Birth–Death Dynamics of Microsatellites: Mechanistic Insights from Orthologous Loci in Felidae
Abstract
1. Introduction
2. Materials and Methods
2.1. DNA Samples
2.2. Microsatellite Amplification and Sequencing
2.2.1. Locus Selection and Amplification
2.2.2. PCR Conditions
2.2.3. NGS Library Preparation and Sequencing (Ptia2-Intron Only)
2.2.4. Sequence Processing and Genotyping
2.3. Orthologous Locus Identification and Sequence Acquisition
2.3.1. Exonic Locus (Ptia2-Exon)
2.3.2. Ortholog Detection Across Vertebrates
2.3.3. Sequence Retrieval and Validation
2.4. Sequence Alignment and Polymorphism Analysis
2.5. Variation in Repeat Unit Motifs
2.6. Statistical Characterization of Microsatellite Mutation
2.6.1. Lineage-Level Mutation Patterns
2.6.2. Mutation Model Testing
2.6.3. Statistical Analyses
3. Results
3.1. Mutation in Non-Coding Microsatellite Locus Ptia5
3.2. Mutation in Intron Microsatellite Locus Ptia2-Intron
3.3. Mutation in Exon Microsatellite Locus Ptia2-Exon
3.4. Variation in Repeat Region Length Across Felidae Lineages
3.5. Statistical Tests of the “Threshold” for Births/Deaths of Microsatellites
4. Discussion
4.1. Constraints on Maximum Repeat Numbers
4.2. The “Threshold” for Births/Deaths of Microsatellites
4.3. Directional Evolutionary Trajectories
4.4. Factors Influencing Mutational Dynamics
4.5. Study Limitations and Strengths
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
MCL | Maximum composite likelihood |
STRs | Short tandem repeats |
MYA | Million years ago |
NGS | Next-generation sequencing |
SNVs | Single-nucleotide variants |
CSS | Cryptic simple sequences |
SNPs | Single-nucleotide polymorphisms |
ALT | Panthera tigris altaica |
SCT | Panthera tigris amoyensis |
References
- Bachtrog, D.; Weiss, S.; Zangerl, B.; Brem, G.; Schlötterer, C. Distribution of dinucleotide microsatellites in the Drosophila melanogaster genome. Mol. Biol. Evol. 1999, 16, 602–610. [Google Scholar] [CrossRef]
- Chambers, G.K.; MacAvoy, E.S. Microsatellites: Consensus and controversy. Comp. Biochem. Physiol. B 2000, 126, 455–476. [Google Scholar] [CrossRef]
- Chen, J.; Wang, Z.; Tan, K.; Huang, W.; Shi, J.; Li, T.; Hu, J.; Wang, K.; Wang, C.; Xin, B.; et al. A complete telomere-to-telomere assembly of the maize genome. Nat. Genet. 2023, 55, 1221–1231. [Google Scholar] [CrossRef]
- Wlodzimierz, P.; Rabanal, F.A.; Burns, R.; Naish, M.; Primetis, E.; Scott, A.; Mandakova, T.; Gorringe, N.; Tock, A.J.; Holland, D.; et al. Cycles of satellite and transposon evolution in Arabidopsis centromeres. Nature 2023, 618, 557–565. [Google Scholar] [CrossRef]
- Zattera, M.L.; Bruschi, D.P. Transposable elements as a source of novel repetitive DNA in the eukaryote genome. Cells 2022, 11, 3373. [Google Scholar] [CrossRef]
- Fondon, J.W.; Garner, H.R. Molecular origins of rapid and continuous morphological evolution. Proc. Natl. Acad. Sci. USA 2004, 101, 18058–18063. [Google Scholar] [CrossRef] [PubMed]
- Hammock, E.A.D.; Young, L.J. Microsatellite instability generates diversity in brain and sociobehavioral traits. Science 2005, 308, 1630–1634. [Google Scholar] [CrossRef] [PubMed]
