The Complete Mitochondrial Genome of Gynostemma pentaphyllum Reveals a Multipartite Structure and Dynamic Evolution in Cucurbitaceae
Abstract
1. Introduction
2. Materials and Methods
2.1. Plant Material, DNA/RNA Extraction, and Sequencing
2.2. Mitochondrial Genome Assembly and Annotation
2.3. Genome Feature Characterization and Variation Analysis
2.4. Phylogenetic Analysis
2.5. Comparative Genomics and Selection Analysis
3. Results
3.1. Mitochondrial Genome Assembly and Annotation
3.2. Prediction of RNA Editing
3.3. Nucleotide Diversity Varies Across Mitochondrial Genes
3.4. Intracellular Gene Transfer from the Chloroplast
3.5. Phylogenetic Analysis
3.6. Comparative Genomics Reveals Extensive Rearrangement and Dynamic Gene Content
3.7. Selective Pressure Analysis
3.8. Haplotype Network Analysis
4. Discussion
4.1. A Multipartite Architecture Consistent with Cucurbitaceae Dynamism
4.2. Extensive RNA Editing as a Key Post-Transcriptional Regulatory Layer
4.3. Phylogenetic Placement and the Paradox of Structural Divergence
4.4. Signatures of Selection and Adaptive Evolution
4.5. Intracellular Gene Transfer and Implications for Future Research
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Li, X.; Liu, L.; Wei, S. Gynostemma pentaphyllum: A review on its traditional uses, phytochemistry and pharmacology. J. Funct. Foods 2025, 124, 106651. [Google Scholar] [CrossRef]
- Su, C.; Li, N.; Ren, R.; Wang, Y.; Su, X.; Lu, F.; Zong, R.; Yang, L.; Ma, X. Progress in the medicinal value, bioactive compounds, and pharmacological activities of Gynostemma pentaphyllum. Molecules 2021, 26, 6249. [Google Scholar] [CrossRef]
- Yun, L.; Zhang, C.; Liang, T.; Tian, Y.; Ma, G.; Courdavault, V.; Sun, S.; Ma, B.; Li, Z.; Li, R.; et al. Insights into dammarane-type triterpenoid saponin biosynthesis from the telomere-to-telomere genome of Gynostemma pentaphyllum. Plant Commun. 2024, 5, 100932. [Google Scholar] [CrossRef]
- Liang, T.; Zou, L.; Sun, S.; Kuang, X.; Wei, J.; Wang, L.; Li, Y.; Sun, C. Hybrid sequencing of the Gynostemma pentaphyllum transcriptome provides new insights into gypenoside biosynthesis. BMC Genom. 2019, 20, 632. [Google Scholar] [CrossRef] [PubMed]
- Zhao, X.; Ge, W.; Miao, Z. Integrative metabolomic and transcriptomic analyses reveals the accumulation patterns of key metabolites associated with flavonoids and terpenoids of Gynostemma pentaphyllum (Thunb.) Makino. Sci. Rep. 2024, 14, 8644. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.; Zhou, T.; Kanwal, N.; Zhao, Y.; Bai, G.; Zhao, G. Completion of eight Gynostemma BL. (Cucurbitaceae) chloroplast genomes: Characterization, comparative analysis, and phylogenetic relationships. Front. Plant Sci. 2017, 8, 1583. [Google Scholar] [CrossRef] [PubMed]
- Gan, J.; Li, Y.; Tang, D.; Guo, B.; Li, D.; Cao, F.; Sun, C.; Yu, L.; Yan, Z. The complete chloroplast genomes of Gynostemma reveal the phylogenetic relationships of species within the genus. Genes 2023, 14, 929. [Google Scholar] [CrossRef]
