Genes and Genetic Pathways Regarding the Etiology and Pathogenesis of Ameloblastoma
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Design and Literature Search Strategy
- (“sonic hedgehog” OR “SHH” OR “smoothened” OR “SMO” OR “patched” OR “PTCH” OR “GLI1” OR “GLI2” OR “GLI3”) AND “ameloblastoma”;
- (“mitogen-activated protein kinase” OR “MAPK” OR “RAF” OR “BRAF” OR “RAS” OR “KRAS” OR “NRAS” OR “HRAS”) AND “ameloblastoma”;
- (“WNT” OR “catenin” OR “CTNNB” OR “CTNNB1”) AND “ameloblastoma”;
- (“phosphoinositide 3-kinase” OR “PI3K” OR “AKT” OR “mTOR” OR “PTEN”) AND “ameloblastoma”;
- (“TP53” OR “p53” OR “MDM2”) AND “ameloblastoma”;
- (“epigenetic” OR “methylation” OR “histone” OR “miRNA” OR “microRNA” OR “ncRNA” OR “lncRNA” OR “circRNA”) AND “ameloblastoma”;
- (“microenvironment” OR “fibroblast” OR “myofibroblast” OR “alpha smooth muscle actin” OR “α-SMA”) AND “ameloblastoma”.
2.2. Inclusion Criteria and Study Selection
2.3. Data Synthesis
3. Results and Discussion
3.1. Molecular Signaling Pathways in Ameloblastoma
3.2. Mitogen-Activated Protein Kinase (MAPK) Signaling Pathway
3.2.1. Signaling Pathway Overview and Relevance to Ameloblastoma
3.2.2. MAPK Pathway Mutations: The Role of BRAF V600E in Ameloblastoma Pathogenesis
3.3. Sonic Hedgehog (SHH) Signaling Pathway
3.3.1. Signaling Pathway Overview and Relevance to Ameloblastoma
3.3.2. SHH Pathway Mutations: Smoothened (SMO) Mutations as a “Second Hit” in Ameloblastoma Pathogenesis
3.4. WNT/β-Catenin Signaling Pathway
3.4.1. Pathway Overview and Biological Relevance
3.4.2. WNT/β-Catenin Signaling in Ameloblastoma
3.5. PI3K/AKT Signaling Pathway
3.5.1. Pathway Overview and Biological Function
3.5.2. PI3K/AKT Signaling in Ameloblastoma
3.6. Other Selected Mutations and Their Potential Effects
3.6.1. TP53
3.6.2. KMTD2
3.6.3. CDC73
3.6.4. HSPA4
3.7. Epigenetic Modifications
3.8. Cells of the Extracellular Matrix
3.9. Limitations and Future Directions
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
| α-SMA | Alpha smooth muscle actin |
| AKT | Protein kinase B (ΡΚΒ) |
| ALKBH5 | AlkB homolog 5, RNA demethylase |
| ANKRD31 | Ankyrin repeat domain 31 |
| APC | Adenomatous polyposis coli |
| BAIAP2 | Brain-specific angiogenesis inhibitor 1-associated protein 2 |
| BAX | BCL2-associated X protein |
| BCOR | BCL6 corepressor |
| BRAF | v-raf murine sarcoma viral oncogene homolog B |
| CDC73 | Cell division cycle 73 (Parafibromin) |
| CDK2 | Cyclin-dependent kinase 2 |
| CDK4 | Cyclin-dependent kinase 4 |
| CDK6 | Cyclin-dependent kinase 6 |
| circRNA circ_0089153 | Circular RNA circ_0089153 |
| CK1 | Casein kinase 1 |
| CLTC | Clathrin heavy chain |
| CpG | 5’-cytosine-phosphate-guanine-3’ |
| CREBBP | CREB-binding protein |
| CTNNB1 | Catenin beta 1 |
| CTNNBIP1 | Catenin beta-interacting protein 1 |
| DHX29 | DExH-box helicase 29 |
| DNMT1 | DNA methyltransferase 1 |
| DNMT3A | DNA methyltransferase 3 alpha |
| DNMT3B | DNA methyltransferase 3 beta |
| DUSP6 | Dual specificity phosphatase 6 |
| EGFR | Epidermal growth factor receptor |
| ERK | Extracellular signal-regulated kinase |
| FGF-7 | Fibroblast Growth Factor 7 |
| FGF-10 | Fibroblast Growth Factor 10 |
| FGFR2 | Fibroblast growth factor receptor 2 |
| FOXF2 | Forkhead box F2 |
| FOXO | Forkhead box O transcription factor |
| FZD | Frizzled |
| GLI | Glioma associated |
| GLI1 | GLI family zinc finger 1 |
| GLI2 | GLI family zinc finger 2 |
| GLI3 | GLI family zinc finger 3 |
| GNAS | Guanine Nucleotide-binding protein, Alpha stimulating |
| GSK3 | Glycogen synthase kinase 3 |
| H2AK5ac | Histone 2A lysine 5 acetylation |
| H3K9ac | Histone H3 lysine 9 acetylation |
| H3K9me3 | Histone H3 lysine 9 trimethylation |
| H3K27ac | Histone H3 lysine 27 acetylation |
| HRAS | Harvey rat sarcoma virus |
| HSPA4 | Heat shock protein family A member 4 |
| IL-1α | Interleukin 1 alpha |
| IL-6 | Interleukin 6 |
| IL-8 | Interleukin 8 |
| IL-33 | Interleukin 33 |
| KMT2D | Histone-lysine N-methyltransferase-2D |
| KRAS | Kristen rat sarcoma |
| lncRNA | Long non-coding RNA |
| lncRNA ENST00000512916 | Long non-coding RNA ENST00000512916 |
| LRP5 | Low-density lipoprotein receptor-related protein 5 |
| LRP6 | Low-density lipoprotein receptor-related protein 6 |
| MAP2K | Mitogen-Activated Protein Kinase Kinase |
| MAP3K | Mitogen-Activated Protein Kinase KinaseKinase |
| MAPK | Mitogen-Activated Protein Kinase |
| MDM2 | Mouse double minute 2 homolog |
| MEK1/2 | MAPK/ERK Kinase 1/2 (MAP2K) |
| METTL1 | Methyltransferase-like 1 |
| miR-1-3p | MicroRNA 1-3p |
| miR-29a-3p | MicroRNA 29a-3p |
| miR-141-3p | MicroRNA 141-3p |
| miR-524-5p | MicroRNA 524-5p |
| MMP-2 | Matrix metalloproteinase 2 |
| MMP-9 | Matrix metalloproteinase 9 |
| mTOR | Mammalian target of rapamycin |
| MSH2 | MutS homolog 2 |
| MSH6 | MutS homolog 6 |
| NCAM1 | Neural Cell Adhesion Molecule 1 (CD56) |
| ncRNA | Non-coding RNA |
| NES | Nestin |
| NID2 | Nidogen 2 |
| NRAS | Neuroblastoma RAS viral oncogene homolog |
| PAK6 | p21-activated kinase 6 |
| PDK1 | PI3K-dependent kinase 1 |
| PDK2 | PI3K-dependent kinase 2 |
| PI3K | Phosphoinositide 3-kinase |
| PIK3CA | Phosphatidylinositol-4,5-bisphosphate 3-kinase catalytic subunit alpha |
| PIP2 | Phosphatidylinositol-4,5-biphosphate |
| PIP3 | Phosphatidylinositol-3,4,5-triphosphate |
| PLEKHN1 | Pleckstrin homology domain containing N1 |
| PTCH1 | Patched 1 |
| PTEN | Phosphatase and tensin homolog |
| p16 | Cyclin-dependent kinase inhibitor 2A (CDKN2A) |
| p21 | Cyclin-dependent kinase inhibitor 1A (CDKN1A) |
| p53 | Tumor protein p53 |
| RAF | Rapidly Accelerated Fibrosarcoma |
| RANKL | Receptor activator of nuclear factor kappa B ligand |
| RAS | Rat sarcoma virus |
| RAS GTPase | RAS Guanosine Triphosphatase |
| ROS1 | ROS proto-oncogene 1, receptor tyrosine kinase |
| SCN5A | Sodium voltage-gated channel alpha subunit 5 |
| SHH | Sonic hedgehog |
| SMARCB1 | SWI/SNF-related matrix-associated actin-dependent regulator of chromatin subfamily B member 1 |
| SMO | Smoothened |
| ST2 | Suppressor of Tumorigenicity 2 |