- Willems, T.; Gymrek, M.; Highnam, G.; Mittelman, D.; Erlich, Y. 1000 Genomes Project Consortium The landscape of human STR variation. Genome Res. 2014, 24, 1894–1904. [Google Scholar] [CrossRef] [PubMed]
- Mallick, S.; Li, H.; Lipson, M.; Mathieson, I.; Gymrek, M.; Racimo, F.; Zhao, M.; Chennagiri, N.; Nordenfelt, S.; Tandon, A.; et al. The simons genome diversity project: 300 genomes from 142 diverse populations. Nature 2016, 538, 201–206. [Google Scholar] [CrossRef]
- Lu, J.Y.; Chang, L.; Li, T.; Wang, T.; Yin, Y.; Zhan, G.; Han, X.; Zhang, K.; Tao, Y.; Percharde, M.; et al. Homotypic clustering of L1 and B1/alu repeats compartmentalizes the 3D genome. Cell Res. 2021, 31, 613–630. [Google Scholar] [CrossRef]
- Pearson, C.E.; Edamura, K.N.; Cleary, J.D. Repeat instability: Mechanisms of dynamic mutations. Nat. Rev. Genet. 2005, 6, 729–742. [Google Scholar] [CrossRef]
- Malik, I.; Kelley, C.P.; Wang, E.T.; Todd, P.K. Molecular mechanisms underlying nucleotide repeat expansion disorders. Nat. Rev. Mol. Cell Biol. 2021, 22, 589–607. [Google Scholar] [CrossRef]
- Gharesouran, J.; Hosseinzadeh, H.; Ghafouri-Fard, S.; Taheri, M.; Rezazadeh, M. STRs: Ancient Architectures of the Genome beyond the Sequence. J. Mol. Neurosci. 2021, 71, 2441–2455. [Google Scholar] [CrossRef] [PubMed]
- Bunting, E.L.; Hamilton, J.; Tabrizi, S.J. Polyglutamine diseases. Curr. Opin. Neurobiol. 2022, 72, 39–47. [Google Scholar] [CrossRef]
- Wright, S.E.; Todd, P.K. Native functions of short tandem repeats. eLife 2023, 12, 1584. [Google Scholar] [CrossRef]
- Tenchov, R.; Sasso, J.M.; Zhou, Q.A. Polyglutamine (PolyQ) diseases: Navigating the landscape of neurodegeneration. ACS Chem. Neurosci. 2024, 15, 2665–2694. [Google Scholar] [CrossRef]
- Ellegren, H. Microsatellites: Simple sequences with complex evolution. Nat. Rev. Genet. 2004, 5, 435–445. [Google Scholar] [CrossRef]
- Buschiazzo, E.; Gemmell, N.J. The rise, fall and renaissance of microsatellites in eukaryotic genomes. BioEssays 2006, 28, 1040–1050. [Google Scholar] [CrossRef] [PubMed]
- Sun, J.X.; Mullikin, J.C.; Patterson, N.; Reich, D.E. Microsatellites are molecular clocks that support accurate inferences about history. Mol. Biol. Evol. 2009, 26, 1017–1027. [Google Scholar] [CrossRef]
- Sainudiin, R.; Durrett, R.T.; Aquadro, C.F.; Nielsen, R. Microsatellite mutation models: Insights from a comparison of humans and chimpanzees. Genetics 2004, 168, 383–395. [Google Scholar] [CrossRef] [PubMed]
- Messier, W.; Li, S.H.; Stewart, C.B. The birth of microsatellites. Nature 1996, 381, 483. [Google Scholar] [CrossRef] [PubMed]
- Wilder, J.; Hollocher, H. Mobile elements and the genesis of microsatellite in Dipterans. Mol. Biol. Evol. 2001, 18, 384–392. [Google Scholar] [CrossRef]
- Bagshaw, A.T.M.; Pitt, J.P.W.; Gemmell, N.J. High frequency of microsatellites in S. cerevisiae meiotic recombination hotspots. BMC Genom. 2008, 9, 49. [Google Scholar] [CrossRef]
