The Impact of Electroconvulsive Therapy on Apoptosis-Related Biomarker Gene Expression in Treatment-Resistant Depression
Abstract
1. Introduction
2. Materials and Methods
2.1. Blood Collection and PBMC Isolation
2.2. RT-PCR Analysis
2.3. Statistical Analysis
3. Results
4. Discussion
Limitations of This Study
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
| ECT | Electroconvulsive therapy; |
| TRD | Treatment-resistant depression; |
| MADRS | Montgomery–Åsberg Depression Rating Scale; |
| MDD | Major depressive disorder; |
| ECS | Electroconvulsive stimulation; |
| E2F1 | Early region 2 promoter transcription factor 1; |
| EDTA | Ethylenediaminetetraacetic acid; |
| PBMCs | Peripheral blood mononuclear cells; |
| FSB | 3,3′-[(2-fluoro-1,4-phenylene)di-(1E)-2,1-ethenediyl]bis-6-hydroxy-benzoic acid; |
| DMSO | Dimethyl sulfoxide; |
| RT-PCR | Reverse transcription polymerase chain reaction; |
| MOMP | Mitochondrial outer membrane permeabilization; |
| AMPK | Adenosine monophosphate-activated protein kinase; |
| RUS | Repeated unpredictable stress; |
| Cdk2-pRB-E2F1 | Cyclin-dependent kinase 2–retinoblastoma protein–E2F1 pathway. |
References
- Marx, W.; Penninx, B.W.J.H.; Solmi, M.; Furukawa, T.A.; Firth, J.; Carvalho, A.F.; Berk, M. Major Depressive Disorder. Nat. Rev. Dis. Primer 2023, 9, 44. [Google Scholar] [CrossRef]
- Yan, G.; Zhang, Y.; Wang, S.; Yan, Y.; Liu, M.; Tian, M.; Tian, W. Global, Regional, and National Temporal Trend in Burden of Major Depressive Disorder from 1990 to 2019: An Analysis of the Global Burden of Disease Study. Psychiatry Res. 2024, 337, 115958. [Google Scholar] [CrossRef]
- Zhang, Y.; Jia, X.; Yang, Y.; Sun, N.; Shi, S.; Wang, W. Change in the Global Burden of Depression from 1990-2019 and Its Prediction for 2030. J. Psychiatr. Res. 2024, 178, 16–22. [Google Scholar] [CrossRef]
- Cui, L.; Li, S.; Wang, S.; Wu, X.; Liu, Y.; Yu, W.; Wang, Y.; Tang, Y.; Xia, M.; Li, B. Major Depressive Disorder: Hypothesis, Mechanism, Prevention and Treatment. Signal Transduct. Target. Ther. 2024, 9, 30. [Google Scholar] [CrossRef] [PubMed]
- Amidfar, M.; Kim, Y.; Scaini, G.; Quevedo, J. Evidence for Additionally Increased Apoptosis in the Peripheral Blood Mononuclear Cells of Major Depressive Patients with a High Risk for Suicide. Am. J. Med. Genet. B Neuropsychiatr. Genet. 2018, 177, 388–396. [Google Scholar] [CrossRef]
- Chiou, S.; Ku, H.; Tsai, T.; Lin, H.; Chen, L.; Chien, C.; Ho, L.L.-T.; Lee, C.; Chang, Y. Moclobemide Upregulated Bcl-2 Expression and Induced Neural Stem Cell Differentiation into Serotoninergic Neuron via Extracellular-regulated Kinase Pathway. Br. J. Pharmacol. 2006, 148, 587–598. [Google Scholar] [CrossRef]
- Bay-Richter, C.; Linderholm, K.R.; Lim, C.K.; Samuelsson, M.; Träskman-Bendz, L.; Guillemin, G.J.; Erhardt, S.; Brundin, L. A Role for Inflammatory Metabolites as Modulators of the Glutamate N-Methyl-d-Aspartate Receptor in Depression and Suicidality. Brain. Behav. Immun. 2015, 43, 110–117. [Google Scholar] [CrossRef]