- Wang, J.; Kan, S.; Liao, X.; Zhou, J.; Tembrock, L.R.; Daniell, H.; Jin, S.; Wu, Z. Plant organellar genomes: Much done, much more to do. Trends Plant Sci. 2024, 29, 754–769. [Google Scholar] [CrossRef]
- Silva-Pinheiro, P.; Minczuk, M. The potential of mitochondrial genome engineering. Nat. Rev. Genet. 2022, 23, 199–214. [Google Scholar] [CrossRef]
- Butenko, A.; Lukeš, J.; Speijer, D.; Wideman, J.G. Mitochondrial genomes revisited: Why do different lineages retain different genes? BMC Biol. 2024, 22, 15. [Google Scholar] [CrossRef]
- Wu, Z.Q.; Liao, X.Z.; Zhang, X.N.; Tembrock, L.R.; Broz, A. Genomic architectural variation of plant mitochondria—A review of multichromosomal structuring. J. Syst. Evol. 2022, 60, 160–168. [Google Scholar] [CrossRef]
- Toriyama, K.; Iwai, Y.; Takeda, S.; Takatsuka, A.; Igarashi, K.; Furuta, T.; Chen, S.; Kanaoka, Y.; Kishima, Y.; Arimura, S.i.; et al. Cryptic cytoplasmic male sterility-causing gene in the mitochondrial genome of common japonica rice. Plant J. 2024, 120, 941–949. [Google Scholar] [CrossRef]
- Li, Y.; Li, S.; Hua, X.; Xu, Y.; Chen, S.; Yu, Z.; Zhuang, G.; Lan, Y.; Yao, W.; Chen, B.; et al. Mitochondrial genome structural variants and candidate cytoplasmic male sterility-related gene in sugarcane. BMC Genom. 2025, 26, 28. [Google Scholar] [CrossRef] [PubMed]
- Chetri, B.K.; Sonu, S.S.; Dierckxsens, N.; Mitra, S.; Rangan, L. Insights into Cucurbitaceae mitogenomes: Gene length variation, correlation features, and phylogenetic relationship. J. Plant Biochem. Biotechnol. 2025, 34, 992. [Google Scholar] [CrossRef]
- Alverson, A.J.; Wei, X.; Rice, D.W.; Stern, D.B.; Barry, K.; Palmer, J.D. Insights into the evolution of mitochondrial genome size from complete sequences of Citrullus lanatus and Cucurbita pepo (Cucurbitaceae). Mol. Biol. Evol. 2010, 27, 1436–1448. [Google Scholar] [CrossRef]
- Rodríguez-Moreno, L.; González, V.M.; Benjak, A.; Martí, M.C.; Puigdomènech, P.; Aranda, M.A.; Garcia-Mas, J. Determination of the melon chloroplast and mitochondrial genome sequences reveals that the largest reported mitochondrial genome in plants contains a significant amount of DNA having a nuclear origin. BMC Genom. 2011, 12, 424. [Google Scholar] [CrossRef]
- Lee, Y.; Cho, C.H.; Noh, C.; Yang, J.H.; Park, S.I.; Lee, Y.M.; West, J.A.; Bhattacharya, D.; Jo, K.; Yoon, H.S. Origin of minicircular mitochondrial genomes in red algae. Nat. Commun. 2023, 14, 3363. [Google Scholar] [CrossRef]
- Wang, X.C.; Chen, H.; Yang, D.; Liu, C. Diversity of mitochondrial plastid DNAs (MTPTs) in seed plants. Mitochondrial DNA 2018, 29, 635–642. [Google Scholar] [CrossRef]
- Nhat Nam, N.; Pham Anh Thi, N.; Do, H.D.K. New Insights into the diversity of mitochondrial plastid DNA. Genome Biol. Evol. 2024, 16, evae184. [Google Scholar] [CrossRef] [PubMed]
- Xia, L.; Cheng, C.; Zhao, X.; He, X.; Yu, X.; Li, J.; Wang, Y.; Chen, J. Characterization of the mitochondrial genome of Cucumis hystrix and comparison with other cucurbit crops. Gene 2022, 823, 146342. [Google Scholar] [CrossRef]