- Kelkar, Y.D.; Eckert, K.A.; Chiaromonte, F.; Makova, K.D. A matter of life or death: How microsatellites emerge in and vanish from the human genome. Genome Res. 2011, 21, 2038–2048. [Google Scholar] [CrossRef]
- Sun, J.X.; Helgason, A.; Masson, G.; Ebenesersdóttir, S.S.; Li, H.; Mallick, S.; Gnerre, S.; Patterson, N.; Kong, A.; Reich, D.; et al. A direct characterization of human mutation based on microsatellites. Nat. Genet. 2012, 44, 1161–1165. [Google Scholar] [CrossRef]
- Baptiste, B.A.; Ananda, G.; Strubczewski, N.; Lutzkanin, A.; Khoo, S.J.; Srikanth, A.; Kim, N.; Makova, K.D.; Krasilnikova, M.M.; Eckert, K.A. Mature microsatellites: Mechanisms underlying dinucleotide microsatellite mutational biases in human cells. G3 (Bethesda) 2013, 3, 451–463. [Google Scholar] [CrossRef]
- Ananda, G.; Hile, S.E.; Breski, A.; Wang, Y.; Kelkar, Y.; Makova, K.D.; Eckert, K.A. Microsatellite interruptions stabilize primate genomes and exist as population-specific single nucleotide polymorphisms within individual human genomes. PLoS Genet. 2014, 10, e1004498. [Google Scholar] [CrossRef]
- Taylor, J.S.; Durkin, M.H.; Breden, F. The Death of a microsatellite: A phylogenetic perspective on microsatellite interruptions. Mol. Biol. Evol. 1999, 16, 567–572. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Shortt, J.A.; Ruggiero, R.P.; Cox, C.; Wacholder, A.C.; Pollock, D.D. Finding and extending ancient simple sequence repeat-derived regions in the human genome. Mob. DNA 2020, 11, 11. [Google Scholar] [CrossRef] [PubMed]
- Loire, E.; Higuet, D.; Netter, P.; Achaz, G. Evolution of coding microsatellites in primate genomes. Genome Biol. Evol. 2013, 5, 283–295. [Google Scholar] [CrossRef]
- Adams, R.H.; Blackmon, H.; Reyes-Velasco, J.; Schield, D.R.; Card, D.C.; Andrew, A.; Castoe, T.A. Microsatellite landscape evolutionary dynamics across 450 million years of vertebrate genome evolution. Genome 2016, 59, 295–310. [Google Scholar] [CrossRef] [PubMed]
- O’Brien, S.J.; Johnson, W.E. Big cat genomics. Annu. Rev. Genom. Hum. Genet. 2005, 6, 407–429. [Google Scholar] [CrossRef] [PubMed]
- Johnson, W.E.; Eizirik, E.; Pecon-Slattery, J.; Murphy, W.J.; Antunes, A.; Teeling, E.; O’Brien, S.J. The late Miocene radiation of modern felidae: A genetic assessment. Science 2006, 311, 73–77. [Google Scholar] [CrossRef]
- Wang, J.F.; Zhang, Y.P.; Yu, L. Summary of phylogeny in family Felidae of Carnivora. Yi Chuan 2012, 34, 1365–1378. (In Chinese) [Google Scholar] [CrossRef]
- Sambrook, J.; Fritsch, E.; Maniatis, T. Molecular Cloning: A Laboratory Manual; Cold Spring Harbor Laboratory Press: New York, NY, USA, 1989. [Google Scholar]
- Zhang, W.-P.; Zhang, Z.-H.; Wei, K.; Shen, F.-J.; Hou, R.; Zhang, L.; Yue, B.-S. Isolation and characterization of polymorphic tri- and tetra-nucleotide microsatellite loci for the South China tiger. J. Nat. Hist. 2006, 40, 2259–2263. [Google Scholar] [CrossRef]
- Devesse, L.; Ballard, D.; Davenport, L.; Riethorst, I.; Mason-Buck, G.; Syndercombe Court, D. Concordance of the ForenSeq system and characterisation of sequence-specific autosomal STR alleles across two major population groups. Forensic. Sci. Int. Genet. 2017, 34, 57–61. [Google Scholar] [CrossRef]