- Gautam, S.; Jain, A.; Gautam, M.; Vahia, V.; Grover, S. Clinical Practice Guidelines for the Management of Depression. Indian J. Psychiatry 2017, 59, 34. [Google Scholar] [CrossRef]
- Bennabi, D.; Charpeaud, T.; Yrondi, A.; Genty, J.-B.; Destouches, S.; Lancrenon, S.; Alaïli, N.; Bellivier, F.; Bougerol, T.; Camus, V.; et al. Clinical Guidelines for the Management of Treatment-Resistant Depression: French Recommendations from Experts, the French Association for Biological Psychiatry and Neuropsychopharmacology and the Fondation FondaMental. BMC Psychiatry 2019, 19, 262. [Google Scholar] [CrossRef] [PubMed]
- McIntyre, R.S.; Alsuwaidan, M.; Baune, B.T.; Berk, M.; Demyttenaere, K.; Goldberg, J.F.; Gorwood, P.; Ho, R.; Kasper, S.; Kennedy, S.H.; et al. Treatment-resistant Depression: Definition, Prevalence, Detection, Management, and Investigational Interventions. World Psychiatry 2023, 22, 394–412. [Google Scholar] [CrossRef] [PubMed]
- Voineskos, D.; Daskalakis, Z.J.; Blumberger, D.M. Management of Treatment-Resistant Depression: Challenges and Strategies. Neuropsychiatr. Dis. Treat. 2020, 16, 221–234. [Google Scholar] [CrossRef]
- Suleman, R. A Brief History of Electroconvulsive Therapy. Am. J. Psychiatry Resid. J. 2020, 16, 6. [Google Scholar] [CrossRef]
- Hsieh, M.H. Electroconvulsive Therapy for Treatment-Resistant Depression. In Progress in Brain Research; Elsevier: Amsterdam, The Netherlands, 2023; Volume 281, pp. 69–90. ISBN 978-0-443-22394-5. [Google Scholar]
- Espinoza, R.T.; Kellner, C.H. Electroconvulsive Therapy. N. Engl. J. Med. 2022, 386, 667–672. [Google Scholar] [CrossRef] [PubMed]
- Mutz, J.; Vipulananthan, V.; Carter, B.; Hurlemann, R.; Fu, C.H.Y.; Young, A.H. Comparative Efficacy and Acceptability of Non-Surgical Brain Stimulation for the Acute Treatment of Major Depressive Episodes in Adults: Systematic Review and Network Meta-Analysis. BMJ 2019, 364, l1079. [Google Scholar] [CrossRef] [PubMed]
- Tor, P.C.; Tan, X.W.; Martin, D.; Loo, C. Comparative Outcomes in Electroconvulsive Therapy (ECT): A Naturalistic Comparison between Outcomes in Psychosis, Mania, Depression, Psychotic Depression and Catatonia. Eur. Neuropsychopharmacol. J. Eur. Coll. Neuropsychopharmacol. 2021, 51, 43–54. [Google Scholar] [CrossRef] [PubMed]
- Sackeim, H.A. Modern Electroconvulsive Therapy: Vastly Improved yet Greatly Underused. JAMA Psychiatry 2017, 74, 779–780. [Google Scholar] [CrossRef]
- Fetahovic, E.; Janjic, V.; Muric, M.; Jovicic, N.; Radmanovic, B.; Rosic, G.; Selakovic, D.; Filipovic, M.; Muric, N. Neurobiological Mechanisms of Electroconvulsive Therapy: Molecular Perspectives of Brain Stimulation. Int. J. Mol. Sci. 2025, 26, 5905. [Google Scholar] [CrossRef]
- Zarubenko, I.I.; Yakovlev, A.A.; Stepanichev, M.Y.; Gulyaeva, N.V. Electroconvulsive Shock Induces Neuron Death in the Mouse Hippocampus: Correlation of Neurodegeneration with Convulsive Activity. Neurosci. Behav. Physiol. 2005, 35, 715–721. [Google Scholar] [CrossRef]