- Zhu, Q.; Gao, P.; Liu, S.; Amanullah, S.; Luan, F. Comparative analysis of single nucleotide polymorphisms in the nuclear, chloroplast, and mitochondrial genomes in identification of phylogenetic association among seven melon (Cucumis melo L.) cultivars. Breed. Sci. 2016, 66, 711–719. [Google Scholar] [CrossRef]
- Wick, R.R.; Schultz, M.B.; Zobel, J.; Holt, K.E. Bandage: Interactive visualisation of de novo genome assemblies. Bioinformatics 2015, 31, 3350–3352. [Google Scholar] [CrossRef] [PubMed]
- Chan, P.P.; Lin, B.Y.; Mak, A.J.; Lowe, T.M. tRNAscan-SE 2.0: Improved detection and functional classification of transfer RNA genes. Nucleic Acids Res. 2021, 49, 9077–9096. [Google Scholar] [CrossRef]
- Chen, Y.; Ye, W.; Zhang, Y.; Xu, Y. High speed BLASTN: An accelerated MegaBLAST search tool. Nucleic Acids Res. 2015, 43, 7762–7768. [Google Scholar] [CrossRef]
- Dunn, N.A.; Unni, D.R.; Diesh, C.; Munoz-Torres, M.; Harris, N.L.; Yao, E.; Rasche, H.; Holmes, I.H.; Elsik, C.G.; Lewis, S.E. Apollo: Democratizing genome annotation. PLoS Comput. Biol. 2019, 15, e1006790. [Google Scholar] [CrossRef]
- Zhu, M. The complete mitochondrial genome of Gynostemma pentaphyllum. figshare 2025, Dataset. [Google Scholar] [CrossRef]
- Edera, A.A.; Small, I.; Milone, D.H.; Sanchez-Puerta, M.V. Deepred-Mt: Deep representation learning for predicting C-to-U RNA editing in plant mitochondria. Comput. Biol. Med. 2021, 136, 104682. [Google Scholar] [CrossRef] [PubMed]
- Katoh, K.; Standley, D.M. Mafft multiple sequence alignment software version 7: Improvements in performance and usability. Mol. Biol. Evol. 2013, 30, 772–780. [Google Scholar] [CrossRef]
- Huang, L.; Yu, H.; Wang, Z.; Xu, W. CPStools: A package for analyzing chloroplast genome sequences. iMetaOmics 2024, 1, e25. [Google Scholar] [CrossRef]
- Capella-Gutiérrez, S.; Silla-Martínez, J.M.; Gabaldón, T. trimAl: A tool for automated alignment trimming in large-scale phylogenetic analyses. Bioinformatics 2009, 25, 1972–1973. [Google Scholar] [CrossRef]
- Santorum, J.M.; Darriba, D.; Taboada, G.L.; Posada, D. jModelTest.org: Selection of nucleotide substitution models on the cloud. Genes 2014, 30, 1310–1311. [Google Scholar] [CrossRef]
- Stamatakis, A. RAxML version 8: A tool for phylogenetic analysis and post-analysis of large phylogenies. Bioinformatics 2014, 30, 1312–1313. [Google Scholar] [CrossRef]
- Ronquist, F.; Teslenko, M.; van der Mark, P.; Ayres, D.L.; Darling, A.; Höhna, S.; Larget, B.; Liu, L.; Suchard, M.A.; Huelsenbeck, J.P. MrBayes 3.2: Efficient bayesian phylogenetic inference and model choice across a large model space. Syst. Biol. 2012, 61, 539–542. [Google Scholar] [CrossRef]
- Marçais, G.; Delcher, A.L.; Phillippy, A.M.; Coston, R.; Salzberg, S.L.; Zimin, A. MUMmer4: A fast and versatile genome alignment system. PLoS Comput. Biol. 2018, 14, e1005944. [Google Scholar] [CrossRef]
- Emms, D.M.; Kelly, S. OrthoFinder: Phylogenetic orthology inference for comparative genomics. Genome Biol. 2019, 20, 238. [Google Scholar] [CrossRef]