- Malausa, T.; Gilles, A.; Meglécz, E.; Blanquart, H.; Duthoy, S.; Costedoat, C.; Dubut, V.; Pech, N.; Castagnone-Sereno, P.; Délye, C.; et al. High-throughput microsatellite isolation through 454 GS-FLX Titanium pyrosequencing of enriched DNA libraries. Mol. Ecol. Resour. 2011, 11, 638–644. [Google Scholar] [CrossRef] [PubMed]
- Lepais, O.; Chancerel, E.; Boury, C.; Salin, F.; Manicki, A.; Taillebois, L.; Dutech, C.; Aissi, A.; Bacles, C.F.E.; Daverat, F.; et al. Fast sequence-based microsatellite genotyping development workflow. PeerJ 2020, 8, e9085. [Google Scholar] [CrossRef]
- Hoogenboom, J.; de Knijff, P.; Laros, J.F.J.; de Leeuw, R.H.; van der Gaag, K.J.; Sijen, T. FDSTools: A software package for analysis of massively parallel sequencing data with the ability to recognize and correct STR stutter and other PCR or sequencing noise. Forensic Sci. Int. Genet. 2016, 27, 27–40. [Google Scholar] [CrossRef]
- Hall, T.A. BioEdit: A user-friendly biological sequence alignment editor and analysis program for Windows 05/98/NT. Nucl. Acids Symp. Ser. 1999, 41, 95–98. [Google Scholar]
- Sun, X.; Liu, Y.C.; Tiunov, M.P.; Gimranov, D.O.; Zhuang, Y.; Han, Y.; Driscoll, C.A.; Pang, Y.; Li, C.; Pan, Y.; et al. Ancient DNA reveals genetic admixture in China during tiger evolution. Nat. Ecol. Evol. 2023, 7, 1914–1929. [Google Scholar] [CrossRef]
- Zhou, T.; Xu, K.; Zhao, F.; Liu, W.; Li, L.; Hua, Z.; Zhou, X. itol.toolkit accelerates working with iTOL (Interactive Tree of Life) by an automated generation of annotation files. Bioinformatics 2023, 39, btad339. [Google Scholar] [CrossRef]
- Letunic, I.; Bork, P. Interactive Tree of Life (iTOL) v5: An online tool for phylogenetic tree display and an-notation. Nucleic Acids. Res. 2021, 49, W293–W296. [Google Scholar] [CrossRef]
- Nielsen, R. A maximum likelihood approach to population samples of microsatellite alleles. Genetics 1997, 146, 711–716. [Google Scholar] [CrossRef] [PubMed]
- Kohany, O.; Gentles, A.J.; Hankus, L.; Jurka, J. Annotation, submission, and screening of repetitive elements in Repbase: Repbase Submitter and Censor. BMC Bioinform. 2006, 7, 474. [Google Scholar] [CrossRef]
- McComish, B.J.; Charleston, M.A.; Parks, M.; Baroni, C.; Salvatore, M.C.; Li, R.; Zhang, G.; Millar, C.D.; Holland, B.R.; Lambert, D.M. Ancient and Modern Genomes Reveal Microsatellites Maintain a Dynamic Equilibrium Through Deep Time. Genome Biol. Evol. 2024, 16, evae017. [Google Scholar] [CrossRef]
- Mitra, I.; Huang, B.; Mousavi, N.; Ma, N.; Lamkin, M.; Yanicky, R.; Shleizer-Burko, S.; Lohmueller, K.E.; Gymrek, M. Patterns of de novo tandem repeat mutations and their role in autism. Nature 2021, 589, 246–250. [Google Scholar] [CrossRef] [PubMed]
- Marriage, T.N.; Hudman, S.; Mort, M.E.; Orive, M.E.; Haw, R.G.; Kelly, J.K. Direct estimation of the mutation rate at dinucleotide microsatellite loci in Arabidopsis thaliana (Brassicaceae). Heredity 2009, 103, 310–317. [Google Scholar] [CrossRef] [PubMed]
