Clinical Utility of GBA Genotyping Prior to Deep Brain Stimulation: A Narrative Review
Abstract
1. Introduction
1.1. GBA Gene and Its Role in Parkinson’s Disease
1.1.1. Structure and Function of the GBA Gene
1.1.2. Variants of the GBA Gene and Their Impact on Disease Severity
1.1.3. Pathophysiological Mechanisms and Clinical Symptoms
1.2. Deep Brain Stimulation in Parkinson’s Disease
1.2.1. Patient Selection
1.2.2. Target Selection
1.2.3. Clinical Outcomes and Complications
2. Methodological Concerns Regarding GBA Sequencing
2.1. Sequencing Techniques
2.2. The Challenge of the GBAP Pseudegene
2.3. Interpretation and Classification of Variants
3. Influence of GBA Gene Variants on DBS Outcome
3.1. Search of the Literature
3.2. Motor Outcome
3.3. Cognitive and Behavioral Outcomes
3.4. Disease Progression
4. Clinical Utility of GBA Genotyping
4.1. Genotype-Driven Decision-Making
4.2. Goal of Therapy
4.3. Multidisciplinary Approach
5. Pharmacoeconomic Aspect of GBA Genotyping and DBS
6. Future Directions and Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
| DBS | Deep brain stimulation |
| STN | Subthalamic nucleus |
| GPi | Globus pallidus internus |
| GBA | Glucocerebrosidase (gene) |
| GBAP | Glucocerebrosidase pseudogene |
| GCase | Glucocerebrosidase (enzyme) |
| NGS | Next-generation sequencing |
| sr-NGS | Short-read next-generation sequencing |
| WGS | Whole-genome sequencing |
| PET | Positron emission tomography |
| UPDRS | Unified Parkinson’s Disease Rating Scale |
| MDS-UPDRS | Movement Disorder Society Unified Parkinson’s Disease Rating Scale |
| LEDD | Levodopa equivalent daily dose |
| QoL | Quality of life |
| NMS | Non-motor symptom |
| VUS | Variant of uncertain significance |
| CAPSIT-PD | Core Assessment Program for Surgical Interventional Therapies in Parkinson’s Disease |
| RCT | Randomized controlled trial |
| IPG | Implantable pulse generator |
| PD | Parkinson’s disease |
| PDQ-39 | Parkinson’s Disease Questionnaire |
| MMSE | Mini Mental State Examination |
| MDRS | Mattis Dementia Rating Scale |
| HTA | Health technology assessment |
References
- Zheng, W.; Fan, D. Glucocerebrosidase Mutations Cause Mitochondrial and Lysosomal Dysfunction in Parkinson’s Disease: Pathogenesis and Therapeutic Implications. Front. Aging Neurosci. 2022, 14, 851135. [Google Scholar] [CrossRef] [PubMed]
- Smith, L.; Schapira, A.H.V. GBA Variants and Parkinson Disease: Mechanisms and Treatments. Cells 2022, 11, 1261. [Google Scholar] [CrossRef] [PubMed]
- Koros, C.; Bougea, A.; Alefanti, I.; Simitsi, A.M.; Papagiannakis, N.; Pachi, I.; Sfikas, E.; Antonelou, R.; Stefanis, L. A Global Perspective of GBA1-Related Parkinson’s Disease: A Narrative Review. Genes 2024, 15, 1605. [Google Scholar] [CrossRef] [PubMed]
- Vieira, S.R.L.; Mezabrovschi, R.; Toffoli, M.; Del Pozo, S.L.; Menozzi, E.; Mullin, S.; Yalkic, S.; Limbachiya, N.; Koletsi, S.; Loefflad, N.; et al. Consensus Guidance for Genetic Counseling in GBA1 Variants: A Focus on Parkinson’s Disease. Mov. Disord. 2024, 39, 2144–2154. [Google Scholar] [CrossRef]
- Höglinger, G.; Schulte, C.; Jost, W.H.; Storch, A.; Woitalla, D.; Krüger, R.; Falkenburger, B.; Brockmann, K. GBA-Associated PD: Chances and Obstacles for Targeted Treatment Strategies. J. Neural Transm. 2022, 129, 1219–1233. [Google Scholar] [CrossRef]
- Poewe, W.; Seppi, K.; Tanner, C.M.; Halliday, G.M.; Brundin, P.; Volkmann, J.; Schrag, A.-E.; Lang, A.E. Parkinson Disease. Nat. Rev. Dis. Primers 2017, 3, 17013. [Google Scholar] [CrossRef]
- Skrahin, A.; Horowitz, M.; Istaiti, M.; Skrahina, V.; Lukas, J.; Yahalom, G.; Cohen, M.E.; Revel-Vilk, S.; Goker-Alpan, O.; Becker-Cohen, M.; et al. GBA1-Associated Parkinson’s Disease Is a Distinct Entity. Int. J. Mol. Sci. 2024, 25, 7102. [Google Scholar] [CrossRef]
- Benabid, A.L.; Pollak, P.; Louveau, A.; Henry, S.; de Rougemont, J. Combined (Thalamotomy and Stimulation) Stereotactic Surgery of the VIM Thalamic Nucleus for Bilateral Parkinson Disease. Appl. Neurophysiol. 1987, 50, 344–346. [Google Scholar] [CrossRef]
