GPBSO: Gene Pool-Based Brain Storm Optimization for SNP Epistasis Detection
Abstract
1. Introduction
2. Materials and Methods
2.1. Load the Gwas Data into Memory
2.2. Determine the Maximum Order (mo) Based on the Samples
2.3. Initialize Discussion Groups and Gene Pool
2.4. Generate Individual X Through Discussion Group Dynamics
2.5. Identifying Epistasis Within SNP Combinations Through the k2 Metric
Algorithm 1 Identify Epistatic Interactions Using k2 Metric | |
Require: Maximum order mo; SNP combination x with mo SNPs generated by GPBSO; k2x as the k2 score of x | |
Ensure: Epistatic interaction of order within [2, mo) or no result | |
1: | Set l = mo |
2: | while l > 1 do |
3: | foundImprovement = false |
4: | for each SNP index i in [0, l) do |
5: | Create a new SNP combination xx of length l - 1 by excluding x[i] |
6: | Compute k2xx as the k2 score for xx |
7: | if k2xx < k2x then |
8: | Update x to xx |
9: | Update k2x to k2xx |
10: | Decrement l by 1 |
11: | Set foundImprovement = true |
12: | Exit the loop |
13: | end if |
14: | end for |
15: | if not foundImprovement then |
16: | Exit the loop |
17: | end if |
18: | end while |
19: | if l > 1 then |
20: | return x as the detected epistatic interaction |
21: | end if |
2.6. Evaluating the Significance of Interaction Effects with the G-Test
2.7. Parameter Settings and Practical Guidance
3. Results
3.1. Performance Assessment Using Simulated Genotype Data
3.2. Computational Cost Analysis
3.3. Validation on Authentic GWAS Datasets
4. Discussion
5. Conclusions
6. Patents
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Collins, A.; Lonjou, C.; Morton, N.E. Genetic epidemiology of single-nucleotide polymorphisms. Proc. Natl. Acad. Sci. USA 1999, 96, 15173–15177. [Google Scholar] [CrossRef] [PubMed]
- Schork, N.J.; Fallin, D.; Lanchbury, J.S. Single nucleotide polymorphisms and the future of genetic epidemiology. Clin. Genet. 2000, 58, 250–264. [Google Scholar] [CrossRef] [PubMed]
- Chen, F.; Chen, G.K.; Stram, D.O.; Millikan, R.C.; Ambrosone, C.B.; John, E.M.; Bernstein, L.; Zheng, W.; Palmer, J.R.; Hu, J.J.; et al. A genome-wide association study of breast cancer in women of African ancestry. Hum. Genet. 2013, 132, 39–48. [Google Scholar] [CrossRef] [PubMed]
- Pulit, S.L.; Stoneman, C.; Morris, A.P.; Wood, A.R.; Glastonbury, C.A.; Tyrrell, J.; Yang, J.; Ferreira, T.; Marouli, E.; Ji, Y.; et al. Meta-analysis of genome-wide association studies for body fat distribution in 694,649 individuals of European ancestry. Hum. Mol. Genet. 2019, 28, 166–174. [Google Scholar] [CrossRef]
- Yengo, L.; Sidorenko, J.; Kemper, K.E.; Zheng, Z.; Wood, A.R.; Weedon, M.N.; Frayling, T.M.; Hirschhorn, J.; Yang, J.; Visscher, P.M. Meta-analysis of genome-wide association studies for height and body mass index in ~700,000 individuals of European ancestry. Hum. Mol. Genet. 2018, 27, 3641–3649. [Google Scholar] [CrossRef]
- Elliott, L.T.; Sharp, K.; Alfaro-Almagro, F.; Shi, S.; Miller, K.L.; Douaud, G.; Marchini, J.; Smith, S.M. Genome-wide association studies of brain imaging phenotypes in UK Biobank. Nature 2018, 562, 210–216. [Google Scholar] [CrossRef]