- Ito, M.; Seki, T.; Liu, J.; Nakamura, K.; Namba, T.; Matsubara, Y.; Suzuki, T.; Arai, H. Effects of Repeated Electroconvulsive Seizure on Cell Proliferation in the Rat Hippocampus. Synapse 2010, 64, 814–821. [Google Scholar] [CrossRef]
- Sigström, R.; Göteson, A.; Joas, E.; Pålsson, E.; Liberg, B.; Nordenskjöld, A.; Blennow, K.; Zetterberg, H.; Landén, M. Blood Biomarkers of Neuronal Injury and Astrocytic Reactivity in Electroconvulsive Therapy. Mol. Psychiatry 2025, 30, 1601–1609. [Google Scholar] [CrossRef]
- McGrory, C.L.; Ryan, K.M.; Kolshus, E.; McLoughlin, D.M. Peripheral Blood E2F1 mRNA in Depression and Following Electroconvulsive Therapy. Prog. Neuropsychopharmacol. Biol. Psychiatry 2019, 89, 380–385. [Google Scholar] [CrossRef]
- Stojanović, Z.; Simić, K.; Tepšić Ostojić, V.; Gojković, Z.; Petković-Ćurčin, A. Electroconvulsive Therapy in the Fourth Industrial Revolution (Review). Biomed. Rep. 2024, 21, 129. [Google Scholar] [CrossRef]
- Vojvodic, P.; Andonov, A.; Stevanovic, D.; Perunicic-Mladenovic, I.; Mihajlovic, G.; Vojvodic, J. Montgomery-Asberg Depression Rating Scale in Clinical Practice: Psychometric Properties on Serbian Patients. Vojnosanit. Pregl. 2020, 77, 1119–1125. [Google Scholar] [CrossRef]
- Livak, K.J.; Schmittgen, T.D. Analysis of Relative Gene Expression Data Using Real-Time Quantitative PCR and the 2−ΔΔCT Method. Methods 2001, 25, 402–408. [Google Scholar] [CrossRef]
- Leucht, S.; Fennema, H.; Engel, R.R.; Kaspers-Janssen, M.; Lepping, P.; Szegedi, A. What does the MADRS mean? Equipercentile linking with the CGI using a company database of mirtazapine studies. J. Affect. Disord. 2017, 210, 287–293. [Google Scholar] [CrossRef]
- UK ECT Review Group. Efficacy and Safety of Electroconvulsive Therapy in Depressive Disorders: A Systematic Review and Meta-Analysis. Lancet Lond. Engl. 2003, 361, 799–808. [Google Scholar] [CrossRef]
- Heijnen, W.T.; Birkenhäger, T.K.; Wierdsma, A.I.; Van Den Broek, W.W. Antidepressant Pharmacotherapy Failure and Response to Subsequent Electroconvulsive Therapy: A Meta-Analysis. J. Clin. Psychopharmacol. 2010, 30, 616–619. [Google Scholar] [CrossRef]
- Nygren, A.; Reutfors, J.; Brandt, L.; Bodén, R.; Nordenskjöld, A.; Tiger, M. Response to Electroconvulsive Therapy in Treatment-Resistant Depression: Nationwide Observational Follow-up Study. BJPsych Open 2023, 9, e35. [Google Scholar] [CrossRef] [PubMed]
- Martin, J.L.; Strawbridge, R.J.; Christmas, D.; Fleming, M.; Kelly, S.; Varveris, D.; Martin, D. Electroconvulsive Therapy: A Scotland-Wide Naturalistic Study of 4826 Treatment Episodes. Biol. Psychiatry Glob. Open Sci. 2025, 5, 100434. [Google Scholar] [CrossRef] [PubMed]