| SUFU | Suppressor of fused |
| TNF-α | Tumor Necrosis Factor-alpha |
| TP53 | Tumor protein p53 gene |
| VE1 | BRAF V600E mutation-specific antigen |
| WNT | Wingless-related integration site protein |
References
- Neville, B.W.; Damm, D.D.; Allen, C.M.; Chi, A.C. Oral and Maxillofacial Pathology, 4th ed.; Elsevier: St. Louis, MO, USA, 2016; ISBN 978-1-4557-7052-6. [Google Scholar]
- Omoregie, F.; Sede, M.; Ojo, A. Ameloblastomatous Change in Radicular Cyst of the Jaw in a Nigerian Population. Ghana. Med. J. 2015, 49, 107–111. [Google Scholar] [CrossRef]
- Saha, S.; Gandhoke, H.; Mahato, B.; Deb, T. Dentigerous Cyst with Ameloblastomatous Proliferation as Well as Calcifications: An Unusual Presentation. J. Indian. Acad. Oral Med. Radiol. 2020, 32, 297. [Google Scholar] [CrossRef]
- Hendra, F.N.; Van Cann, E.M.; Helder, M.N.; Ruslin, M.; De Visscher, J.G.; Forouzanfar, T.; De Vet, H.C.W. Global Incidence and Profile of Ameloblastoma: A Systematic Review and Meta-analysis. Oral Dis. 2020, 26, 12–21. [Google Scholar] [CrossRef]
- Ghai, S. Ameloblastoma: An Updated Narrative Review of an Enigmatic Tumor. Cureus 2022, 14, e27734. [Google Scholar] [CrossRef] [PubMed]
- Wright, J.M.; Soluk Tekkeşin, M. Odontogenic Tumors. Where are We in 2017? J. Istanb. Univ. Fac. Dent. 2017, 51, S10–S30. [Google Scholar] [CrossRef]
- Soluk-tekkesin, M.; Wright, J.M. The World Health Organization Classification of Odontogenic Lesions: A Summary of the Changes of the 2022, 5th ed. Turk. J. Pathol. 2022, 38, 168–184. [Google Scholar] [CrossRef]
- World Health Organization Classification of Tumours Editorial Board. WHO Classification of Head and Neck Tumours, 5th ed.; WHO Classification of Tumours Series; International Agency for Research on Cancer: Lyon, France, 2024; Volume 9, ISBN 978-92-832-4514-8. [Google Scholar]
- De Farias Morais, H.G.; Gonçalo, R.I.C.; De Oliveira Costa, C.S.; De Figueiredo Pires, H.; Mafra, R.P.; De Morais, E.F.; Da Costa Miguel, M.C.; De Almeida Freitas, R. A Systematic Review of Adenoid Ameloblastoma: A Newly Recognized Entity. Head Neck Pathol. 2023, 17, 688–696. [Google Scholar] [CrossRef]
- Cristofaro, M.G.; Barca, I.; Sottile, A.R.; Ferragina, F. Ameloblastic Carcinoma: A 40-Year Scoping Review of the Literature. CIMB 2025, 47, 261. [Google Scholar] [CrossRef]
- DeVilliers, P.; Suggs, C.; Simmons, D.; Murrah, V.; Wright, J.T. Microgenomics of Ameloblastoma. J. Dent. Res. 2011, 90, 463–469. [Google Scholar] [CrossRef] [PubMed]
- Effiom, O.; Ogundana, O.; Akinshipo, A.; Akintoye, S. Ameloblastoma: Current Etiopathological Concepts and Management. Oral Dis. 2018, 24, 307–316. [Google Scholar] [CrossRef] [PubMed]
- Zheng, X.; Xia, R.; Zhu, W.; Qu, C.; Gu, T.; Robinson, L.; Van Heerden, W.; Tilakaratne, W.M.; Magliocca, K.; Soluk-Tekkesin, M.; et al. Classic Desmoplastic Ameloblastoma: Should It Be a Distinct Subtype of Ameloblastoma?—Based on Clinicopathological, Radiological, Immunohistochemical and Molecular Study of a Large Cohort. Oral Dis. 2025, 31, 2914–2925. [Google Scholar] [CrossRef]
- Marín-Márquez, C.; Kirby, J.; Hunter, K.D. Molecular Pathogenesis of Ameloblastoma. J. Oral Pathol. Med. 2024, 53, 277–293. [Google Scholar] [CrossRef] [PubMed]
- Nagi, R.; Sahu, S.; Rakesh, N. Molecular and Genetic Aspects in the Etiopathogenesis of Ameloblastoma: An Update. J. Oral Maxillofac. Pathol. 2016, 20, 497. [Google Scholar] [CrossRef]
- Lu, Y.; Zhang, X.; Li, X. Molecular Biology Exploration and Targeted Therapy Strategy of Ameloblastoma. Arch. Oral Biol. 2022, 140, 105454. [Google Scholar] [CrossRef]
- Khalele, B.A.E.O.; Al-Shiaty, R.A. A Novel Marker of Ameloblastoma and Systematic Review of Immunohistochemical Findings. Ann. Diagn. Pathol. 2016, 22, 18–24. [Google Scholar] [CrossRef]
- Escobar-Duarte, B.; Hidalgo-Valenzuela, J.; Marín Márquez, C. Molecular Markers of Tumor Invasion in Ameloblastoma: A Systematic Review. Oral Dis. 2025, odi.70133. [Google Scholar] [CrossRef]
- Hunter, K.D.; Speight, P.M. The Diagnostic Usefulness of Immunohistochemistry for Odontogenic Lesions. Head Neck Pathol. 2014, 8, 392–399. [Google Scholar] [CrossRef]
- Varshney, A.; Aggarwal, S.; Gill, S.K.; Aggarwal, A.; Jaiswal, Y.; Sharma, J. Comparison of Calretinin Expression in Dentigerous Cysts and Ameloblastoma: An Immunohistochemical Study. Natl. J. Maxillofac. Surg. 2020, 11, 224–230. [Google Scholar] [CrossRef] [PubMed]
- Bayat, Z.; Mirzaeian, A.; Taherkhani, A. Potential Biomarkers and Signaling Pathways Associated with the Pathogenesis of Primary Ameloblastoma: A Systems Biology Approach. Int. J. Dent. 2022, 2022, 3316313. [Google Scholar] [CrossRef] [PubMed]
- Syed Zameer Ahmed, S.; Vetrivel, M.; Khader, S.Z.A.; Ragunathan, Y.T.; Kumar, S.K.; Prabhu, P.; Rajaram, D.L.D. Exploring Gene Network and Protein Interaction Analysis of Neurotrophin Signaling Pathway in Ameloblastoma. Silico Pharmacol. 2024, 12, 56. [Google Scholar] [CrossRef]
- Mallick, M.; Yoithap Prabhunath, T.R.; Kumari, S.; Sobhia, M.E. An in Silico Study of Protein-Protein Interactions and Design of Novel Peptides for TrkA in Ameloblastoma. J. Biomol. Struct. Dyn. 2024, 42, 13768–13778. [Google Scholar] [CrossRef]
- Kalogirou, E.-M.; Lekakis, G.; Petroulias, A.; Chavdoulas, K.; Zogopoulos, V.L.; Michalopoulos, I.; Tosios, K.I. The Stem Cell Expression Profile of Odontogenic Tumors and Cysts: A Systematic Review and Meta-Analysis. Genes 2023, 14, 1735. [Google Scholar] [CrossRef]
- Fuchigami, T.; Ono, Y.; Kishida, S.; Nakamura, N. Molecular Biological Findings of Ameloblastoma. Jpn. Dent. Sci. Rev. 2021, 57, 27–32. [Google Scholar] [CrossRef]
- Ali, M.; Bukhari, M.H.; Hassan, F.; Illyas, M. Clinicopathological Study of Ameloblastoma and Detection of Human Papilloma Virus by Immunohistochemistry: Ameloblastoma and Detection of Human Papilloma Virus. Pak. J. Med. Sci. 2019, 35, 1691–1696. [Google Scholar] [CrossRef]
- Fujita, S.; Shibata, Y.; Takahashi, H.; Tsuda, N.; Okabe, H. Latent Infection with Epstein-Barr Virus in Odontogenic Disorders: Comparison among Ameloblastoma, Dentigerous Cyst and Odontogenic Keratocyst. Pathol. Int. 1997, 47, 449–453. [Google Scholar] [CrossRef] [PubMed]