- Limousin, P.; Pollak, P.; Benazzouz, A.; Hoffmann, D.; Le Bas, J.F.; Broussolle, E.; Perret, J.E.; Benabid, A.L. Effect of Parkinsonian Signs and Symptoms of Bilateral Subthalamic Nucleus Stimulation. Lancet 1995, 345, 91–95. [Google Scholar] [CrossRef]
- Deuschl, G.; Antonini, A.; Costa, J.; Śmiłowska, K.; Berg, D.; Corvol, J.-C.; Fabbrini, G.; Ferreira, J.; Foltynie, T.; Mir, P.; et al. European Academy of Neurology/Movement Disorder Society-European Section Guideline on the Treatment of Parkinson’s Disease: I. Invasive Therapies. Eur. J. Neurol. 2022, 29, 2580–2595. [Google Scholar] [CrossRef]
- França, C.; Carra, R.B.; Diniz, J.M.; Munhoz, R.P.; Cury, R.G. Deep Brain Stimulation in Parkinson’s Disease: State of the Art and Future Perspectives. Arq. Neuro-Psiquiatr. 2022, 80, 105–115. [Google Scholar] [CrossRef] [PubMed]
- Barbosa, E.R.; Cury, R.G. Tailoring the Deep Brain Stimulation Indications in Parkinson’s Disease. Arq. Neuro-Psiquiatr. 2018, 76, 359–360. [Google Scholar] [CrossRef] [PubMed]
- Temperli, P.; Ghika, J.; Villemure, J.-G.; Burkhard, P.R.; Bogousslavsky, J.; Vingerhoets, F.J.G. How Do Parkinsonian Signs Return after Discontinuation of Subthalamic DBS? Neurology 2003, 60, 78–81. [Google Scholar] [CrossRef] [PubMed]
- Herrington, T.M.; Cheng, J.J.; Eskandar, E.N. Mechanisms of Deep Brain Stimulation. J. Neurophysiol. 2016, 115, 19–38. [Google Scholar] [CrossRef]
- Brittain, J.-S.; Brown, P. Oscillations and the Basal Ganglia: Motor Control and Beyond. NeuroImage 2014, 85, 637–647. [Google Scholar] [CrossRef]
- Fukuda, M. Networks Mediating the Clinical Effects of Pallidal Brain Stimulation for Parkinson’s Disease: A PET Study of Resting-State Glucose Metabolism. Brain 2001, 124, 1601–1609. [Google Scholar] [CrossRef]
- Asanuma, K. Network Modulation in the Treatment of Parkinson’s Disease. Brain 2006, 129, 2667–2678. [Google Scholar] [CrossRef]
- Mahlknecht, P.; Foltynie, T.; Limousin, P.; Poewe, W. How Does Deep Brain Stimulation Change the Course of Parkinson’s Disease? Mov. Disord. 2022, 37, 1581–1592. [Google Scholar] [CrossRef]
- Defer, G.L.; Widner, H.; Marié, R.M.; Rémy, P.; Levivier, M. Core Assessment Program for Surgical Interventional Therapies in Parkinson’s Disease (CAPSIT-PD). Mov. Disord. 1999, 14, 572–584. [Google Scholar] [CrossRef]
- Artusi, C.A.; Lopiano, L.; Morgante, F. Deep Brain Stimulation Selection Criteria for Parkinson’s Disease: Time to Go beyond CAPSIT-PD. J. Clin. Med. 2020, 9, 3931. [Google Scholar] [CrossRef]
- Schuepbach, W.M.M.; Rau, J.; Knudsen, K.; Volkmann, J.; Krack, P.; Timmermann, L.; Hälbig, T.D.; Hesekamp, H.; Navarro, S.M.; Meier, N.; et al. Neurostimulation for Parkinson’s Disease with Early Motor Complications. N. Engl. J. Med. 2013, 368, 610–622. [Google Scholar] [CrossRef] [PubMed]
- Schüpbach, W.M.M.; Maltête, D.; Houeto, J.L.; du Montcel, S.T.; Mallet, L.; Welter, M.L.; Gargiulo, M.; Béhar, C.; Bonnet, A.M.; Czernecki, V.; et al. Neurosurgery at an Earlier Stage of Parkinson Disease: A Randomized, Controlled Trial. Neurology 2007, 68, 267–271. [Google Scholar] [CrossRef] [PubMed]
- Munhoz, R.P.; Picillo, M.; Fox, S.H.; Bruno, V.; Panisset, M.; Honey, C.R.; Fasano, A. Eligibility Criteria for Deep Brain Stimulation in Parkinson’s Disease, Tremor, and Dystonia. Can. J. Neurol. Sci. 2016, 43, 462–471. [Google Scholar] [CrossRef] [PubMed]
- Zampogna, A.; Cavallieri, F.; Bove, F.; Suppa, A.; Castrioto, A.; Meoni, S.; Pélissier, P.; Schmitt, E.; Bichon, A.; Lhommée, E.; et al. Axial Impairment and Falls in Parkinson’s Disease: 15 Years of Subthalamic Deep Brain Stimulation. npj Park. Dis. 2022, 8, 121. [Google Scholar] [CrossRef]
- Fasano, A.; Aquino, C.C.; Krauss, J.K.; Honey, C.R.; Bloem, B.R. Axial Disability and Deep Brain Stimulation in Patients with Parkinson Disease. Nat. Rev. Neurol. 2015, 11, 98–110. [Google Scholar] [CrossRef]
- Aquino, C.H.D.; Moscovich, M.; Marinho, M.M.; Barcelos, L.B.; Felício, A.C.; Halverson, M.; Hamani, C.; Ferraz, H.B.; Munhoz, R.P. Fundamentals of Deep Brain Stimulation for Parkinson’s Disease in Clinical Practice: Part 1. Arq. Neuropsiquiatr. 2024, 82, 001–009. [Google Scholar] [CrossRef]
- Rughani, A.I.; Hodaie, M.; Lozano, A.M. Acute Complications of Movement Disorders Surgery: Effects of Age and Comorbidities. Mov. Disord. 2013, 28, 1661–1667. [Google Scholar] [CrossRef]