- Hirschhorn, J.N.; Daly, M.J. Genome-wide association studies for common diseases and complex traits. Nat. Rev. Genet. 2005, 6, 95–108. [Google Scholar] [CrossRef]
- Erdmann, J.; Kessler, T.; Venegas, L.M.; Schunkert, H. A decade of genome-wide association studies for coronary artery disease: The challenges ahead. Cardiovasc. Res. 2018, 114, 1241–1257. [Google Scholar] [CrossRef]
- Misra, R.; Arebi, N. Re: Genome-wide association study identifies African-specific susceptibility loci in African Americans with inflammatory bowel disease. Gastroenterology 2017, 152, 2082–2083. [Google Scholar] [CrossRef]
- Chang, D. A meta-analysis of genome-wide association studies identifies 17 new Parkinson’s disease risk loci. Nat. Genet. 2017, 49, 1511–1516. [Google Scholar] [CrossRef]
- Fejerman, L.; Ahmadiyeh, N.; Hu, D.; Huntsman, S.; Beckman, K.B.; Caswell, J.L.; Tsung, K.; John, E.M.; Torres-Mejia, G. Genome-wide association study of breast cancer in Latinas identifies novel protective variants on 6q25. Nat. Commun. 2014, 5, 5260. [Google Scholar] [CrossRef] [PubMed]
- Maguire, L.H.; Handelman, S.K.; Du, X.; Chen, Y.; Pers, T.H.; Speliotes, E.K. Genome-wide association analyses identify 39 new susceptibility loci for diverticular disease. Nat. Genet. 2018, 50, 1359–1365. [Google Scholar] [CrossRef] [PubMed]
- Okbay, A.; Beauchamp, J.P.; Fontana, M.A.; Lee, J.J.; Pers, T.H.; Rietveld, C.A.; Turley, P.; Chen, G.-B.; Emilsson, V.; Meddens, S.F.W.; et al. Genome-wide association study identifies 74 loci associated with educational attainment. Nature 2016, 533, 539–542. [Google Scholar] [CrossRef] [PubMed]
- Wang, Z.; McGlynn, K.A.; Meyts, E.R.-D.; Bishop, D.T.; Chung, C.C.; Dalgaard, M.D.; Greene, M.H.; Gupta, R.; Grotmol, T.; Haugen, T.B.; et al. Meta-analysis of five genome-wide association studies identifies multiple new loci associated with testicular germ cell tumor. Nat. Genet. 2017, 49, 1141–1147. [Google Scholar] [CrossRef]
- Carlborg, Ö.; Haley, C.S. Epistasis: Too often neglected in complex trait studies? Nat. Rev. Genet. 2004, 5, 618–625. [Google Scholar] [CrossRef]
- Cordell, H.J. Epistasis: What it means, what it doesn’t mean, and statistical methods to detect it in humans. Hum. Mol. Genet. 2002, 11, 2463–2468. [Google Scholar] [CrossRef]
- Cordell, H.J. Detecting gene–gene interactions that underlie human diseases. Nat. Rev. Genet. 2009, 10, 392–404. [Google Scholar] [CrossRef]
- Mackay, T.F.C.; Moore, J.H. Why epistasis is important for tackling complex human disease genetics. Genome Med. 2014, 6, 125, Erratum in Genome Med. 2015, 7, 85. [Google Scholar] [CrossRef]
- Phillips, P.C. Epistasis—The essential role of gene interactions in the structure and evolution of genetic systems. Nat. Rev. Genet. 2008, 9, 855–867. [Google Scholar] [CrossRef]
- Wei, W.-H.; Hemani, G.; Haley, C.S. Detecting epistasis in human complex traits. Nat. Rev. Genet. 2014, 15, 722–733. [Google Scholar] [CrossRef]