- Zhao, Z.; Xiong, G.; Wang, C.; Cao, W. From Pathogenesis to Precision Medicine: Transformative Advances in Research and Treatment of Ameloblastoma. Cancer Lett. 2025, 612, 217448. [Google Scholar] [CrossRef]
- Raemy, A.; May, L.; Sala, N.; Diezi, M.; Beck-Popovic, M.; Broome, M. Anti-MAPK Targeted Therapy for Ameloblastoma: Case Report with a Systematic Review. Cancers 2024, 16, 2174. [Google Scholar] [CrossRef]
- Bologna-Molina, R.; Schuch, L.; Magliocca, K.; Van Heerden, W.; Robinson, L.; Bilodeau, E.A.; Hussaini, H.M.; Soluk-Tekkesin, M.; Adisa, A.O.; Tilakaratne, W.M.; et al. Targeted Therapies in Ameloblastomas and Amelobastic Carcinoma—A Systematic Review. Oral Dis. 2024, 30, 3571–3581. [Google Scholar] [CrossRef] [PubMed]
- Tosios, K.I.; Kalogirou, E.-M.; Koutlas, I.G. Association of MDM2 Overexpression in Ameloblastomas with MDM2 Amplification and BRAFV600E Expression. Int. J. Mol. Sci. 2024, 25, 2238. [Google Scholar] [CrossRef] [PubMed]
- Sauk, J.J.; Nikitakis, N.G.; Scheper, M.A. Are We on the Brink of Nonsurgical Treatment for Ameloblastoma? Oral Surg. Oral Med. Oral Pathol. Oral Radiol. Endodontology 2010, 110, 68–78. [Google Scholar] [CrossRef]
- Lynch, M.M.; Hermida-Viveiros, P.; Stencel, S.; Knott, H.; Al-Maryati, R.; Obeidin, F.; Alexiev, B.A.; Abbinanti, S.; Damodaran, S.; Agulnik, M.; et al. Durable Disease Regression with Copanlisib Treatment in PI3K-Mutated Metastasizing Ameloblastoma: A Case Report. Rare Tumors 2025, 17, 20363613241309961. [Google Scholar] [CrossRef] [PubMed]
- Nguyen, J.; Saffari, P.S.; Pollack, A.S.; Vennam, S.; Gong, X.; West, R.B.; Pollack, J.R. New Ameloblastoma Cell Lines Enable Preclinical Study of Targeted Therapies. J. Dent. Res. 2022, 101, 1517–1525. [Google Scholar] [CrossRef]
- Guimarães, L.M.; Coura, B.P.; Gomez, R.S.; Gomes, C.C. The Molecular Pathology of Odontogenic Tumors: Expanding the Spectrum of MAPK Pathway Driven Tumors. Front. Oral Health 2021, 2, 740788. [Google Scholar] [CrossRef] [PubMed]
- Mamat @ Yusof, M.N.; Ch’ng, E.S.; Radhiah Abdul Rahman, N. BRAF V600E Mutation in Ameloblastoma: A Systematic Review and Meta-Analysis. Cancers 2022, 14, 5593. [Google Scholar] [CrossRef]
- Zhang, A.; Zhang, J.; Liu, Y.; Wang, S.; Bai, J.; Sun, L.; Li, T. Clinicopathological Characteristics and Diagnostic Accuracy of BRAF Mutations in Ameloblastoma: A Bayesian Network Analysis. J. Oral Pathol. Med. 2024, 53, 393–403. [Google Scholar] [CrossRef]
- Bonacina, R.; Indini, A.; Massazza, G.; Rulli, E.; Gianatti, A.; Mandalà, M. Correlation of BRAF Mutational Status with Clinical Characteristics and Survival Outcomes of Patients with Ameloblastoma: The Experience of 11 Italian Centres. J. Clin. Pathol. 2022, 75, 555–559. [Google Scholar] [CrossRef]
- Martins-de-Barros, A.V.; Silva, C.C.G.; Gonçalves, K.K.N.; De Albuquerque Cavalcanti Almeida, R.; De Oliveira E Silva, E.D.; Da Costa Araújo, F.A.; Robinson, L.; Van Heerden, W.F.P.; De Vasconcelos Carvalho, M. Does BRAF V600E Mutation Affect Recurrence Rate of Ameloblastomas? Systematic Review and Meta-analysis. J. Oral Pathol. Med. 2023, 52, 701–709. [Google Scholar] [CrossRef]
- Singh, A.K.; Alagarsamy, R.; Chaulagain, R.; Singh, A.; Sapkota, D.; Thavaraj, S.; Singh, R.P. Does BRAF Mutation Status and Related Clinicopathological Factors Affect the Recurrence Rate of Ameloblastoma? A Systematic Review, Meta-analysis and Metaregression. J. Oral Pathol. Med. 2023, 52, 895–903. [Google Scholar] [CrossRef]
- Gültekin, S.E.; Aziz, R.; Heydt, C.; Sengüven, B.; Zöller, J.; Safi, A.F.; Kreppel, M.; Buettner, R. The Landscape of Genetic Alterations in Ameloblastomas Relates to Clinical Features. Virchows Arch. 2018, 472, 807–814. [Google Scholar] [CrossRef] [PubMed]
- McClary, A.C.; West, R.B.; McClary, A.C.; Pollack, J.R.; Fischbein, N.J.; Holsinger, C.F.; Sunwoo, J.; Colevas, A.D.; Sirjani, D. Ameloblastoma: A Clinical Review and Trends in Management. Eur. Arch. Otorhinolaryngol. 2016, 273, 1649–1661. [Google Scholar] [CrossRef]
- Shimura, M.; Nakashiro, K.-I.; Sawatani, Y.; Hasegawa, T.; Kamimura, R.; Izumi, S.; Komiyama, Y.; Fukumoto, C.; Yagisawa, S.; Yaguchi, E.; et al. Whole Exome Sequencing of SMO, BRAF, PTCH1 and GNAS in Odontogenic Diseases. In Vivo 2020, 34, 3233–3240. [Google Scholar] [CrossRef] [PubMed]
- Kawabata, T.; Takahashi, K.; Sugai, M.; Murashima-Suginami, A.; Ando, S.; Shimizu, A.; Kosugi, S.; Sato, T.; Nishida, M.; Murakami, K.; et al. Polymorphisms in PTCH1 Affect the Risk of Ameloblastoma. J. Dent. Res. 2005, 84, 812–816. [Google Scholar] [CrossRef]
- Ponti, G.; Pollio, A.; Mignogna, M.D.; Pellacani, G.; Pastorino, L.; Bianchi-Scarrà, G.; Di Gregorio, C.; Magnoni, C.; Azzoni, P.; Greco, M.; et al. Unicystic Ameloblastoma Associated with the Novel K729M PTCH1 Mutation in a Patient with Nevoid Basal Cell Carcinoma (Gorlin) Syndrome. Cancer Genet. 2012, 205, 177–181. [Google Scholar] [CrossRef]
- Chatterjee, S.; Devi, A.; Kamboj, M.; Narwal, A. Localization of Beta Catenin across the Domain of Odontogenic Lesions: A Systematic Review. J. Oral Pathol. Med. 2023, 52, 904–910. [Google Scholar] [CrossRef] [PubMed]
- Babichenko, I.I.; Tsimbalist, N.S.; Rybal’skaya, V.F.; Sherstnev, A.A.; Syomkin, V.A. The Role of Wnt/β-Catenin Signaling Pathway in Ameloblastoma Formation. Stomatologiia 2018, 97, 22. [Google Scholar] [CrossRef]
- Hao, F.; Liu, J.; Zhong, M.; Wang, J.; Liu, J. Expression of E-Cadherin, Vimentin and β-Catenin in Ameloblastoma and Association with Clinicopathological Characteristics of Ameloblastoma. Int. J. Clin. Exp. Pathol. 2018, 11, 199–207. [Google Scholar]
- Li, N.; Liu, B.; Sui, C.; Jiang, Y. Analysis of APC Mutation in Human Ameloblastoma and Clinical Significance. SpringerPlus 2016, 5, 314. [Google Scholar] [CrossRef]
- Siriwardena, B.S.M.S.; Kudo, Y.; Ogawa, I.; Tilakaratne, W.M.; Takata, T. Aberrant β-Catenin Expression and Adenomatous Polyposis Coli Gene Mutation in Ameloblastoma and Odontogenic Carcinoma. Oral Oncol. 2009, 45, 103–108. [Google Scholar] [CrossRef]