- Castrioto, A.; Lhommée, E.; Moro, E.; Krack, P. Mood and Behavioural Effects of Subthalamic Stimulation in Parkinson’s Disease. Lancet Neurol. 2014, 13, 287–305. [Google Scholar] [CrossRef]
- Geraedts, V.J.; Kuijf, M.L.; Van Hilten, J.J.; Marinus, J.; Oosterloo, M.; Contarino, M.F. Selecting Candidates for Deep Brain Stimulation in Parkinson’s Disease: The Role of Patients’ Expectations. Park. Relat. Disord. 2019, 66, 207–211. [Google Scholar] [CrossRef]
- Rački, V.; Hero, M.; Rožmarić, G.; Papić, E.; Raguž, M.; Chudy, D.; Vuletić, V. Cognitive Impact of Deep Brain Stimulation in Parkinson’s Disease Patients: A Systematic Review. Front. Hum. Neurosci. 2022, 16, 867055. [Google Scholar] [CrossRef]
- Paschen, S.; Deuschl, G. Patient Evaluation and Selection for Movement Disorders Surgery: The Changing Spectrum of Indications. In Progress in Neurological Surgery; Niranjan, A., Lunsford, L.D., Richardson, R.M., Eds.; S. Karger AG: Basel, Switzerland, 2018; Volume 33, pp. 80–93. ISBN 978-3-318-06201-4. [Google Scholar]
- Harmsen, I.E.; Wolff Fernandes, F.; Krauss, J.K.; Lozano, A.M. Where Are We with Deep Brain Stimulation? A Review of Scientific Publications and Ongoing Research. Stereotact. Funct. Neurosurg. 2022, 100, 184–197. [Google Scholar] [CrossRef]
- Mansouri, A.; Taslimi, S.; Badhiwala, J.H.; Witiw, C.D.; Nassiri, F.; Odekerken, V.J.J.; De Bie, R.M.A.; Kalia, S.K.; Hodaie, M.; Munhoz, R.P.; et al. Deep Brain Stimulation for Parkinson’s Disease: Meta-Analysis of Results of Randomized Trials at Varying Lengths of Follow-Up. J. Neurosurg. 2018, 128, 1199–1213. [Google Scholar] [CrossRef]
- Hartmann, C.J.; Fliegen, S.; Groiss, S.J.; Wojtecki, L.; Schnitzler, A. An Update on Best Practice of Deep Brain Stimulation in Parkinson’s Disease. Ther. Adv. Neurol. Disord. 2019, 12, 1756286419838096. [Google Scholar] [CrossRef] [PubMed]
- Zampogna, A.; Suppa, A.; Bove, F.; Cavallieri, F.; Castrioto, A.; Meoni, S.; Pelissier, P.; Schmitt, E.; Chabardes, S.; Fraix, V.; et al. Disentangling Bradykinesia and Rigidity in Parkinson’s Disease: Evidence from Short- and Long-Term Subthalamic Nucleus Deep Brain Stimulation. Ann. Neurol. 2024, 96, 234–246. [Google Scholar] [CrossRef] [PubMed]
- Starr, P.A.; Shivacharan, R.S.; Goldberg, E.; Tröster, A.I.; House, P.A.; Giroux, M.L.; Hebb, A.O.; Whiting, D.M.; Leichliter, T.A.; Ostrem, J.L.; et al. Five-Year Outcomes from Deep Brain Stimulation of the Subthalamic Nucleus for Parkinson Disease. JAMA Neurol. 2025, 82, 1181. [Google Scholar] [CrossRef] [PubMed]
- Tsuboi, T.; Watanabe, H.; Tanaka, Y.; Ohdake, R.; Yoneyama, N.; Hara, K.; Nakamura, R.; Watanabe, H.; Senda, J.; Atsuta, N.; et al. Distinct Phenotypes of Speech and Voice Disorders in Parkinson’s Disease after Subthalamic Nucleus Deep Brain Stimulation. J. Neurol. Neurosurg. Psychiatry 2015, 86, 856–864. [Google Scholar] [CrossRef]
- Kurtis, M.M.; Rajah, T.; Delgado, L.F.; Dafsari, H.S. The Effect of Deep Brain Stimulation on the Non-Motor Symptoms of Parkinson’s Disease: A Critical Review of the Current Evidence. npj Park. Dis. 2017, 3, 16024. [Google Scholar] [CrossRef]
- Rossi, M.; Bruno, V.; Arena, J.; Cammarota, Á.; Merello, M. Challenges in PD Patient Management After DBS: A Pragmatic Review. Movement Disord. Clin. Pract. 2018, 5, 246–254. [Google Scholar] [CrossRef]
- El Ghazal, N.; Nakanishi, H.; Martinez-Nunez, A.E.; Al Sabbakh, N.K.; Segun-Omosehin, O.A.; Bourdakos, N.E.; Nasser, M.; Matar, R.H.; Than, C.; Danoun, O.A.; et al. The Effects of Deep Brain Stimulation on Mood and Quality of Life in Parkinson’s Disease: A Systematic Review and Meta-Analysis. Cureus 2023, 15, e44177. [Google Scholar] [CrossRef]
- Voon, V.; Krack, P.; Lang, A.E.; Lozano, A.M.; Dujardin, K.; Schüpbach, M.; D’Ambrosia, J.; Thobois, S.; Tamma, F.; Herzog, J.; et al. A Multicentre Study on Suicide Outcomes Following Subthalamic Stimulation for Parkinson’s Disease. Brain 2008, 131, 2720–2728. [Google Scholar] [CrossRef]
- Soulas, T.; Gurruchaga, J.-M.; Palfi, S.; Cesaro, P.; Nguyen, J.-P.; Fenelon, G. Attempted and Completed Suicides after Subthalamic Nucleus Stimulation for Parkinson’s Disease. J. Neurol. Neurosurg. Psychiatry 2008, 79, 952–954. [Google Scholar] [CrossRef] [PubMed]