- Zhang, Z. KaKs_Calculator 3.0: Calculating selective pressure on coding and non-coding sequences. Genom. Proteom. Bioinf. 2022, 20, 536–540. [Google Scholar] [CrossRef]
- Ruang-Areerate, P.; Shearman, J.; Kongkachana, W.; Jomchai, N.; Yoocha, T.; U-thoomporn, S.; Narong, N.; Sheedy, J.R.; Mekiyanon, S.; Pootakham, W. The complete mitochondrial genome of Luffa acutangula. Mitochondrial DNA B 2020, 5, 3208–3209. [Google Scholar] [CrossRef] [PubMed]
- Jiang, Z.; Chen, Y.; Zhang, X.; Meng, F.; Chen, J.; Cheng, X. Assembly and evolutionary analysis of the complete mitochondrial genome of Trichosanthes kirilowii, a traditional Chinese medicinal plant. PeerJ 2024, 12, e17747. [Google Scholar] [CrossRef] [PubMed]
- Ward, B.L.; Anderson, R.S.; Bendich, A.J. The mitochondrial genome is large and variable in a family of plants (Cucurbitaceae). Cell 1981, 25, 793–803. [Google Scholar] [CrossRef]
- Liu, D.; Qu, K.; Yuan, Y.; Zhao, Z.; Chen, Y.; Han, B.; Li, W.; El-Kassaby, Y.A.; Yin, Y.; Xie, X. Complete sequence and comparative analysis of the mitochondrial genome of the rare and endangered Clematis acerifolia, the first clematis mitogenome to provide new insights into the phylogenetic evolutionary status of the genus. Front. Genet. 2023, 13, 1050040. [Google Scholar] [CrossRef]
- Sloan, D.B. One ring to rule them all? Genome sequencing provides new insights into the ‘master circle’ model of plant mitochondrial DNA structure. New Phytol. 2013, 200, 978–985. [Google Scholar] [CrossRef]
- Li, X.; Liu, Y.; Ma, L.; Liu, B. PacBio HiFi sequencing reveals a complete circular mitogenome and frequent intracellular gene transfer in Sophora alopecuroides L. (Fabaceae). Genom. Commun. 2025, 2, e023. [Google Scholar] [CrossRef]
- Niu, Y.; Zhang, T.; Chen, M.; Chen, G.; Liu, Z.; Yu, R.; Han, X.; Chen, K.; Huang, A.; Chen, C.; et al. Analysis of the complete mitochondrial genome of the bitter gourd (Momordica charantia). Plants 2023, 12, 1686. [Google Scholar] [CrossRef]
- Du, X.; Wang, K.; Tang, Y.; Wu, J.; Yang, X.; Zhang, H.; Zhang, Z.; Liu, N. Characterization and phylogenetic analysis of the complete mitochondrial genome sequence of Lagenaria siceraria, a cucurbit crop. Front. Plant Sci. 2025, 16, 1599596. [Google Scholar] [CrossRef]
- Li, H.; Akella, S.; Engstler, C.; Omini, J.J.; Rodriguez, M.; Obata, T.; Carrie, C.; Cerutti, H.; Mower, J.P. Recurrent evolutionary switches of mitochondrial cytochrome c maturation systems in Archaeplastida. Nat. Commun. 2024, 15, 1548. [Google Scholar] [CrossRef]
- Li, X.; Zhang, S.; Li, Y.; El-Kassaby, Y.A.; Fang, Y. Mitochondrial genome of Quercus chenii: Genomic features and evolutionary implications. BMC Genom. 2025, 26, 701. [Google Scholar] [CrossRef]
- Knoop, V.; Volkmar, U.; Hecht, J.; Grewe, F. Mitochondrial genome evolution in the plant lineage. In Plant Mitochondria; Kempken, F., Ed.; Springer: New York, NY, USA, 2011; pp. 3–29. [Google Scholar]