- Rojas, M.; Ariza, D.; Ortega, Á.; Riaño-Garzón, M.E.; Chávez-Castillo, M.; Pérez, J.L.; Cudris-Torres, L.; Bautista, M.J.; Medina-Ortiz, O.; Rojas-Quintero, J.; et al. Electroconvulsive Therapy in Psychiatric Disorders: A Narrative Review Exploring Neuroendocrine–Immune Therapeutic Mechanisms and Clinical Implications. Int. J. Mol. Sci. 2022, 23, 6918. [Google Scholar] [CrossRef]
- Laroy, M.; Van Laere, K.; Vandenbulcke, M.; Emsell, L.; Bouckaert, F. Molecular Positron Emission Tomography and Single-Photon Emission Computed Tomography Imaging for Understanding the Neurobiological Mechanisms of Electroconvulsive Therapy: A Scoping Review. J. ECT 2025, 41, 268–280. [Google Scholar] [CrossRef]
- Fluitman, S.B.A.H.A.; Heijnen, C.J.; Denys, D.A.J.P.; Nolen, W.A.; Balk, F.J.; Westenberg, H.G.M. Electroconvulsive Therapy Has Acute Immunological and Neuroendocrine Effects in Patients with Major Depressive Disorder. J. Affect. Disord. 2011, 131, 388–392. [Google Scholar] [CrossRef]
- Mukhtar, F.; Regenold, W.; Lisanby, S.H. Recent Advances in Electroconvulsive Therapy in Clinical Practice and Research. Fac. Rev. 2023, 12, 13. [Google Scholar] [CrossRef]
- Pollak, C.; Maier, H.B.; Moschny, N.; Jahn, K.; Bleich, S.; Frieling, H.; Neyazi, A. Epinephrine Levels Decrease in Responders after Electroconvulsive Therapy. J. Neural Transm. 2021, 128, 1917–1921. [Google Scholar] [CrossRef] [PubMed]
- Chen, X.; He, C.; Zhang, H.; Yang, H.; Li, J. The Acute Effect of Bitemporal Electroconvulsive Therapy on Synchronous Changes in Heart Rate Variability and Heart Rate in Patients with Depression. Physiol. Meas. 2025, 46, 015005. [Google Scholar] [CrossRef]
- Gay, F.; Romeo, B.; Martelli, C.; Benyamina, A.; Hamdani, N. Cytokines Changes Associated with Electroconvulsive Therapy in Patients with Treatment-Resistant Depression: A Meta-Analysis. Psychiatry Res. 2021, 297, 113735. [Google Scholar] [CrossRef]
- Dellink, A.; Vanderhaegen, G.; Coppens, V.; Ryan, K.M.; McLoughlin, D.M.; Kruse, J.; Van Exel, E.; Van Diermen, L.; Belge, J.-B.; Aarsland, T.I.M.; et al. Inflammatory Markers Associated with Electroconvulsive Therapy Response in Patients with Depression: A Meta-Analysis. Neurosci. Biobehav. Rev. 2025, 170, 106060. [Google Scholar] [CrossRef]
- Dhabhar, F.S. The Short-Term Stress Response—Mother Nature’s Mechanism for Enhancing Protection and Performance under Conditions of Threat, Challenge, and Opportunity. Front. Neuroendocrinol. 2018, 49, 175–192. [Google Scholar] [CrossRef] [PubMed]
- Dong, T.; Zhi, L.; Bhayana, B.; Wu, M.X. Cortisol-Induced Immune Suppression by a Blockade of Lymphocyte Egress in Traumatic Brain Injury. J. Neuroinflamm. 2016, 13, 197. [Google Scholar] [CrossRef]
- Herold, M.J.; McPherson, K.G.; Reichardt, H.M. Glucocorticoids in T Cell Apoptosis and Function. Cell. Mol. Life Sci. 2006, 63, 60. [Google Scholar] [CrossRef] [PubMed]
- Bortner, C.D.; Oakley, R.H.; Cidlowski, J.A. Overcoming Apoptotic Resistance Afforded by Bcl-2 in Lymphoid Tumor Cells: A Critical Role for Dexamethasone. Cell Death Discov. 2022, 8, 494. [Google Scholar] [CrossRef] [PubMed]