- Woo, E.G.; Tayebi, N.; Sidransky, E. Next-Generation Sequencing Analysis of GBA1: The Challenge of Detecting Complex Recombinant Alleles. Front. Genet. 2021, 12, 684067. [Google Scholar] [CrossRef] [PubMed]
- Cuconato, G.; Palmieri, I.; Percetti, M.; Pagliarani, S.; Tenace, S.; Morelli, M.J.; Zapparoli, E.; Avenali, M.; Carelli, V.; Dentelli, P.; et al. LONG-NEXT: A New Accurate and Efficient NGS-Based Method for GBA1 Analysis in Parkinson Disease. Park. Relat. Disord. 2025, 134, 107780. [Google Scholar] [CrossRef] [PubMed]
- Pachchek, S.; Landoulsi, Z.; Pavelka, L.; Schulte, C.; Buena-Atienza, E.; Gross, C.; Hauser, A.-K.; Reddy Bobbili, D.; Casadei, N.; May, P.; et al. Accurate Long-Read Sequencing Identified GBA1 as Major Risk Factor in the Luxembourgish Parkinson’s Study. npj Park. Dis. 2023, 9, 156. [Google Scholar] [CrossRef]
- Toffoli, M.; Chen, X.; Sedlazeck, F.J.; Lee, C.-Y.; Mullin, S.; Higgins, A.; Koletsi, S.; Garcia-Segura, M.E.; Sammler, E.; Scholz, S.W.; et al. Comprehensive Short and Long Read Sequencing Analysis for the Gaucher and Parkinson’s Disease-Associated GBA Gene. Commun. Biol. 2022, 5, 670. [Google Scholar] [CrossRef]
- Tayebi, N.; Lichtenberg, J.; Hertz, E.; Sidransky, E. Is Gauchian Genotyping of GBA1 Variants Reliable? Commun. Biol. 2025, 8, 718. [Google Scholar] [CrossRef]
- Gabbert, C.; Schaake, S.; Lüth, T.; Much, C.; Klein, C.; Aasly, J.O.; Farrer, M.J.; Trinh, J. GBA1 in Parkinson’s Disease: Variant Detection and Pathogenicity Scoring Matters. BMC Genom. 2023, 24, 322. [Google Scholar] [CrossRef]
- Rozenberg, R.; de Araujo, F.T.; Chien, H.F.; Barbosa, E.R.; Pereira, L.V. The Most Common Structural Variant Expected at the GBA1 Locus May Be Detected by a Simple Amplification Method: Implications for Screening Parkinson’s Disease Variants. Clin. Park. Relat. Disord. 2025, 12, 100338. [Google Scholar] [CrossRef]
- Asimakidou, E.; Xiromerisiou, G.; Sidiropoulos, C. Motor and Non-Motor Outcomes of Deep Brain Stimulation across the Genetic Panorama of Parkinson’s Disease: A Multi-Scale Meta-Analysis. Mov. Disord. Clin. Pract. 2024, 11, 465–477. [Google Scholar] [CrossRef]
- Pal, G.; Mangone, G.; Hill, E.J.; Ouyang, B.; Liu, Y.; Lythe, V.; Ehrlich, D.; Saunders-Pullman, R.; Shanker, V.; Bressman, S.; et al. Parkinson Disease and Subthalamic Nucleus Deep Brain Stimulation: Cognitive Effects in GBA Mutation Carriers. Ann. Neurol. 2022, 91, 424–435. [Google Scholar] [CrossRef]
- Avenali, M.; Artusi, C.A.; Cilia, R.; Giannini, G.; Cuconato, G.; Albanese, A.; Golfrè Andreasi, N.; Antenucci, P.; Antonini, A.; Avanzino, L.; et al. Long-Term Motor and Cognitive Outcome of Deep Brain Stimulation in Patients With Parkinson Disease With a GBA1 Pathogenic Variant. Neurology 2025, 105, e214036. [Google Scholar] [CrossRef] [PubMed]
- Kovanda, A.; Rački, V.; Bergant, G.; Georgiev, D.; Flisar, D.; Papić, E.; Brankovic, M.; Jankovic, M.; Svetel, M.; Teran, N.; et al. A Multicenter Study of Genetic Testing for Parkinson’s Disease in the Clinical Setting. npj Park. Dis. 2022, 8, 149. [Google Scholar] [CrossRef] [PubMed]
- Hassanin, E.; Landoulsi, Z.; Pachchek, S.; Krawitz, P.; Maj, C.; Krüger, R.; May, P.; Bobbili, D.R. Penetrance of Parkinson’s Disease in GBA1 Carriers Depends on Variant Severity and Polygenic Background. npj Park. Dis. 2025, 11, 162. [Google Scholar] [CrossRef] [PubMed]
- Avenali, M.; Zangaglia, R.; Cuconato, G.; Palmieri, I.; Albanese, A.; Artusi, C.A.; Bozzali, M.; Calandra-Buonaura, G.; Cavallieri, F.; Cilia, R.; et al. Are Patients with GBA-Parkinson Disease Good Candidates for Deep Brain Stimulation? A Longitudinal Multicentric Study on a Large Italian Cohort. J. Neurol. Neurosurg. Psychiatry 2024, 95, 309–315. [Google Scholar] [CrossRef]
- Mangone, G.; Bekadar, S.; Cormier-Dequaire, F.; Tahiri, K.; Welaratne, A.; Czernecki, V.; Pineau, F.; Karachi, C.; Castrioto, A.; Durif, F.; et al. Early Cognitive Decline after Bilateral Subthalamic Deep Brain Stimulation in Parkinson’s Disease Patients with GBA Mutations. Park. Relat. Disord. 2020, 76, 56–62. [Google Scholar] [CrossRef]