- Chen, Z.; Wang, Z.; Zhou, W.; Liu, S.; Xiao, Y.; Gong, Y. Complete sequencing of the mitochondrial genome of tea plant Camellia sinensis cv. ‘Baihaozao’: Multichromosomal structure, phylogenetic relationships, and adaptive evolutionary analysis. Front. Plant Sci. 2025, 16, 1604404. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Zou, Y.; Mower, J.P.; Reeve, W.; Wu, Z. Rethinking the mutation hypotheses of plant organellar DNA. Genom. Commun. 2024, 1, e003. [Google Scholar] [CrossRef]
- Xia, H.; Zhao, W.; Shi, Y.; Wang, X.R.; Wang, B. Microhomologies are associated with tandem duplications and structural variation in plant mitochondrial genomes. Genome Biol. Evol. 2020, 12, 1965–1974. [Google Scholar] [CrossRef] [PubMed]
- Christensen, A.C. Plant mitochondrial genome evolution can be explained by DNA repair mechanisms. Genome Biol. Evol. 2013, 5, 1079–1086. [Google Scholar] [CrossRef]
- Mauro, V.P.; Edelman, G.M. The ribosome filter redux. Cell Cycle 2007, 6, 2246–2251. [Google Scholar] [CrossRef] [PubMed]
- Schippers, J.H.M.; Mueller-Roeber, B. Ribosomal composition and control of leaf development. Plant Sci. 2010, 179, 307–315. [Google Scholar] [CrossRef]
- Hernández-Rosales, H.S.; Castellanos-Morales, G.; Sánchez-de la Vega, G.; Aguirre-Planter, E.; Montes-Hernández, S.; Lira-Saade, R.; Eguiarte, L.E. Phylogeographic and population genetic analyses of Cucurbita moschata reveal divergence of two mitochondrial lineages linked to an elevational gradient. Am. J. Bot. 2020, 107, 510–525. [Google Scholar] [CrossRef]
- Wang, D.; Wu, Y.W.; Shih, A.C.C.; Wu, C.S.; Wang, Y.N.; Chaw, S.M. Transfer of chloroplast genomic DNA to mitochondrial genome occurred at least 300 MYA. Mol. Biol. Evol. 2007, 24, 2040–2048. [Google Scholar] [CrossRef] [PubMed]
- Sloan, D.B.; Wu, Z. History of plastid DNA insertions reveals weak deletion and at mutation biases in angiosperm mitochondrial genomes. Genome Biol. Evol. 2014, 6, 3210–3221. [Google Scholar] [CrossRef] [PubMed]








Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license.
Share and Cite
Zhu, M.; Xie, Y.; Chen, C.; Han, Y. The Complete Mitochondrial Genome of Gynostemma pentaphyllum Reveals a Multipartite Structure and Dynamic Evolution in Cucurbitaceae. Genes 2026, 17, 7. https://doi.org/10.3390/genes17010007
Zhu M, Xie Y, Chen C, Han Y. The Complete Mitochondrial Genome of Gynostemma pentaphyllum Reveals a Multipartite Structure and Dynamic Evolution in Cucurbitaceae. Genes. 2026; 17(1):7. https://doi.org/10.3390/genes17010007
Chicago/Turabian StyleZhu, Ming, Yanping Xie, Caiyan Chen, and Yun Han. 2026. "The Complete Mitochondrial Genome of Gynostemma pentaphyllum Reveals a Multipartite Structure and Dynamic Evolution in Cucurbitaceae" Genes 17, no. 1: 7. https://doi.org/10.3390/genes17010007
APA StyleZhu, M., Xie, Y., Chen, C., & Han, Y. (2026). The Complete Mitochondrial Genome of Gynostemma pentaphyllum Reveals a Multipartite Structure and Dynamic Evolution in Cucurbitaceae. Genes, 17(1), 7. https://doi.org/10.3390/genes17010007