- Singh, A.; Kar, S.K. How Electroconvulsive Therapy Works?: Understanding the Neurobiological Mechanisms. Clin. Psychopharmacol. Neurosci. 2017, 15, 210–221. [Google Scholar] [CrossRef]
- Suroto, H.; Asriel, A.; De Vega, B.; Samijo, S.K. Early and Late Apoptosis Protein Expression (Bcl-2, BAX and P53) in Traumatic Brachial Plexus Injury. J. Musculoskelet. Neuronal Interact. 2021, 21, 528–532. [Google Scholar]
- Ma, K.; Chen, G.; Li, W.; Kepp, O.; Zhu, Y.; Chen, Q. Mitophagy, Mitochondrial Homeostasis, and Cell Fate. Front. Cell Dev. Biol. 2020, 8, 467. [Google Scholar] [CrossRef]
- Kim, S.H.; Yu, H.S.; Park, S.; Park, H.G.; Ahn, Y.M.; Kang, U.G.; Kim, Y.S. Electroconvulsive Seizures Induce Autophagy by Activating the AMPK Signaling Pathway in the Rat Frontal Cortex. Int. J. Neuropsychopharmacol. 2019, 23, 42–52. [Google Scholar] [CrossRef]
- Karabatsiakis, A.; Schönfeldt-Lecuona, C. Depression, Mitochondrial Bioenergetics, and Electroconvulsive Therapy: A New Approach towards Personalized Medicine in Psychiatric Treatment—A Short Review and Current Perspective. Transl. Psychiatry 2020, 10, 226. [Google Scholar] [CrossRef]
- Wang, D.B.; Kinoshita, C.; Kinoshita, Y.; Morrison, R.S. P53 and Mitochondrial Function in Neurons. Biochim. Biophys. Acta BBA-Mol. Basis Dis. 2014, 1842, 1186–1197. [Google Scholar] [CrossRef]
- Wylie, T.; Sandhu, D.S.; Murr, N.I. Status Epilepticus. In StatPearls; StatPearls Publishing: Treasure Island, FL, USA, 2025. [Google Scholar]
- An, X.; Shi, X. Effects of Electroconvulsive Shock on Neuro-Immune Responses: Does Neuro-Damage Occur? Psychiatry Res. 2020, 292, 113289. [Google Scholar] [CrossRef] [PubMed]
- Yuan, B.; Zhang, X.; Liu, L.; Chai, Y.; Zhang, J.; Chen, X. Neutrophils-Astrocyte Interactions in Central Nervous System Inflammation. Cell Death Dis. 2025, 16, 643. [Google Scholar] [CrossRef] [PubMed]
- Franco, R.; Fernández-Suárez, D. Alternatively Activated Microglia and Macrophages in the Central Nervous System. Prog. Neurobiol. 2015, 131, 65–86. [Google Scholar] [CrossRef]
- Oshiro, S.; Kawamura, K.; Zhang, C.; Sone, T.; Morioka, M.S.; Kobayashi, S.; Nakajima, K. Microglia and Astroglia Prevent Oxidative Stress-Induced Neuronal Cell Death: Implications for Aceruloplasminemia. Biochim. Biophys. Acta BBA-Mol. Basis Dis. 2008, 1782, 109–117. [Google Scholar] [CrossRef]
- Loef, D.; Tendolkar, I.; Van Eijndhoven, P.F.P.; Hoozemans, J.J.M.; Oudega, M.L.; Rozemuller, A.J.M.; Lucassen, P.J.; Dols, A.; Dijkstra, A.A. Electroconvulsive Therapy Is Associated with Increased Immunoreactivity of Neuroplasticity Markers in the Hippocampus of Depressed Patients. Transl. Psychiatry 2023, 13, 355. [Google Scholar] [CrossRef]
- Goldfarb, S.; Fainstein, N.; Ben-Hur, T. Electroconvulsive Stimulation Attenuates Chronic Neuroinflammation. JCI Insight 2020, 5, e137028. [Google Scholar] [CrossRef]