- Pal, G.D.; Hall, D.; Ouyang, B.; Phelps, J.; Alcalay, R.; Pauciulo, M.W.; Nichols, W.C.; Clark, L.; Mejia-Santana, H.; Blasucci, L.; et al. Genetic and Clinical Predictors of Deep Brain Stimulation in Young-Onset Parkinson’s Disease. Mov. Disord. Clin. Pract. 2016, 3, 465–471. [Google Scholar] [CrossRef]
- Lythe, V.; Athauda, D.; Foley, J.; Mencacci, N.E.; Jahanshahi, M.; Cipolotti, L.; Hyam, J.; Zrinzo, L.; Hariz, M.; Hardy, J.; et al. GBA-Associated Parkinson’s Disease: Progression in a Deep Brain Stimulation Cohort. J. Park. Dis. 2017, 7, 635–644. [Google Scholar] [CrossRef]
- Angeli, A.; Mencacci, N.E.; Duran, R.; Aviles-Olmos, I.; Kefalopoulou, Z.; Candelario, J.; Rusbridge, S.; Foley, J.; Pradhan, P.; Jahanshahi, M.; et al. Genotype and Phenotype in Parkinson’s Disease: Lessons in Heterogeneity from Deep Brain Stimulation. Mov. Disord. 2013, 28, 1370–1375. [Google Scholar] [CrossRef]
- Fernández-Vidal, J.M.; Aracil-Bolaños, I.; García-Sánchez, C.; Campolongo, A.; Curell, M.; Rodríguez-Rodriguez, R.; Aibar-Duran, J.Á.; Kulisevsky, J.; Pascual-Sedano, B. Cognitive Phenotyping of GBA1-Parkinson’s Disease: A Study on Deep Brain Stimulation Outcomes. Park. Relat. Disord. 2024, 128, 107127. [Google Scholar] [CrossRef]
- Kamo, H.; Oyama, G.; Shimizu, M.; Takeshige-Amano, H.; Ogawa, T.; Sako, W.; Nishikawa, N.; Hatano, T.; Li, Y.; Yoshino, H.; et al. Motor and Cognitive Outcome After Subthalamic Nucleus Deep Brain Stimulation in Patients with Parkinson’s Disease Harboring GBA1 Variant. Mov. Disord. Clin. Pract. 2025. Online ahead of print. [CrossRef]
- Anis, S.; Goldberg, T.; Shvueli, E.; Kozlov, Y.; Redlich, Y.; Lavi, N.; Lavie, I.; Sosero, Y.L.; Gan-Or, Z.; Ungar, L.; et al. Are LRRK2 p.G2019S or GBA1 Variants Associated with Long-Term Outcomes of Deep Brain Stimulation for Parkinson’s Disease? Park. Relat. Disord. 2024, 124, 106008. [Google Scholar] [CrossRef]
- Wu, S.; Cen, Z.; Zheng, X.; Xie, F.; Luo, W. Investigation of the Impact of Deep Brain Stimulation of the Subthalamic Nucleus on Parkinson Disease Patients with Genetic Risk Factors/Causes. World Neurosurg. 2025, 198, 124021. [Google Scholar] [CrossRef] [PubMed]
- Weiss, D.; Brockmann, K.; Srulijes, K.; Meisner, C.; Klotz, R.; Reinbold, S.; Hauser, A.-K.; Schulte, C.; Berg, D.; Gasser, T.; et al. Long-Term Follow-up of Subthalamic Nucleus Stimulation in Glucocerebrosidase-Associated Parkinson’s Disease. J. Neurol. 2012, 259, 1970–1972. [Google Scholar] [CrossRef] [PubMed]
- Palakuzhy, V.G.; Pal, G.D.; Afshari, M. Acute Neuropsychiatric Decline in a Parkinson’s Disease Patient with a Severe GBA1 Mutation Following Bilateral GPi Deep Brain Stimulation. Mov. Disord. Clin. Pract. 2025, 12, 875–877. [Google Scholar] [CrossRef] [PubMed]
- Racki, V.; Papic, E.; Almahariq, F.; Chudy, D.; Vuletic, V. The Successful Three-Year Outcome of Deep Brain Stimulation in Gaucher Disease Type 1 Associated Parkinson’s Disease: A Case Report. Mov. Disord. Clin. Pract. 2021, 8, 604–606. [Google Scholar] [CrossRef]
- Rački, V.; Hero, M.; Papić, E.; Rožmarić, G.; Čizmarević, N.S.; Chudy, D.; Peterlin, B.; Vuletić, V. Applicability of Clinical Genetic Testing for Deep Brain Stimulation Treatment in Monogenic Parkinson’s Disease and Monogenic Dystonia: A Multidisciplinary Team Perspective. Front. Neurosci. 2023, 17, 1282267. [Google Scholar] [CrossRef]
- Neri, M.; Braccia, A.; Panteghini, C.; Garavaglia, B.; Gualandi, F.; Cavallo, M.A.; Scerrati, A.; Ferlini, A.; Sensi, M. Parkinson’s Disease-Dementia in Trans LRP10 and GBA Variants: Response to Deep Brain Stimulation. Park. Relat. Disord. 2021, 92, 72–75. [Google Scholar] [CrossRef]
- Ledda, C.; Artusi, C.A.; Montanaro, E.; Martone, T.; Zibetti, M.; Lopiano, L. G325R GBA Mutation in Parkinson’s Disease: Disease Course and Long-Term DBS Outcome. Brain Stimul. Basic Transl. Clin. Res. Neuromodulation 2021, 14, 1169–1171. [Google Scholar] [CrossRef]
- Sasidharan, A.; Bagepally, B.S.; Kumar, S.S. Cost Effectiveness of Deep Brain Stimulation for Parkinson’s Disease: A Systematic Review. Appl. Health Econ. Health Policy 2024, 22, 181–192. [Google Scholar] [CrossRef]