- Ritchie, M.D.; Hahn, L.W.; Roodi, N.; Bailey, L.R.; Dupont, W.D.; Parl, F.F.; Moore, J.H. Multifactor-dimensionality reduction reveals high-order interactions among estrogen-metabolism genes in sporadic breast cancer. Am. J. Hum. Genet. 2001, 69, 138–147. [Google Scholar] [CrossRef]
- Yang, C.-H.; Chuang, L.-Y.; Lin, Y.-D. CMDR based differential evolution identifies the epistatic interaction in genome-wide association studies. Bioinformatics 2017, 33, 2354–2362. [Google Scholar] [CrossRef]
- Zhu, Z.; Tong, X.; Zhu, Z.; Liang, M.; Cui, W.; Su, K.; Li, M.D.; Zhu, J. Development of GMDR-GPU for gene–gene interaction analysis and its application to WTCCC GWAS data for type 2 diabetes. PLoS ONE 2013, 8, e61943. [Google Scholar] [CrossRef] [PubMed]
- Yang, C.; He, Z.; Wan, X.; Yang, Q.; Xue, H.; Yu, W. SNPHarvester: A filtering-based approach for detecting epistatic interactions in genome-wide association studies. Bioinformatics 2009, 25, 504–511. [Google Scholar] [CrossRef] [PubMed]
- Jing, P.-J.; Shen, H.-B. MACOED: A multi-objective ant colony optimization algorithm for SNP epistasis detection in genome-wide association studies. Bioinformatics 2015, 31, 634–641. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y. AntEpiSeeker: Detecting epistatic interactions for case–control studies using a two-stage ant colony optimization algorithm. BMC Res. Notes 2010, 3, 117. [Google Scholar] [CrossRef]
- Yuan, L.; Yuan, C.; Huang, D. FAACOSE: A fast adaptive ant colony optimization algorithm for detecting SNP epistasis. Complexity 2017, 2017, 5024867. [Google Scholar] [CrossRef]
- Sun, Y.; Shang, J.; Liu, J.-X.; Li, S.; Zheng, C.-H. epiACO—A method for identifying epistasis based on ant colony optimization algorithm. BioData Min. 2017, 10, 23. [Google Scholar] [CrossRef]
- Sun, L.; Liu, G.; Su, L.; Wang, R. HS-MMGKG: A fast multi-objective harmony search algorithm for two-locus model detection in GWAS. Curr. Bioinform. 2019, 14, 749–761. [Google Scholar] [CrossRef]
- Sun, L.; Liu, G.; Su, L.; Wang, R. SEE: A novel multi-objective evolutionary algorithm for identifying SNP epistasis in genome-wide association studies. Biotechnol. Biotechnol. Equip. 2019, 33, 529–547. [Google Scholar] [CrossRef]
- Blumenthal, D.B.; Viola, L.; List, M.; Baumbach, J.; Tieri, P.; Kacprowski, T. EpiGEN: An epistasis simulation pipeline. Bioinformatics 2020, 36, 4957–4959. [Google Scholar] [CrossRef]
- Wellcome Trust Case Control Consortium. Genome-wide association study of 14,000 cases of seven common diseases and 3000 shared controls. Nature 2007, 447, 661–678. [Google Scholar] [CrossRef] [PubMed]
- Mattingly, C.J.; Colby, G.T.; Forrest, J.N.; Boyer, J.L. The Comparative Toxicogenomics Database (CTD). Environ. Health Perspect. 2003, 111, 793–795. [Google Scholar] [CrossRef] [PubMed]
- Shi, Y. Brain Storm Optimization Algorithm. In Advances in Swarm Intelligence: Proceedings of the Second International Conference, ICSI 2011, Part I, Chongqing, China, 12–15 June 2011; Tan, Y., Shi, Y., Chai, Y., Wang, G., Eds.; Lecture Notes in Computer Science; Springer: Berlin/Heidelberg, Germany, 2011; Volume 6728, pp. 303–309. [Google Scholar] [CrossRef]