- Awotoye, W.; Whitt, J.C.; Yoo, B.; Farooqi, M.S.; Farrow, E.G.; Allareddy, V.; Amendt, B.A.; Rengasamy Venugopalan, S. Genetic Heterogeneity and Enrichment of Variants in DNA-Repair Genes in Ameloblastoma. J. Oral Pathol. Med. 2023, 52, 263–270. [Google Scholar] [CrossRef]
- Li, N.; Sui, J.; Liu, H.; Zhong, M.; Zhang, M.; Wang, Y.; Hao, F. Expression of Phosphorylated Akt/mTOR and Clinical Significance in Human Ameloblastoma. Int. J. Clin. Exp. Med. 2015, 8, 5236–5244. [Google Scholar] [PubMed]
- Li, N.; Zhong, M.; Song, M. Expression of Phosphorylated mTOR and Its Regulatory Protein Is Related to Biological Behaviors of Ameloblastoma. Int. J. Clin. Exp. Pathol. 2012, 5, 660–667. [Google Scholar]
- Chaisuparat, R.; Yodsanga, S.; Montaner, S.; Jham, B.C. Activation of the Akt/mTOR Pathway in Dentigerous Cysts, Odontogenic Keratocysts, and Ameloblastomas. Oral Surg. Oral Med. Oral Pathol. Oral Radiol. 2013, 116, 336–342. [Google Scholar] [CrossRef] [PubMed]
- You, Z.; Liu, S.; Du, J.; Wu, Y.; Zhang, S. Advancements in MAPK Signaling Pathways and MAPK-targeted Therapies for Ameloblastoma: A Review. J. Oral Pathol. Med. 2019, 48, 201–205. [Google Scholar] [CrossRef]
- Brown, N.A.; Betz, B.L. Ameloblastoma: A Review of Recent Molecular Pathogenetic Discoveries. Biomark. Cancer 2015, 7, 19–24. [Google Scholar] [CrossRef]
- Brown, N.A.; Rolland, D.; McHugh, J.B.; Weigelin, H.C.; Zhao, L.; Lim, M.S.; Elenitoba-Johnson, K.S.J.; Betz, B.L. Activating FGFR2–RAS–BRAF Mutations in Ameloblastoma. Clin. Cancer Res. 2014, 20, 5517–5526. [Google Scholar] [CrossRef]
- Sweeney, R.T.; McClary, A.C.; Myers, B.R.; Biscocho, J.; Neahring, L.; Kwei, K.A.; Qu, K.; Gong, X.; Ng, T.; Jones, C.D.; et al. Identification of Recurrent SMO and BRAF Mutations in Ameloblastomas. Nat. Genet. 2014, 46, 722–725. [Google Scholar] [CrossRef]
- Kurppa, K.J.; Catón, J.; Morgan, P.R.; Ristimäki, A.; Ruhin, B.; Kellokoski, J.; Elenius, K.; Heikinheimo, K. High Frequency of BRAFV600E Mutations in Ameloblastoma. J. Pathol. 2014, 232, 492–498. [Google Scholar] [CrossRef] [PubMed]
- Mechahougui, H.; Gutmans, J.; Gouasmi, R.; Smekens, L.; Friedlaender, A. BRAF Targeting Across Solid Tumors: Molecular Aspects and Clinical Applications. Int. J. Mol. Sci. 2025, 26, 3757. [Google Scholar] [CrossRef]
- Guan, P.; Wong, S.F.; Lim, J.Q.; Ng, C.C.Y.; Soong, P.L.; Sim, C.Q.X.; Ong, C.K.; Rajasegaran, V.; Myint, S.S.; Lee, J.Y.; et al. Mutational Signatures in Mandibular Ameloblastoma Correlate with Smoking. J. Dent. Res. 2019, 98, 652–658. [Google Scholar] [CrossRef] [PubMed]
- Zhang, C.; Zhang, L.; Lin, H.; Man, Q.; Liu, B. BRAF V600E Mutation Mediates Invasive and Growth Features in Ameloblastoma. Oral Dis. 2024, 30, 4426–4439. [Google Scholar] [CrossRef]
- Fregnani, E.R.; Perez, D.E.D.C.; Paes De Almeida, O.; Fonseca, F.P.; Soares, F.A.; Castro-Junior, G.; Alves, F.A. BRAF-V600E Expression Correlates with Ameloblastoma Aggressiveness. Histopathology 2017, 70, 473–484. [Google Scholar] [CrossRef]
- Duarte-Andrade, F.F.; Silva, A.M.B.; Vitório, J.G.; Canuto, G.A.B.; Costa, S.F.S.; Diniz, M.G.; Fernandes, A.P.; De Toledo, J.S.; André, L.C.; Gomes, C.C.; et al. The Importance of BRAF-V600E Mutation to Ameloblastoma Metabolism. J. Oral Pathol. Med. 2019, 48, 307–314. [Google Scholar] [CrossRef]
- Martins-de-Barros, A.V.; Anjos, R.S.D.; Silva, C.C.G.; Silva, E.D.D.O.E.; Araújo, F.A.D.C.; Carvalho, M.D.V. Diagnostic Accuracy of Immunohistochemistry Compared with Molecular Tests for Detection of BRAF V600E Mutation in Ameloblastomas: Systematic Review and Meta-analysis. J. Oral Pathol. Med. 2022, 51, 223–230. [Google Scholar] [CrossRef]
- Palla, M.; Scarpato, L.; Di Trolio, R.; Ascierto, P.A. Sonic Hedgehog Pathway for the Treatment of Inflammatory Diseases: Implications and Opportunities for Future Research. J. Immunother. Cancer 2022, 10, e004397. [Google Scholar] [CrossRef]
- Carballo, G.B.; Honorato, J.R.; De Lopes, G.P.F.; Spohr, T.C.L.D.S.E. A Highlight on Sonic Hedgehog Pathway. Cell Commun. Signal 2018, 16, 11. [Google Scholar] [CrossRef] [PubMed]
- Heikinheimo, K.; Jee, K.J.; Niini, T.; Aalto, Y.; Happonen, R.-P.; Leivo, I.; Knuutila, S. Gene Expression Profiling of Ameloblastoma and Human Tooth Germ by Means of a cDNA Microarray. J. Dent. Res. 2002, 81, 525–530. [Google Scholar] [CrossRef]
- Kumamoto, H.; Ohki, K.; Ooya, K. Expression of Sonic Hedgehog (SHH) Signaling Molecules in Ameloblastomas. J. Oral Pathol. Med. 2004, 33, 185–190. [Google Scholar] [CrossRef] [PubMed]
- Udeabor, S.E.; Adisa, A.O.; Lawal, A.O.; Barbeck, M.; Booms, P.; Sader, R.A.; Ghanaati, S. PTCH-1 and MDM2 Expression in Ameloblastoma from a West African Sub-Population: Implication for Chemotherapeutics. Pan Afr. Med. J. 2015, 20, 140. [Google Scholar] [CrossRef]
- Rodrigues, K.S.; Santos, H.B.D.P.; Morais, E.F.D.; Freitas, R.D.A. Immunohistochemical Analysis of SHH, SMO and GLI-1 Proteins in Epithelial Odontogenic Lesions. Braz. Dent. J. 2022, 33, 91–99. [Google Scholar] [CrossRef] [PubMed]
- Filušová, J.; Putnová, I.; Hurník, P.; Daněk, Z.; Macháček, C.; Štembírek, J.; Buchtová, M. Alteration of Primary Cilia Morphology and Associated Signalling in Ameloblastoma. Arch. Oral Biol. 2022, 142, 105499. [Google Scholar] [CrossRef]
- Heikinheimo, K.; Huhtala, J.-M.; Thiel, A.; Kurppa, K.J.; Heikinheimo, H.; Kovac, M.; Kragelund, C.; Warfvinge, G.; Dawson, H.; Elenius, K.; et al. The Mutational Profile of Unicystic Ameloblastoma. J. Dent. Res. 2019, 98, 54–60. [Google Scholar] [CrossRef]
- You, Z.; Sun, L.; Yan, X.; Zhang, J.; Du, J.; Li, T.; Zhao, H. Clinicopathologic Study on a Rare Variant of Ameloblastoma with Basal Cell Features. Oral Dis. 2019, 25, 788–795. [Google Scholar] [CrossRef]
- Farias, L.C.; Gomes, C.C.; Brito, J.A.R.; Galvão, C.F.; Diniz, M.G.; De Castro, W.H.; Bernardes, V.D.F.; De Marco, L.A.; Gomez, R.S. Loss of Heterozygosity of the PTCH Gene in Ameloblastoma. Hum. Pathol. 2012, 43, 1229–1233. [Google Scholar] [CrossRef]