- Zúñiga-Ramírez, C.; Farías-Moreno, K.C.; Moreno, G.; Gómez-Figueroa, E.; Caicedo-Ortíz, H.E.; Carrillo-Ruíz, J.D. The Costs and Benefits of Deep Brain Stimulation in Parkinson’s Disease: A Review and Social Network Analysis. Arquivos de Neuro-Psiquiatria 2025, 83, 001–011. [Google Scholar] [CrossRef]
- Bishay, A.E.; Lyons, A.T.; Koester, S.W.; Paulo, D.L.; Liles, C.; Dambrino, R.J.; Feldman, M.J.; Ball, T.J.; Bick, S.K.; Englot, D.J.; et al. Global Economic Evaluation of the Reported Costs of Deep Brain Stimulation. Stereotact. Funct. Neurosurg. 2024, 102, 257–274. [Google Scholar] [CrossRef]
- Straniero, L.; Rimoldi, V.; Melistaccio, G.; Di Fonzo, A.; Pezzoli, G.; Duga, S.; Asselta, R. A Rapid and Low-Cost Test for Screening the Most Common Parkinson’s Disease-Related GBA Variants. Park. Relat. Disord. 2020, 80, 138–141. [Google Scholar] [CrossRef]
- Belančić, A.; Faour, A.K.; Gkrinia, E.M.M.; Vitezić, D. A Systematic Review of Economic Evaluations of Orphan Medicines for the Management of Spinal Muscular Atrophy. Br. J. Clin. Pharmacol. 2025, 91, 95–116. [Google Scholar] [CrossRef]
| Reference | Study Type | Patient Number | Outcome | Key Result/Follow-Up |
|---|---|---|---|---|
| Avenali et al. [55] | Retrospective case–control study | GBA+ STN-DBS n = 73 STN-DBS n = 292 | Motor: Marked motor improvement, significant reduction in fluctuations and dyskinesias. Cognitive: Faster worsening at three-year follow-up, overt dementia diagnosis in 11% non-GBA-PD vs. 25% GBA-PD at 5-year follow-up. Cognitive test: Mattis Dementia Rating Scale (MDRS). | Follow-up: 5 years. Key result: Patients with GBA mutations had a long-term benefit in terms of motor performance. Majority did not develop dementia. |
| Avenali et al. [52] | Multicenter retrospective controlled cohort study | GBA+ STN-DBS n = 109 STN-DBS n = 430 GBA+ n = 76 | Motor: Marked and sustained motor improvement in both DBS groups; non-DBS GBA+ showed progressive worsening. Cognitive: Both GBA+ groups declined similarly. DBS did not accelerate cognitive decline compared to non-DBS. Cognitive test: MDRS. | Follow-up: Up to 5 years. Key result: Cognitive trajectory driven by genotype rather than DBS. Quality of life improved in DBS groups but worsened in non-DBS GBA+. STN vs. GPi and variant class showed no major differences. |
| Pal et al. [51] | Retrospective case–control study | GBA STN-DBS n = 58 GBA+ n = 73 STN-DBS n = 92 GBA- DBS- n = 128 | Motor: Not longitudinally examined; similar postoperative UPDRS III regardless of GBA status. Cognitive: GBA+DBS+ subjects declined on average 2.02 points/yr more than GBA-DBS- subjects, 1.71 points/yr more than GBA+DBS- subjects, and 1.49 points/yr more than GBA-DBS+ subjects. Cognitive test: MDRS. | Follow-up: 3–5 years after surgery. Key result: Composite analysis suggests that the combined effects of GBA mutations and STN-DBS negatively impact cognition. |
| Pal et al. [57] | Retrospective cross-sectional study | GBA+ STN-DBS n = 11 STN-DBS n = 72 | Motor: Similar UPDRS III scores to non-mutation carriers. Cognitive: Similar Mini Mental State Examination (MMSE) scores to non-mutation carriers. Cognitive test: MMSE. | Follow-up: Up to 2 years. Key result: Patients with GBA mutations had quicker DBS from disease onset than non-mutation carriers, with similar motor and cognitive outcomes. |
| Mangone et al. [56] | Retrospective case–control study | GBA+ STN-DBS n = 25 STN-DBS n = 143 | Motor: Good motor outcome as measured by UPDRS III and UPDRS IV scores in both groups. Cognitive: More pronounced cognitive decline in GBA patients (−3.2 ± 5.1) compared to non-mutation carriers (−1.4 ± 4.4). Cognitive test: MDRS. | Follow-up: One year. Key result: GBA+ is associated with early cognitive decline after DBS. Cognitive decline in GBA mutation carriers was independent of age. |
| Lythe et al. [58] | Prospective case–control study | GBA+ STN-DBS n = 15 GBA+ GPi-DBS n = 2 STN-DBS n = 17 | Motor: Trends of increased motor worsening in GBA patients compared to non-mutation carriers; these were not statistically significant. Cognitive: Statistically significant worsening with 70% prevalence in GBA patients compared to 19% in non-mutation carriers. Cognitive test: MDRS. | Follow-up: 7.5-year mean follow-up. Key results: These results associate GBA variants with more prevalent and more severe cognitive impairment and a greater burden of non-motor symptoms. |