- Garza, J.C.; Slatkin, M.; Freimer, N.B. Microsatellite allele frequencies in humans and chimpanzees with implications for constraints on allele size. Mol. Biol. Evol. 1995, 12, 594–603. [Google Scholar] [CrossRef] [PubMed]
- Stefanini, F.M.; Feldman, M.W. Bayesian estimation of range for microsatellite loci. Genet. Res. 2000, 75, 167–177. [Google Scholar] [CrossRef]
- Ustinova, J.; Achmann, R.; Cremer, S.; Mayer, F. Long repeats in a huge genome: Microsatellite loci in the grasshopper Chorthippus biguttulus. J. Mol. Evol. 2006, 62, 158–167. [Google Scholar] [CrossRef]
- Verbiest, M.; Maksimov, M.; Jin, Y.; Anisimova, M.; Gymrek, M.; Bilgin Sonay, T. Mutation and selection processes regulating short tandem repeats give rise to genetic and phenotypic diversity across species. J. Evol. Biol. 2023, 36, 321–336. [Google Scholar] [CrossRef]
- Rose, O.; Falush, D. A threshold size for microsatellite expansion. Mol. Biol. Evol. 1998, 15, 613–615. [Google Scholar] [CrossRef]
- Lai, Y.; Sun, F. The relationship between microsatellite slippage mutation rate and the number of repeat units. Mol. Biol. Evol. 2003, 20, 2123–2131. [Google Scholar] [CrossRef] [PubMed]
- Srivastava, S.; Avvaru, A.K.; Sowpati, D.T.; Mishra, R.K. Patterns of microsatellite distribution across eukaryotic genomes. BMC Genom. 2019, 20, 153. [Google Scholar] [CrossRef] [PubMed]
- Pupko, T.; Graur, D. Evolution of microsatellites in the yeast Saccharomyces cerevisiae: Role of length and number of repeated units. J. Mol. Evol. 1999, 48, 313–316. [Google Scholar] [CrossRef]
- Leclercq, S.; Rivals, E.; Jarne, P. DNA slippage occurs at microsatellite loci without minimal threshold length in humans: A comparative genomic approach. Genome Biol. Evol. 2010, 2, 325–335. [Google Scholar] [CrossRef] [PubMed]
- Tautz, D.; Trick, M.; Dover, G.A. Cryptic simplicity in DNA is a major source of genetic variation. Nature 1986, 322, 652–656. [Google Scholar] [CrossRef]
- López-Giráldez, F.; Andrés, O.; Domingo-Roura, X.; Bosch, M. Analyses of carnivore microsatellites and their intimate association with tRNA-derived SINEs. BMC Genom. 2006, 7, 269. [Google Scholar] [CrossRef][Green Version]
- Faux, N. Single amino acid and trinucleotide repeats: Function and evolution. Adv. Exp. Med. Biol. 2012, 769, 26–40. [Google Scholar][Green Version]
- Sharma, M.; Pandey, G.K. Expansion and function of repeat domain proteins during stress and development in plants. Front. Plant Sci. 2015, 6, 1218. [Google Scholar][Green Version]
- Antão-Sousa, S.; Pinto, N.; Rende, P.; Amorim, A.; Gusmão, L. The sequence of the repetitive motif influences the frequency of multistep mutations in Short Tandem Repeats. Sci. Rep. 2023, 13, 10251. [Google Scholar] [CrossRef]
- Laidlaw, J.; Gelfand, Y.; Ng, K.-W.; Garner, H.R.; Ranganathan, R.; Benson, G.; Fondon, J.W. Elevated basal slippage mutation rates among the Canidae. J. Hered. 2007, 98, 452–460. [Google Scholar] [CrossRef]