- Du, N.; Xie, Y.; Geng, D.; Li, J.; Xu, H.; Wang, Y.; Gou, J.; Tan, X.; Xu, X.; Shi, L.; et al. Restoration of Mitochondrial Energy Metabolism by Electroconvulsive Therapy in Adolescent and Juvenile Mice. Front. Psychiatry 2025, 16, 1555144. [Google Scholar] [CrossRef] [PubMed]
- Kosten, T.A.; Galloway, M.P.; Duman, R.S.; Russell, D.S.; D’Sa, C. Repeated Unpredictable Stress and Antidepressants Differentially Regulate Expression of the Bcl-2 Family of Apoptotic Genes in Rat Cortical, Hippocampal, and Limbic Brain Structures. Neuropsychopharmacology 2008, 33, 1545–1558. [Google Scholar] [CrossRef]
- Kondratyev, A.; Sahibzada, N.; Gale, K. Electroconvulsive Shock Exposure Prevents Neuronal Apoptosis after Kainic Acid-Evoked Status Epilepticus. Mol. Brain Res. 2001, 91, 1–13. [Google Scholar] [CrossRef] [PubMed]
- Kim, Y.; Seo, M.-S.; Kang, U.-G.; Yoon, S.C.; Ahn, Y.-M.; Kim, Y.S.; Juhnn, Y.-S. Activation of Cdk2-pRB-E2F1 Cell Cycle Pathway by Repeated Electroconvulsive Shock in the Rat Frontal Cortex. Biol. Psychiatry 2005, 57, 107–109. [Google Scholar] [CrossRef] [PubMed]
- Camins, A.; Verdaguer, E.; Folch, J.; Beas-Zarate, C.; Canudas, A.; Pallas, M. Inhibition of Ataxia Telangiectasia-P53-E2F-1 Pathway in Neurons as a Target for the Prevention of Neuronal Apoptosis. Curr. Drug Metab. 2007, 8, 709–715. [Google Scholar] [CrossRef]
- Jeon, W.J.; Kim, S.H.; Seo, M.S.; Kim, Y.; Kang, U.G.; Juhnn, Y.-S.; Kim, Y.S. Repeated Electroconvulsive Seizure Induces C-Myc down-Regulation and Bad Inactivation in the Rat Frontal Cortex. Exp. Mol. Med. 2008, 40, 435. [Google Scholar] [CrossRef]
- Mitchell, K.O.; Ricci, M.S.; Miyashita, T.; Dicker, D.T.; Jin, Z.; Reed, J.C.; El-Deiry, W.S. Bax Is a Transcriptional Target and Mediator of C-Myc-Induced Apoptosis. Cancer Res. 2000, 60, 6318–6325. [Google Scholar]
- Sarosiek, K.A.; Fraser, C.; Muthalagu, N.; Bhola, P.D.; Chang, W.; McBrayer, S.K.; Cantlon, A.; Fisch, S.; Golomb-Mello, G.; Ryan, J.A.; et al. Developmental Regulation of Mitochondrial Apoptosis by C-Myc Governs Age- and Tissue-Specific Sensitivity to Cancer Therapeutics. Cancer Cell 2017, 31, 142–156. [Google Scholar] [CrossRef]
- Bai, L.; Zhou, L.; Han, W.; Chen, J.; Gu, X.; Hu, Z.; Yang, Y.; Li, W.; Zhang, X.; Niu, C.; et al. BAX as the Mediator of C-MYC Sensitizes Acute Lymphoblastic Leukemia to TLR9 Agonists. J. Transl. Med. 2023, 21, 108. [Google Scholar] [CrossRef]
- Soucie, E.L.; Annis, M.G.; Sedivy, J.; Filmus, J.; Leber, B.; Andrews, D.W.; Penn, L.Z. Myc Potentiates Apoptosis by Stimulating Bax Activity at the Mitochondria. Mol. Cell. Biol. 2001, 21, 4725–4736. [Google Scholar] [CrossRef] [PubMed]
- Jiang, X.; Tsang, Y.H.; Yu, Q. C-Myc Overexpression Sensitizes Bim-Mediated Bax Activation for Apoptosis Induced by Histone Deacetylase Inhibitor Suberoylanilide Hydroxamic Acid (SAHA) through Regulating Bcl-2/Bcl-xL Expression. Int. J. Biochem. Cell Biol. 2007, 39, 1016–1025. [Google Scholar] [CrossRef] [PubMed]
