.; Chen, L.; Bao, Y. ArGD: An Integrated Database and Analysis Platform for Artocarpus Genomics and Transcriptomics. Genes 2026, 17, 91. https://doi.org/10.3390/genes17010091
Sun P, Xi H, Yang L, Chen L, Bao Y. ArGD: An Integrated Database and Analysis Platform for Artocarpus Genomics and Transcriptomics. Genes. 2026; 17(1):91. https://doi.org/10.3390/genes17010091
Chicago/Turabian StyleSun, Peng, Hongyuan Xi, Lei Yang, Lianfu Chen, and Ying Bao. 2026. "ArGD: An Integrated Database and Analysis Platform for Artocarpus Genomics and Transcriptomics" Genes 17, no. 1: 91. https://doi.org/10.3390/genes17010091
APA StyleSun, P., Xi, H., Yang, L., Chen, L., & Bao, Y. (2026). ArGD: An Integrated Database and Analysis Platform for Artocarpus Genomics and Transcriptomics. Genes, 17(1), 91. https://doi.org/10.3390/genes17010091