- Clevers, H. Wnt/β-Catenin Signaling in Development and Disease. Cell 2006, 127, 469–480. [Google Scholar] [CrossRef]
- Ramakrishnan, A.-B.; Cadigan, K.M. Wnt Target Genes and Where to Find Them. F1000Res 2017, 6, 746. [Google Scholar] [CrossRef]
- Liu, J.; Xiao, Q.; Xiao, J.; Niu, C.; Li, Y.; Zhang, X.; Zhou, Z.; Shu, G.; Yin, G. Wnt/β-Catenin Signalling: Function, Biological Mechanisms, and Therapeutic Opportunities. Signal Transduct. Target. Ther. 2022, 7, 3. [Google Scholar] [CrossRef]
- Dutra, S.; Pires, F.; Armada, L.; Azevedo, R. Immunoexpression of Wnt/β-Catenin Signaling Pathway Proteins in Ameloblastoma and Calcifying Cystic Odontogenic Tumor. J. Clin. Exp. Dent. 2016, 9, e136–e140. [Google Scholar] [CrossRef]
- Fujii, S.; Ishibashi, T.; Kokura, M.; Fujimoto, T.; Matsumoto, S.; Shidara, S.; Kurppa, K.J.; Pape, J.; Caton, J.; Morgan, P.R.; et al. RAF1—MEK/ERK Pathway-dependent ARL4C Expression Promotes Ameloblastoma Cell Proliferation and Osteoclast Formation. J. Pathol. 2022, 256, 119–133. [Google Scholar] [CrossRef] [PubMed]
- Siar, C.H.; Ishak, I.; Ng, K.H. Podoplanin, E-cadherin, Β-catenin, and CD 44v6 in Recurrent Ameloblastoma: Their Distribution Patterns and Relevance. J. Oral Pathol. Med. 2015, 44, 51–58. [Google Scholar] [CrossRef] [PubMed]
- Davanian, H.; Balasiddaiah, A.; Heymann, R.; Sundström, M.; Redenström, P.; Silfverberg, M.; Brodin, D.; Sällberg, M.; Lindskog, S.; Weiner, C.K.; et al. Ameloblastoma RNA Profiling Uncovers a Distinct Non-Coding RNA Signature. Oncotarget 2017, 8, 4530–4542. [Google Scholar] [CrossRef] [PubMed]
- Liu, S.; Liu, D.; Liu, J.; Liu, J.; Zhong, M. miR-29a-3p Promotes Migration and Invasion in Ameloblastoma via Wnt/β-catenin Signaling by Targeting Catenin Beta Interacting Protein 1. Head Neck 2021, 43, 3911–3921. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.; Wang, Y.; Fan, C.; Xiao, X.; Zhang, Q.; Xu, T.; Jiang, C. Interleukin-8/β-catenin Mediates Epithelial–Mesenchymal Transition in Ameloblastoma. Oral Dis. 2019, 25, 1964–1971. [Google Scholar] [CrossRef]
- Yang, Z.; Li, K.; Liang, Q.; Zheng, G.; Zhang, S.; Lao, X.; Liang, Y.; Liao, G. Elevated Hydrostatic Pressure Promotes Ameloblastoma Cell Invasion through Upregulation of MMP-2 and MMP-9 Expression via Wnt/β-catenin Signalling. J. Oral Pathol. Med. 2018, 47, 836–846. [Google Scholar] [CrossRef] [PubMed]
- Glaviano, A.; Foo, A.S.C.; Lam, H.Y.; Yap, K.C.H.; Jacot, W.; Jones, R.H.; Eng, H.; Nair, M.G.; Makvandi, P.; Geoerger, B.; et al. PI3K/AKT/mTOR Signaling Transduction Pathway and Targeted Therapies in Cancer. Mol. Cancer 2023, 22, 138. [Google Scholar] [CrossRef]
- Mayer, I.A.; Arteaga, C.L. The PI3K/AKT Pathway as a Target for Cancer Treatment. Annu. Rev. Med. 2016, 67, 11–28. [Google Scholar] [CrossRef]
- Ersahin, T.; Tuncbag, N.; Cetin-Atalay, R. The PI3K/AKT/mTOR Interactive Pathway. Mol. BioSyst. 2015, 11, 1946–1954. [Google Scholar] [CrossRef]
- Worby, C.A.; Dixon, J.E. PTEN. Annu. Rev. Biochem. 2014, 83, 641–669. [Google Scholar] [CrossRef]
- Sandra, F.; Harada, H.; Nakamura, N.; Ohishi, M. Midkine Induced Growth of Ameloblastoma through MAPK and Akt Pathways. Oral Oncol. 2004, 40, 274–280. [Google Scholar] [CrossRef] [PubMed]
- Hendarmin, L.; Sandra, F.; Nakao, Y.; Ohishi, M.; Nakamura, N. TNFα Played a Role in Induction of Akt and MAPK Signals in Ameloblastoma. Oral Oncol. 2005, 41, 375–382. [Google Scholar] [CrossRef]
- Nodit, L.; Barnes, L.; Childers, E.; Finkelstein, S.; Swalsky, P.; Hunt, J. Allelic Loss of Tumor Suppressor Genes in Ameloblastic Tumors. Mod. Pathol. 2004, 17, 1062–1067. [Google Scholar] [CrossRef]
- Kumamoto, H.; Ooya, K. Immunohistochemical Detection of Phosphorylated Akt, PI3K, and PTEN in Ameloblastic Tumors. Oral Dis. 2007, 13, 461–467. [Google Scholar] [CrossRef]
- Narayan, B.; Urs, A.B.; Augustine, J.; Singh, H. Role of Phosphatase and Tensin Homolog in Pathogenesis of Ameloblastoma: An Immunohistochemical Study. J. Cancer Res. Ther. 2020, 16, 513–516. [Google Scholar] [CrossRef]
- Lapthanasupkul, P.; Klongnoi, B.; Mutirangura, A.; Kitkumthorn, N. Investigation of PTEN Promoter Methylation in Ameloblastoma. Med. Oral 2020, 29, e481–e487. [Google Scholar] [CrossRef]
- Shi, Y.; Li, M.; Yu, Y.; Zhou, Y.; Wang, S. Whole Exome Sequencing and System Biology Analysis Support the “Two-Hit” Mechanism in the Onset of Ameloblastoma. Med. Oral 2021, 26, e510–e517. [Google Scholar] [CrossRef]
- Gates, J.C.; Clark, A.P.; Cherkas, E.; Shreenivas, A.V.; Kraus, D.; Danzinger, N.; Huang, R.S.P.; Johnson, J.; Ross, J.S. Genomic Profiling and Precision Medicine in Complex Ameloblastoma. Head Neck 2023, 45, 816–826. [Google Scholar] [CrossRef] [PubMed]
- Borkosky, S.S.; Gunduz, M.; Beder, L.; Tsujigiwa, H.; Tamamura, R.; Gunduz, E.; Katase, N.; Rodriguez, A.P.; Sasaki, A.; Nagai, N.; et al. Allelic Loss of the ING Gene Family Loci Is a Frequent Event in Ameloblastoma. Oncol. Res. 2009, 18, 509–518. [Google Scholar] [CrossRef]
- Sandra, F.; Nakamura, N.; Kanematsu, T.; Hirata, M.; Ohishi, M. The Role of MDM2 in the Proliferative Activity of Ameloblastoma. Oral Oncol. 2002, 38, 153–157. [Google Scholar] [CrossRef]
- Carvalhais, J.; De Aguiar, M.; De Araújo, V.; De Araújo, N.; Gomez, R. P53 and MDM2 Expression in Odontogenic Cysts and Tumours. Oral Dis. 1999, 5, 218–222. [Google Scholar] [CrossRef] [PubMed]
- Krishna, A.; Kaveri, H.; Naveen Kumar, R.; Kumaraswamy, K.; Shylaja, S.; Murthy, S. Overexpression of MDM2 Protein in Ameloblastomas as Compared to Adenomatoid Odontogenic Tumor. J. Can. Res. Ther. 2012, 8, 232. [Google Scholar] [CrossRef]
- Kumamoto, H.; Izutsu, T.; Ohki, K.; Takahashi, N.; Ooya, K. P53 Gene Status and Expression of P53, MDM2, and P14ARF Proteins in Ameloblastomas. J. Oral Pathol. Med. 2004, 33, 292–299. [Google Scholar] [CrossRef]
- Appel, T.; Gath, R.; Wernert, N.; Martini, M.; Berg, S. Molekularbiologische Und Immunhistochemische Untersuchung Des Tp53-Gens in Menschlichen Ameloblastomen. Mund- Kiefer- Gesichtschirurgie 2004, 8, 167–172. [Google Scholar] [CrossRef] [PubMed]