| Angeli et al. [59] | Prospective case–control study | GBA+ STN-DBS n = 13 GBA+ GPi-DBS n = 2 GBA+ VIM-DBS n = 1 STN-DBS n = 65 GPi-DBS n = 2 | Motor: Similar motor improvement between both groups (61.0 ± 18.3 percentage improvement in GBA vs. 68.5 ± 19.3 percentage improvement in non-mutation carriers). Cognitive: Longitudinal 5-year follow-up data were available for 35 individuals; all had undergone STN-DBS, and 6 had GBA mutations. The mean ± SD decline for patients with GBA mutations was 4.4 ± 7.3 points per year compared with 0.5 ± 0.9 points per year among non-mutation carriers. Cognitive test: MDRS. | Follow-up: 1-year follow-up for most patients. Key result: Similarly good motor outcomes, with worse cognitive outcomes in GBA patients. Subgroup of 35 patients (6 had GBA) showed significantly higher cognitive deterioration. |
| Asimakidou et al. [50] | Meta-analysis | GBA+ STN-DBS n = 118 GBA+ GPi-DBS n = 4 GBA+ VIM-DBS n = 1 STN-DBS n = 667 | Motor: GBA carriers with STN-DBS have good motor and pharmacological outcomes. Cognitive: Statistically significant cognitive decline, more prominent if associated with severe mutations. GPi DBS patients showed minor cognitive decline. Cognitive test: MDRS and MMSE scores converted to MoCA using validated methods. | Follow-up: 2.4-year mean follow-up. Key result: GBA carriers undergoing STN-DBS had good motor and pharmacological outcomes, but they experienced the worst cognitive outcomes and the worst quality of life of the tested groups. |
| Fernández-Vidal et al. [60] | Retrospective cohort study | GBA+ STN-DBS n = 13 STN-DBS n = 96 total (non-GBA subdivided into fast and slow progressors) | Motor: Similar motor improvement across all groups; slow progressors had the greatest LEDD reduction. Cognitive: GBA+ patients showed greater decline in attention, conceptualization, and memory; fast-progressor non-GBA group showed early decline in executive functions. Cognitive test: MDRS, frontal Systems Behavior Scale (FrSBe). | Follow-up: Retrospective; 2004–2023 time period. Key result: GBA-PD patients experience more rapid cognitive decline despite good motor response. Baseline MDRS did not predict postoperative cognition. |
| Kamo et al. [61] | Retrospective cohort study with propensity score matching | GBA+ STN-DBS n = 54 (matched n = 50) STN-DBS n = 253 (matched n = 50) | Motor: Comparable improvement; GBA carriers showed slightly worsened OFF-med/OFF-stim scores at 5 years. Cognitive: No significant differences; MMSE remained stable in both groups. Cognitive test: MMSE. | Follow-up: Up to 5-year follow-up. Key result: No major motor or cognitive impact of GBA status on DBS outcomes. LEDD decreased similarly in both groups. |
| Anis et al. [62] | Retrospective case–control study | GBA+ STN-DBS n = 20 STN-DBS n = 64 | Motor: No significant differences in long-term motor outcomes between genetic groups. Cognitive: GBA+ had increased risk of cognitive decline (HR 2.28). Psychiatric: GBA+ had increased risk of psychotic episodes (HR 2.76). | Follow-up: 7-year follow-up. Key result: GBA variants were associated with higher neuropsychiatric and cognitive burden, despite preserved motor benefit. |
| Wu et al. [63] | Retrospective cohort study | GBA+ STN-DBS n = 3 LRRK2 n = 9 Parkin/PINK1/DJ1 n = 6 | Motor: All groups benefited, but GBA carriers had significantly smaller motor improvements (β −24.94 vs. LRRK2; β −23.61 vs. Parkin/PINK1/DJ1). Cognitive/QoL: Smaller PDQ-39 gains in GBA carriers. Cognitive test: MMSE and MoCA. | Follow-up: Up to 2-year follow-up. Key result: GBA carriers showed reduced motor and quality-of-life benefits compared with other genetic PD groups. |