- Sawaya, S.M.; Lennon, D.; Buschiazzo, E.; Gemmell, N.; Minin, V.N. Measuring microsatellite conservation in mammalian evolution with a phylogenetic birth–death model. Genome Biol. Evol. 2012, 4, 748–759. [Google Scholar] [CrossRef] [PubMed]
- Demers, J.E.; Jiménez-Gasco Mdel, M. Evolution of Nine Microsatellite Loci in the Fungus Fusarium oxysporum. J. Mol. Evol. 2016, 82, 27–37. [Google Scholar] [CrossRef]
- Wissler, L.; Godmann, L.; Bornberg-Bauer, E. Evolutionary dynamics of simple sequence repeats across long evolutionary time scale in genus Drosophila. Trends Evol. Biol. 2012, 4, e7. [Google Scholar] [CrossRef][Green Version]
- Eichler, E.E.; Kunst, C.B.; Lugenbeel, K.A.; Ryder, O.A.; Davison, D.; Warren, S.T.; Nelson, D.L. Evolution of the cryptic FMR1 CGG repeat. Nat. Genet. 1995, 11, 301–308. [Google Scholar] [CrossRef]
- Sellier, C.; Buijsen, R.A.M.; He, F.; Natla, S.; Jung, L.; Tropel, P.; Gaucherot, A.; Jacobs, H.; Meziane, H.; Vincent, A.; et al. Translation of expanded CGG repeats into fmrpolyg is pathogenic and may contribute to fragile X tremor ataxia syndrome. Neuron 2017, 93, 331–347. [Google Scholar] [CrossRef] [PubMed]
- Press, M.O.; McCoy, R.C.; Hall, A.N.; Akey, J.M.; Queitsch, C. Massive variation of short tandem repeats with functional consequences across strains of Arabidopsis thaliana. Genome Res. 2018, 28, 1169–1178. [Google Scholar] [CrossRef]
Birth Status | Scientific Name | Common Name | Individuals’ Numbers |
---|---|---|---|
Wild | Felis bieti | Chinese desert cat | 4 |
Wild | Felis silvestris | European wild cat | 1 |
Wild | Prionailurus bengalensis | Asian leopard cat | 5 |
Wild | Catopuma temminckii | Asiatic golden cat | 3 |
Wild | Neofelis nebulosa | Clouded leopard | 3 |
Wild | Panthera uncia | Snow leopard | 3 |
Captive and Wild | Panthera pardus | Leopard | 6 |
Captive | Panthera tigris altaica | Amur tiger | 12 |
Captive | Panthera tigris tigris | Bengal tiger | 2 |
Captive | Panthera tigris amoyensis | South China tiger | 23 |
Captive | Panthera leo | Lion | 2 |
Wild | Otocolobus manul | Pallas’ cat | 2 |
Comparison | BF | Log(BF) | 2 × Log(BF) | Evidence Strength |
---|---|---|---|---|
Threshold vs. continuous | 85.2 | 4.45 | 8.90 | Strong |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, W.; Zhang, M.; Liu, H. Birth–Death Dynamics of Microsatellites: Mechanistic Insights from Orthologous Loci in Felidae. Genes 2025, 16, 1115. https://doi.org/10.3390/genes16091115
Zhang W, Zhang M, Liu H. Birth–Death Dynamics of Microsatellites: Mechanistic Insights from Orthologous Loci in Felidae. Genes. 2025; 16(9):1115. https://doi.org/10.3390/genes16091115
Chicago/Turabian StyleZhang, Wenping, Mingchun Zhang, and Hao Liu. 2025. "Birth–Death Dynamics of Microsatellites: Mechanistic Insights from Orthologous Loci in Felidae" Genes 16, no. 9: 1115. https://doi.org/10.3390/genes16091115
APA StyleZhang, W., Zhang, M., & Liu, H. (2025). Birth–Death Dynamics of Microsatellites: Mechanistic Insights from Orthologous Loci in Felidae. Genes, 16(9), 1115. https://doi.org/10.3390/genes16091115