- Bartels, S.; Adisa, A.; Aladelusi, T.; Lemound, J.; Stucki-Koch, A.; Hussein, S.; Kreipe, H.; Hartmann, C.; Lehmann, U.; Hussein, K. Molecular Defects in BRAF Wild-Type Ameloblastomas and Craniopharyngiomas—Differences in Mutation Profiles in Epithelial-Derived Oropharyngeal Neoplasms. Virchows Arch. 2018, 472, 1055–1059. [Google Scholar] [CrossRef] [PubMed]
- Migaldi, M.; Sartori, G.; Rossi, G.; Cittadini, A.; Sgambato, A. Tumor Cell Proliferation and Microsatellite Alterations in Human Ameloblastoma. Oral Oncol. 2008, 44, 50–60. [Google Scholar] [CrossRef] [PubMed]
- Chen, I.Y.; Giampoli, E.J.; Zhang, D. Ameloblastic Carcinoma of the Maxilla: A Rare Case Report and Review of Literature from 1948 to 2021. Int. J. Surg. Pathol. 2023, 31, 442–454. [Google Scholar] [CrossRef]
- Nobusawa, A.; Sano, T.; Yokoo, S.; Oyama, T. Ameloblastic Carcinoma Developing in Preexisting Ameloblastoma with a Mutation of the P53 Gene: A Case Report. Oral Surg. Oral Med. Oral Pathol. Oral Radiol. 2014, 118, e146–e150. [Google Scholar] [CrossRef] [PubMed]
- Chen, G.; Chen, P.; Zhou, J.; Luo, G. Pan-Cancer Analysis of Histone Methyltransferase KMT2D with PotentialImplications for Prognosis and Immunotherapy in Human Cancer. Comb. Chem. High Throughput Screen. 2023, 26, 83–92. [Google Scholar] [CrossRef]
- Sharma, S.; Kelly, T.K.; Jones, P.A. Epigenetics in Cancer. Carcinogenesis 2010, 31, 27–36. [Google Scholar] [CrossRef]
- Santos, E.; Rodrigues-Fernandes, C.; Cabral, J.; Fonseca, F.; Leme, A. Epigenetic Alterations in Ameloblastomas: A Literature Review. J. Clin. Exp. Dent. 2021, 13, e295–e302. [Google Scholar] [CrossRef]
- Zhang, Y.; Sun, Z.; Jia, J.; Du, T.; Zhang, N.; Tang, Y.; Fang, Y.; Fang, D. Overview of Histone Modification. In Histone Mutations and Cancer; Fang, D., Han, J., Eds.; Advances in Experimental Medicine and Biology; Springer: Singapore, 2021; Volume 1283, pp. 1–16. ISBN 978-981-15-8103-8. [Google Scholar]
- Frías-Lasserre, D.; Villagra, C.A. The Importance of ncRNAs as Epigenetic Mechanisms in Phenotypic Variation and Organic Evolution. Front. Microbiol. 2017, 8, 2483. [Google Scholar] [CrossRef]
- Carvalho, L.D.J.; Guimarães, D.M.; Souza, A.T.P.; Balbinot, K.M.; Kataoka, M.S.D.S.; Alves Junior, S.D.M.; Nunes, F.D.; Da Silva, M.J.C.N.; Pinheiro, J.D.J.V. Immunohistochemical Evaluation of P300, H2AacK5 and H3AcK27 in Odontogenic Cysts and Tumors. Oral Dis. 2025, 31, 555–564. [Google Scholar] [CrossRef]
- Chen, L.; Wang, G.; Qiao, X.; Wang, X.; Liu, J.; Niu, X.; Zhong, M. Downregulated miR-524-5p Participates in the Tumor Microenvironment of Ameloblastoma by Targeting the Interleukin-33 (IL-33)/Suppression of Tumorigenicity 2 (ST2) Axis. Med. Sci. Monit. 2020, 26, e921863. [Google Scholar] [CrossRef]
- do Amaral-Silva, G.K.; Morais, T.M.D.L.; Wagner, V.P.; Martins, M.D.; Fregnani, E.R.; Soares, F.A.; Rocha, A.C.; Pontes, H.R.; Santos-Silva, A.R.; Vargas, P.A. Expression of DNMTs and H3K9ac in Ameloblastoma and Ameloblastic Carcinoma. Front. Oral Health 2021, 2, 751162. [Google Scholar] [CrossRef]
- do Amaral-Silva, G.K.; Pereira, T.D.S.F.; Rocha, A.C.; Mariz, B.A.L.A.; Prado-Ribeiro, A.C.; Fonseca, F.P.; Gomez, R.S.; Vargas, P.A. DNA Methylation Status of MutS Genes in Ameloblastoma. Oral Dis. 2022, 28, 1901–1906. [Google Scholar] [CrossRef]
- Guan, G.; Niu, X.; Qiao, X.; Wang, X.; Liu, J.; Zhong, M. Upregulation of Neural Cell Adhesion Molecule 1 (NCAM1) by Hsa-miR-141-3p Suppresses Ameloblastoma Cell Migration. Med. Sci. Monit. 2020, 26, e923491. [Google Scholar] [CrossRef]
- Liu, J.; Qiao, X.; Liu, J.; Zhong, M. Identification of Circ_0089153/miR-608/EGFR P53 Axis in Ameloblastoma via MAPK Signaling Pathway. Oral Dis. 2022, 28, 756–770. [Google Scholar] [CrossRef] [PubMed]
- Niu, X.; Xu, J.; Liu, J.; Chen, L.; Qiao, X.; Zhong, M. Landscape of N6-Methyladenosine Modification Patterns in Human Ameloblastoma. Front. Oncol. 2020, 10, 556497. [Google Scholar] [CrossRef] [PubMed]
- Niu, X.; Huang, B.; Qiao, X.; Liu, J.; Chen, L.; Zhong, M. MicroRNA-1-3p Suppresses Malignant Phenotypes of Ameloblastoma Through Down-Regulating Lysosomal Associated Membrane Protein 2-Mediated Autophagy. Front. Med. 2021, 8, 670188. [Google Scholar] [CrossRef] [PubMed]
- Phattarataratip, E.; Lam-Ubol, A. Histone H3K9 Methylation Is Differentially Modified in Odontogenic Cyst and Tumors. Eur. J. Dent. 2025, 19, 688–696. [Google Scholar] [CrossRef]
- Pongpanich, M.; Sanguansin, S.; Kengkarn, S.; Chaiwongkot, A.; Klongnoi, B.; Kitkumthorn, N. An Integrative Analysis of Genome-wide Methylation and Expression in Ameloblastoma: A Pilot Study. Oral Dis. 2021, 27, 1455–1467. [Google Scholar] [CrossRef]
- Sun, Y.; Niu, X.; Wang, G.; Qiao, X.; Chen, L.; Zhong, M. A Novel lncRNA ENST00000512916 Facilitates Cell Proliferation, Migration and Cell Cycle Progression in Ameloblastoma. Onco Targets Ther. 2020, 13, 1519–1531. [Google Scholar] [CrossRef]
- Udompatanakorn, C.; Sriphongphankul, W.; Taebunpakul, P. Expression of ALKBH5 in Odontogenic Lesions. Appl. Immunohistochem. Mol. Morphol. 2025, 33, 49–57. [Google Scholar] [CrossRef]
- Wang, Y.; Xiong, G.; Cai, W.; Tao, Q. METTL1 Facilitates Ameloblastoma Invasive Growth via MAPK Signaling Pathway. Gene 2024, 905, 148234. [Google Scholar] [CrossRef]
- Abiko, Y.; Nagayasu, H.; Takeshima, M.; Yamazaki, M.; Nishimura, M.; Kusano, K.; Kitajo, H.; Saitoh, M.; Kawakami, T.; Chiba, I.; et al. Ameloblastic Carcinoma Ex Ameloblastoma: Report of a Case–Possible Involvement of CpG Island Hypermethylation of the P16 Gene in Malignant Transformation. Oral Surg. Oral Med. Oral Pathol. Oral Radiol. Endodontology 2007, 103, 72–76. [Google Scholar] [CrossRef]
- Chantravekin, Y.; Koontongkaew, S. Effects of Ameloblastoma-Associated Fibroblasts on the Proliferation and Invasion of Tumor Cells. J. Can. Res. Ther. 2014, 10, 1082. [Google Scholar] [CrossRef]
- Yoshimoto, S.; Morita, H.; Okamura, K.; Hiraki, A.; Hashimoto, S. IL-6 Plays a Critical Role in Stromal Fibroblast RANKL Induction and Consequent Osteoclastogenesis in Ameloblastoma Progression. Lab. Investig. 2023, 103, 100023. [Google Scholar] [CrossRef] [PubMed]