- Barlattani, T.; Cavatassi, A.; Bologna, A.; Socci, V.; Trebbi, E.; Malavolta, M.; Rossi, A.; Martiadis, V.; Tomasetti, C.; De Berardis, D.; et al. Glymphatic System and Psychiatric Disorders: Need for a New Paradigm? Front. Psychiatry 2025, 16, 1642605. [Google Scholar] [CrossRef]
- Barlattani, T.; Grandinetti, P.; Cintio, A.D.; Montemagno, A.; Testa, R.; D’Amelio, C.; Olivieri, L.; Tomasetti, C.; Rossi, A.; Pacitti, F.; et al. Glymphatic System and Psychiatric Disorders: A Rapid Comprehensive Scoping Review. Curr. Neuropharmacol. 2024, 22, 2016–2033. [Google Scholar] [CrossRef] [PubMed]
- Blandini, F.; Mangiagalli, A.; Cosentino, M.; Marino, F.; Samuele, A.; Rasini, E.; Fancellu, R.; Martignoni, E.; Riboldazzi, G.; Calandrella, D.; et al. Peripheral Markers of Apoptosis in Parkinson’s Disease: The Effect of Dopaminergic Drugs. Ann. N. Y. Acad. Sci. 2003, 1010, 675–678. [Google Scholar] [CrossRef]
- Cadenhead, K.S.; Mirzakhanian, H.; Achim, C.; Reyes-Madrigal, F.; de la Fuente-Sandoval, C. Peripheral and Central Biomarkers Associated with Inflammation in Antipsychotic Naïve First Episode Psychosis: Pilot Studies. Schizophr. Res. 2024, 264, 39–48. [Google Scholar] [CrossRef]
- Rachayon, M.; Jirakran, K.; Sodsai, P.; Tunvirachaisakul, C.; Sughondhabirom, A.; Li, J.; Zhang, Y.; Maes, M. Immune Cell Exhaustion and Apoptotic Markers in Major Depressive Disorder: Effects of In Vitro Cannabidiol Administration. Brain Behav. Immun.-Health 2025, 48, 101066. [Google Scholar] [CrossRef]







Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2026 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license.
Share and Cite
Fetahovic, E.; Selakovic, D.; Mitrovic, M.; Jovicic, N.; Simovic Markovic, B.; Milosavljevic, J.; Radmanovic, B.; Milovanovic, D.; Ljujic, B.; Rosic, G.; et al. The Impact of Electroconvulsive Therapy on Apoptosis-Related Biomarker Gene Expression in Treatment-Resistant Depression. Genes 2026, 17, 57. https://doi.org/10.3390/genes17010057
Fetahovic E, Selakovic D, Mitrovic M, Jovicic N, Simovic Markovic B, Milosavljevic J, Radmanovic B, Milovanovic D, Ljujic B, Rosic G, et al. The Impact of Electroconvulsive Therapy on Apoptosis-Related Biomarker Gene Expression in Treatment-Resistant Depression. Genes. 2026; 17(1):57. https://doi.org/10.3390/genes17010057
Chicago/Turabian StyleFetahovic, Ermin, Dragica Selakovic, Marina Mitrovic, Nemanja Jovicic, Bojana Simovic Markovic, Jovan Milosavljevic, Branimir Radmanovic, Dragan Milovanovic, Biljana Ljujic, Gvozden Rosic, and et al. 2026. "The Impact of Electroconvulsive Therapy on Apoptosis-Related Biomarker Gene Expression in Treatment-Resistant Depression" Genes 17, no. 1: 57. https://doi.org/10.3390/genes17010057
APA StyleFetahovic, E., Selakovic, D., Mitrovic, M., Jovicic, N., Simovic Markovic, B., Milosavljevic, J., Radmanovic, B., Milovanovic, D., Ljujic, B., Rosic, G., & Janjic, V. (2026). The Impact of Electroconvulsive Therapy on Apoptosis-Related Biomarker Gene Expression in Treatment-Resistant Depression. Genes, 17(1), 57. https://doi.org/10.3390/genes17010057