- Wan, X.; Yang, C.; Yang, Q.; Xue, H.; Fan, X.; Tang, N.L.; Yu, W. BOOST: A fast approach to detecting gene–gene interactions in genome-wide case-control studies. Am. J. Hum. Genet. 2010, 87, 325–340. [Google Scholar] [CrossRef] [PubMed]
- Stamatis, D.H. Essential Statistical Concepts for the Quality Professional; CRC Press: Boca Raton, FL, USA, 2012. [Google Scholar] [CrossRef]
- Evans, D.M.; Marchini, J.; Morris, A.P.; Cardon, L.R. Two-Stage Two-Locus Models in Genome-Wide Association. PLoS Genet. 2006, 2, e157. [Google Scholar] [CrossRef]
- Sherry, S.T.; Ward, M.H.; Kholodov, M.; Baker, J.; Phan, L.; Smigielski, E.M.; Sirotkin, K. dbSNP: The NCBI database of genetic variation. Nucleic Acids Res. 2001, 29, 308–311. [Google Scholar] [CrossRef]
- Kohl, M.; Wiese, S.; Warscheid, B. Cytoscape: Software for visualization and analysis of biological networks. In Data Mining in Proteomics: From Standards to Applications; Hamacher, M., Eisenacher, M., Stephan, C., Eds.; Methods in Molecular Biology; Humana Press: Totowa, NJ, USA, 2011; Volume 696, pp. 291–303. [Google Scholar] [CrossRef]
- Ouzikov, M.; Gómez-Carrillo, M.; Žampachová, L.; Dytrych, L.; Liu, L.; Pazourková, L.; Barta, T.; Kereïche, S.; Jin, T.; Edlund, H. LRIG1 controls proliferation of adult neural stem cells by facilitating TGFβ and BMP signalling pathways. Commun. Biol. 2024, 7, 655. [Google Scholar] [CrossRef]
- Ferguson, J.; Lam, K.; Marchionni, L.; Man, Y.K.S.; Ohta, T.; Stark, R.; Fang, J.S.; Saenz-Antoñanzas, A.; Rahman, R.; Wilson, C.M.; et al. Lrig1 regulates the balance between proliferation and quiescence in glioblastoma stem cells. Front. Cell Dev. Biol. 2022, 10, 983097. [Google Scholar] [CrossRef]
- Shammas, L.; Avendaño-Monsalve, M.C.; Vukotic, M.; Pollecker, K.; Cano Turrión, C.; Scharwey, M.; MacVicar, T.; Böckler, S.; Dennerlein, S.; Tatsuta, T.; et al. OMA1 mediates local and global stress responses against protein misfolding in CHCHD10 mitochondrial myopathy. J. Cell Biol. 2022, 221, e202110168. [Google Scholar] [CrossRef]
- Rivera-Mejías, P.; Narbona-Pérez, Á.J.; Hasberg, L.; Kroczek, L.; Bahat, A.; Lawo, S.; Folz-Donahue, K.; Schumacher, A.-L.; Ahola, S.; Mayer, F.C.; et al. The mitochondrial protease OMA1 acts as a metabolic safeguard upon nuclear DNA damage. Cell Rep. 2023, 42, 112332. [Google Scholar] [CrossRef]
Model | SNP2 | AA | Aa | aa |
---|---|---|---|---|
Joint Dominant | BB | 0 | 0 | 0 |
Bb | 0 | 0 | 1 | |
bb | 0 | 1 | 1 | |
Joint Recessive | BB | 0 | 0 | 0 |
Bb | 0 | 0 | 0 | |
bb | 0 | 0 | 1 | |
Modular | BB | 0 | 0 | 0 |
Bb | 0 | 0 | 1 | |
bb | 1 | 1 | 1 | |
Diagonal | BB | 1 | 0 | 0 |
Bb | 0 | 1 | 0 | |
bb | 0 | 0 | 1 | |
XOR | BB | 0 | 0 | 1 |
Bb | 0 | 0 | 1 | |
bb | 1 | 1 | 0 |
Method | Dataset | Dataset | Dataset |
---|---|---|---|
GPBSO | 3 | 39 | 25.75 |
DECMDR | 9.5 | 860 | 42.5 |