| Weiss et al. [64] | Case series | GBA+ STN-DBS n = 3 STN-DBS n = 6 | Motor: Marked motor improvement, significant reduction in fluctuations and dyskinesias. Increased incidence of axial symptoms in longer follow-up Cognitive: All GBA+ patients and 33% of controls developed cognitive impairment. All patients developed depression. | Follow-up: Up to 10-year follow-up. Key result: Long-term benefit in terms of motor symptoms, with later-onset axial symptomatology. All GBA+ patients developed cognitive impairment. |
| Palakuzhy et al. [65] | Case report | GBA+ GPi-DBS n = 1 | Motor: Good motor response to GPi stimulation. Cognitive: Rapid severe decline—delirium, hallucinations, anxiety, and progression to dementia within months. Cognitive test: MoCA. | Follow-up: 7-year follow-up. Key result: Severe GBA mutation (L444P) associated with dramatic neuropsychiatric deterioration post-DBS, possibly influenced by multiple risk factors. |
| Racki et al. [66] | Case report | GBA+ STN-DBS n = 1 | Motor: Marked and sustained motor improvement over three years, with reduction in motor fluctuations and dyskinesia. Cognitive: Stable neurocognitive profile; no major decline during follow-up. Cognitive test: MoCA. | Follow-up: 3-year follow-up. Key result: Successful DBS outcome in GBA-associated PD within Gaucher disease type 1. |
| Racki et al. [67] | Case report | GBA+ STN-DBS n = 1 | Motor: Marked and sustained motor improvement over five years, with reduction in motor fluctuations and dyskinesia. Cognitive: Stable neurocognitive profile; no major decline during follow-up. Cognitive test: MoCA. | Follow-up: 5-year follow-up. Key result: Successful DBS outcome in GBA-associated PD within Gaucher disease type 1. |
| Neri et al. [68] | Case report | LRP10 + GBA variant carrier undergoing DBS n = 1 | Motor: Good motor improvement post-DBS. Cognitive: Presence of Parkinson’s disease dementia; DBS yielded partial symptomatic benefit, but disease progression continued. Cognitive test: MMSE. | Follow-up: 4 years post-surgery. Key result: Highlights complexity of DBS decision-making in combined LRP10- and GBA-variant carriers and the need for careful cognitive monitoring. |
| Ledda et al. [69] | Case report | GBA G325R variant PD patient with STN-DBS n = 1 | Motor: Sustained long-term motor benefit with reduction in off-periods and dyskinesias. Cognitive: Cognitive function largely preserved despite long disease duration. Cognitive test: MMSE. | Follow-up: 14-year follow-up. Key result: Good DBS outcome in this GBA G325R mutation carrier, supporting potential suitability for DBS. |
| Group definitions: GBA+ indicates PD patients carrying pathogenic or likely pathogenic GBA variants; GBA− indicates non-carriers. STN-DBS, GPi-DBS, and VIM-DBS denote DBS targeting the subthalamic nucleus, globus pallidus internus, or ventral intermediate nucleus, respectively. DBS− refers to non-DBS comparator cohorts. Abbreviations: DBS, deep brain stimulation; STN, subthalamic nucleus; GPi, globus pallidus internus; VIM, ventral intermediate nucleus; PD, Parkinson’s disease; GBA, glucocerebrosidase gene; UPDRS, Unified Parkinson’s Disease Rating Scale; LEDD, levodopa equivalent daily dose; MDRS, Mattis Dementia Rating Scale; MMSE, Mini Mental State Examination; MoCA, Montreal Cognitive Assessment; PDQ-39, Parkinson’s Disease Questionnaire-39; QoL, quality of life. | ||||
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2026 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license.
Share and Cite
Rački, V.; Lasić, S.; Ðerke, F.; Belančić, A.; Sošić, M. Clinical Utility of GBA Genotyping Prior to Deep Brain Stimulation: A Narrative Review. Genes 2026, 17, 69. https://doi.org/10.3390/genes17010069
Rački V, Lasić S, Ðerke F, Belančić A, Sošić M. Clinical Utility of GBA Genotyping Prior to Deep Brain Stimulation: A Narrative Review. Genes. 2026; 17(1):69. https://doi.org/10.3390/genes17010069
Chicago/Turabian StyleRački, Valentino, Slaven Lasić, Filip Ðerke, Andrej Belančić, and Matija Sošić. 2026. "Clinical Utility of GBA Genotyping Prior to Deep Brain Stimulation: A Narrative Review" Genes 17, no. 1: 69. https://doi.org/10.3390/genes17010069
APA StyleRački, V., Lasić, S., Ðerke, F., Belančić, A., & Sošić, M. (2026). Clinical Utility of GBA Genotyping Prior to Deep Brain Stimulation: A Narrative Review. Genes, 17(1), 69. https://doi.org/10.3390/genes17010069