- Fuchigami, T.; Kibe, T.; Koyama, H.; Kishida, S.; Iijima, M.; Nishizawa, Y.; Hijioka, H.; Fujii, T.; Ueda, M.; Nakamura, N.; et al. Regulation of IL-6 and IL-8 Production by Reciprocal Cell-to-Cell Interactions between Tumor Cells and Stromal Fibroblasts through IL-1α in Ameloblastoma. Biochem. Biophys. Res. Commun. 2014, 451, 491–496. [Google Scholar] [CrossRef]
- Fuchigami, T.; Koyama, H.; Kishida, M.; Nishizawa, Y.; Iijima, M.; Kibe, T.; Ueda, M.; Kiyono, T.; Maniwa, Y.; Nakamura, N.; et al. Fibroblasts Promote the Collective Invasion of Ameloblastoma Tumor Cells in a 3D Coculture Model. FEBS Open Bio 2017, 7, 2000–2007. [Google Scholar] [CrossRef] [PubMed]
- Bakkalci, D.; Zubir, A.Z.A.; Khurram, S.A.; Pape, J.; Heikinheimo, K.; Fedele, S.; Cheema, U. Modelling Stromal Compartments to Recapitulate the Ameloblastoma Tumour Microenvironment. Matrix Biol. Plus 2022, 16, 100125. [Google Scholar] [CrossRef] [PubMed]
- Bakkalci, D.; Al-Badri, G.; Yang, W.; Nam, A.; Liang, Y.; Khurram, S.A.; Heavey, S.; Fedele, S.; Cheema, U. Spatial Transcriptomic Interrogation of the Tumour-Stroma Boundary in a 3D Engineered Model of Ameloblastoma. Mater. Today Bio 2024, 24, 100923. [Google Scholar] [CrossRef]
- Chairani, E.; Fuchigami, T.; Koyama, H.; Ono, Y.; Iijima, M.; Kishida, M.; Kibe, T.; Nakamura, N.; Kishida, S. Intercellular Signaling between Ameloblastoma and Osteoblasts. Biochem. Biophys. Rep. 2022, 30, 101233. [Google Scholar] [CrossRef]
- Kouhsoltani, M.; Halimi, M.; Jabbari, G. Immunohistochemical Evaluation of Myofibroblast Density in Odontogenic Cysts and Tumors. J. Dent. Res. Dent. Clin. Dent. Prospect. 2016, 10, 37–42. [Google Scholar] [CrossRef]
- Annegowda, V.M.; Devi, H.U.; Rao, K.; Smitha, T.; Sheethal, H.; Smitha, A. Immunohistochemical Study of Alpha-Smooth Muscle Actin in Odontogenic Cysts and Tumors. J. Oral Maxillofac. Pathol. 2018, 22, 188–192. [Google Scholar] [CrossRef]
- Vered, M.; Shohat, I.; Buchner, A.; Dayan, D. Myofibroblasts in Stroma of Odontogenic Cysts and Tumors Can Contribute to Variations in the Biological Behavior of Lesions. Oral Oncol. 2005, 41, 1028–1033. [Google Scholar] [CrossRef]
- Adesina, O.M.; Adebiyi, K.E.; Effiom, O.A.; Omoniyi-Esan, G.O.; Owotade, F.J.; Fatusi, O.A.; Kolude, B.; Odujoko, O.O.; Ladeji, A. Comparative Immunohistochemical Analysis of P53 and Alpha-SMA in Ameloblastoma, AOT and OKC. West. Afr. J. Med. 2022, 39, 248–255. [Google Scholar]
- Adisa, A.; Udeabor, S.; Adeyemi, B.; Alica, K.; Booms, P.; Ghanaati, S.; Sader, R. Relative Expression of α-Smooth Muscle Actin and Matrix Metalloproteinases-2 in Ameloblastoma of a Black African Sub-Population. Ann. Afr. Med. 2015, 14, 188. [Google Scholar] [CrossRef]
- Smitha, G.P. Comparison of Myofibroblasts Between Solid/Multicystic Ameloblastoma and Unicystic Ameloblastoma: An Immunohistochemical Analysis. J. Cardiovasc. Dis. Res. 2016, 10, ZC52–ZC57. [Google Scholar] [CrossRef] [PubMed]
- Syamala, D.; Suresh, R.; Janardhanan, M.; Savithri, V.; Anand, P.; Jose, A. Immunohistochemical Evaluation of Myofibroblasts in Odontogenic Cysts and Tumors: A Comparative Study. J. Oral Maxillofac. Pathol. 2016, 20, 208. [Google Scholar] [CrossRef] [PubMed]
- Fregnani, E.R.; Sobral, L.M.; Alves, F.A.; Soares, F.A.; Kowalski, L.P.; Coletta, R.D. Presence of Myofibroblasts and Expression of Matrix Metalloproteinase-2 (MMP-2) in Ameloblastomas Correlate with Rupture of the Osseous Cortical. Pathol. Oncol. Res. 2009, 15, 231–240. [Google Scholar] [CrossRef]
- Safadi, R.A.; Quda, B.F.; Hammad, H.M. Immunohistochemical Expression of K6, K8, K16, K17, K19, Maspin, Syndecan-1 (CD138), α-SMA, and Ki-67 in Ameloblastoma and Ameloblastic Carcinoma: Diagnostic and Prognostic Correlations. Oral Surg. Oral Med. Oral Pathol. Oral Radiol. 2016, 121, 402–411. [Google Scholar] [CrossRef]
- Bello, I.O.; Alanen, K.; Slootweg, P.J.; Salo, T. Alpha-Smooth Muscle Actin within Epithelial Islands Is Predictive of Ameloblastic Carcinoma. Oral Oncol. 2009, 45, 760–765. [Google Scholar] [CrossRef] [PubMed]
- Kamath, K.P.; Vidya, M.; Shetty, N.; Karkera, B.V.; Jogi, H. Nucleolar Organizing Regions and α-Smooth Muscle Actin Expression in a Case of Ameloblastic Carcinoma. Head Neck Pathol. 2010, 4, 157–162. [Google Scholar] [CrossRef] [PubMed]
| Molecular Pathway | Key Mutations/Frequency | Clinicopathological Associations | References |
|---|---|---|---|
| MAPK | Activating BRAF V600E mutation in ~70% of ameloblastomas. Activating FGFR2, KRAS, NRAS, and HRAS mutations in ~2.5–5.5%. | Considered the principal molecular driver of ameloblastoma. BRAF V600E-postive tumors are consistently associated with mandibular location and younger patient age. Possible association with unicysticameloblastomas. No association with sex, histological subtype, or recurrence risk. Impact on tumor aggressiveness remains incompletely defined. | [35,36,37,38,39,40] |
| Sonic Hedgehog (SHH) | Activating SMO mutations in ~10% of ameloblastomas. PTCH1 silencing mutations and polymorphisms reported. | SMO activating mutations very rarely coexist with BRAF V600E, but often occur in background of other MAPK mutations, possibly acting as a “second-hit”. More frequently reported in maxillary tumors, however, meta-analyses and larger cohorts are needed for consistent genotype–phenotype associations. | [14,41,42,43,44,45] |
| WNT/β-Catenin | Activating CTNNB1 mutations are uncommon and often coexist with BRAF V600E. APC silencing mutations reported. | May be implicated in a subset of ameloblastomas. Cytoplasmic β-catenin expression observed in most tumors. Nuclear β-catenin expression, present in a minority of cases, has been associated with conventional and metastatic ameloblastomas, aggressive behavior, and increased recurrence risk. Meta-analyses and larger cohorts are needed for consistent genotype–phenotype associations. | [14,46,47,48,49,50] |
| PI3K/AKT | PTEN and PIK3CA mutations are uncommon and frequently coexist with BRAF or SMO mutations. | May be implicated in a subset of ameloblastomas. Increased PI3K/AKT/mTOR pathway activity has been associated with aggressive tumor behavior, malignant transformation, and recurrence risk. Meta-analyses and larger cohorts are needed for consistent genotype–phenotype associations. | [14,51,52,53,54] |
| Reference | Number and Type of Neoplastic and Control Tissue Samples | Results |
|---|---|---|
| Carvalho et al. (2025) [113] | 30 ameloblastoma, 15 odontogenic keratocyst, 10 adenomatoid odontogenic tumor, 8 odontogenic fibroma, 8 calcifying odontogenic cyst, 10 odontogenic myxoma, and 6 ameloblastic fibroma samples | Acetylation of histones H2A on lysine 5 (H2AK5ac) and H3 on lysine 27 (H3K27ac) is reduced in aggressive odontogenic lesions compared with non-aggressive lesions. Ameloblastoma exhibited lower expression levels of these markers relative to less aggressive tumors. |
| Chen et al. (2020) [114] | 6 ameloblastoma tissue samples and 6 healthy oral tissue samples | Underexpression of miRNA miR-524-5p results in overexpression of interleukin-33 (IL-33) and its receptor, ST2, by both epithelial neoplastic cells and stromal lymphocytes. These proteins contribute to the immune response of the tumor and microenvironment modulation. |
| do Amaral-Silva et al. (2021) [115] | 38 ameloblastoma samples, 6 ameloblastic carcinoma samples, and 10 dental follicle samples | DNMT3B was overexpressed in ameloblastomas and ameloblastic carcinomas compared with dental follicles. DNMT1, DNMT3A, and H3K9ac were overexpressed in ameloblastic carcinomas compared with ameloblastomas. DNMT1 overexpression was associated with specific clinical parameters and the BRAF V600E mutation, while DNMT3B overexpression was associated with an increased risk of tumor recurrence. |
| do Amaral-Silva et al. (2022) [116] | 10 ameloblastoma tissue samples and 10 dental follicle samples | No differences were observed in the methylation status of genes encoding MutS family DNA repair proteins. However, methylation was strongly associated with reduced expression of the MSH2 and MSH6 proteins in ameloblastoma. |
| Guan et al. (2020) [117] | 96 ameloblastoma tissue samples and 15 healthy oral tissue samples | miRNA miR-141-3p is significantly underexpressed in ameloblastoma, leading to overexpression of NCAM1, a protein associated with cell adhesion and increased tumor invasiveness. |
| Liu et al. (2022) [118] | Not specified | 6 types of circular RNA (circRNA) were identified. circRNA circ_0089153 acts as a competing endogenous RNA for miRNA miR-608, which suppresses EGFR and p53 expression. |
| Niu et al. (2020) [119] | 3 ameloblastoma tissue samples and 3 healthy oral tissue samples | Detection of 3.673 differentially methylated adenosine-m6A sites in mRNAs (16.2% hypermethylated), 4.975 in lncRNAs (29.4% hypermethylated), and 364 in circRNAs (22.5% hypermethylated). |
| Niu et al. (2021) [120] | 104 ameloblastoma tissue samples and 20 healthy oral tissue samples | miRNA miR-1-3p, which limits cell proliferation, migration, and tumor invasive capacity, is underexpressed in ameloblastoma. |
| Phattarataratip and Lam-Ubol (2025) [121] | 30 ameloblastoma, 30 odontogenic keratocyst, 30 adenomatoid odontogenic tumor, and 15 dental follicle samples | Odontogenic cysts and tumors exhibit reduced levels of histone H3 trimethylation at lysine residue 9 (H3K9me3) compared with dental follicles, with ameloblastoma showing the second lowest H3K9me3 levels among these lesions. H3K9me3 levels in ameloblastomas demonstrate marked heterogeneity among cases and its upregulation may be linked to ameloblastoma multilocularity. |
| Pongpanich et al. (2021) [122] | 5 ameloblastoma tissue samples and 3 dental follicle samples | A total of 25.255 differentially methylated CpG dinucleotides and 17 differentially methylated CpG islands were identified. Six CpG islands were associated with the genes BAIAP2, DUSP6, FGFR2, FOXF2, NID2, and PAK6. |
| Sun et al. (2020) [123] | 6 ameloblastoma tissue samples and 6 healthy oral tissue samples | lncRNA ENST00000512916 is overexpressed in ameloblastoma. Its suppression inhibits cell proliferation and migration, as well as the expression of CDK2, CDK4, and CDK6 kinases. |
| Udompatanakorn et al. (2025) [124] | 30 ameloblastoma, 20 odontogenic keratocyst, 20 dentigerous cyst, and 6 dental follicle samples | Higher expression of α-ketoglutarate-dependent dioxygenase homolog 5 (ALKBH5), a N6-methyladenosine (m6A) eraser, was observed in ameloblastomas and odontogenic keratocysts compared with dental follicles and dentigerous cysts. |
| Wang et al. (2024) [125] | 76 ameloblastoma tissue samples and 30 healthy oral tissue samples | Modification of tRNA guanine to N-7 methylguanosine by METTL1 activates the MAPK pathway and is associated with a higher risk of recurrence. |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2026 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license.
Share and Cite
Zisis, V.; Papadopoulos, P.; Papadopoulos, S.; Poulopoulos, K.; Charisi, C.; Parlitsis, D.; Poulopoulos, A. Genes and Genetic Pathways Regarding the Etiology and Pathogenesis of Ameloblastoma. Genes 2026, 17, 65. https://doi.org/10.3390/genes17010065
Zisis V, Papadopoulos P, Papadopoulos S, Poulopoulos K, Charisi C, Parlitsis D, Poulopoulos A. Genes and Genetic Pathways Regarding the Etiology and Pathogenesis of Ameloblastoma. Genes. 2026; 17(1):65. https://doi.org/10.3390/genes17010065
Chicago/Turabian StyleZisis, Vasileios, Petros Papadopoulos, Stylianos Papadopoulos, Konstantinos Poulopoulos, Christina Charisi, Dimitrios Parlitsis, and Athanasios Poulopoulos. 2026. "Genes and Genetic Pathways Regarding the Etiology and Pathogenesis of Ameloblastoma" Genes 17, no. 1: 65. https://doi.org/10.3390/genes17010065
APA StyleZisis, V., Papadopoulos, P., Papadopoulos, S., Poulopoulos, K., Charisi, C., Parlitsis, D., & Poulopoulos, A. (2026). Genes and Genetic Pathways Regarding the Etiology and Pathogenesis of Ameloblastoma. Genes, 17(1), 65. https://doi.org/10.3390/genes17010065