SNPHarvester | 2.25 | 22.5 | not supported |
AntEpiSeeker | 3.75 | 50 | Fail |
HS-MMGKG | 1.15 | 5 | 3 |
SEE | 2.5 | 47.25 | 40 |
g | snp1 | snp2 | snp3 | snp4 |
---|---|---|---|---|
Bipolar Disorder | ||||
0 | rs10494787 | rs12050604 | ||
0 | rs10494787 | rs1156182 | rs4257642 | |
0 | rs10494787 | rs2492958 | rs17105919 | |
0 | rs10494787 | rs11100367 | rs16898339 | rs16954052 |
0 | rs16824455 | rs355631 | rs10494787 | rs1442650 |
0 | rs10494787 | rs7593135 | rs17064749 | |
Coronary Artery Disease | ||||
0 | rs1091486 | rs6643915 | ||
0 | rs1563315 | rs630967 | ||
0 | rs5961751 | rs4543670 | ||
0 | rs6634416 | rs4543670 | ||
0 | rs6631847 | rs4543670 | ||
0 | rs646221 | rs5963481 | rs1412333 | |
Crohn’s Disease | ||||
0 | rs11209026 | rs17096872 | rs7929346 | |
0 | rs13126272 | rs11936062 | rs2173972 | rs7742263 |
0 | rs11887827 | rs17020502 | rs1489795 | rs7754204 |
0 | rs11887827 | rs6752979 | rs41321049 | |
0 | rs17083420 | rs10968251 | rs10144243 | |
0 | rs11209026 | rs10045484 | rs17116117 | |
Hypertension | ||||
0 | rs41346947 | rs17046143 | rs17008234 | rs11005510 |
0 | rs6840033 | rs12525412 | ||
0 | rs10494787 | rs11005510 | ||
0 | rs12525412 | rs41472845 | rs2865199 | |
0 | rs10494787 | rs41333648 | rs825487 | |
0 | rs17046143 | rs16916476 | ||
Rheumatoid Arthritis | ||||
0 | rs6620928 | rs17222293 | ||
0 | rs1733717 | rs5952117 | ||
0 | rs12839253 | rs5952117 | ||
0 | rs41348644 | rs5917288 | rs10284137 | |
0 | rs2782240 | rs2412097 | ||
0 | rs4636358 | rs7473249 | ||
Type 1 Diabetes | ||||
0 | rs2596517 | rs3135342 | ||
0 | rs13126272 | rs13200022 | rs11539216 | |
0 | rs17055224 | rs9310799 | rs13126272 | rs17808723 |
0 | rs41385948 | rs13126272 | rs204990 | |
0 | rs3094703 | rs41445846 | ||
0 | rs6588238 | rs1051336 | rs6044514 | |
Type 2 Diabetes | ||||
0 | rs9842727 | rs6421871 | rs2416472 | |
0 | rs16827563 | rs10492267 | ||
0 | rs6842409 | rs10492267 | ||
0 | rs2416472 | rs17141753 | ||
0 | rs1890870 | rs461043 | rs17117531 | |
0 | rs11196208 | rs305040 | rs17117531 |
Gene 1 | Ctd 1 | Gene 2 | Ctd 2 | Number of Occurrences |
---|---|---|---|---|
Bipolar Disorder | ||||
COL19A1 | NDE | LRIG1 | NDE | 136 |
MACROD2 | NDE | NELL1 | NDE | 44 |
CLSTN2 | NDE | EYA3 | NDE | 27 |
FAH | NDE | POU2F3 | NDE | 25 |
AOC1 | NDE | FSTL5 | DE | 20 |
CA12 | NDE | GPC5 | NDE | 18 |
Coronary Artery Disease | ||||
CTNNA3 | NDE | LRRTM3 | NDE | 91 |
DMD | NDE | STAG2 | NDE | 33 |
PUDP | NDE | RERE | NDE | 31 |
GUCY2F | NDE | SCNN1B | NDE | 29 |
GFOD1 | DE | NLGN4X | NDE | 12 |
GUCY1A1 | DE | MIR99AHG | NDE | 4 |
Crohn’s Disease | ||||
DAB1 | NDE | IL23R | DE | 169 |
ERBB4 | NDE | PTPRD | NDE | 147 |
RBM47 | NDE | WDFY3 | NDE | 132 |
ATG16L1 | DE | RFTN1 | NDE | 54 |
LEP | DE | MGLL | NDE | 29 |
NOD2 | DE | STK10 | NDE | 14 |
Hypertension | ||||
DNAH7 | NDE | MIER1 | NDE | 178 |
SMOC2 | NDE | STEAP1B | NDE | 82 |
FAT4 | NDE | KDM6A | NDE | 61 |
PLSCR4 | NDE | PYGL | NDE | 59 |
ACE2 | DE | PLD5 | NDE | 2 |
TGFA | DE | ZNF652 | NDE | 2 |
Rheumatoid Arthritis | ||||
PRRC2A | NDE | SNORA38 | NDE | 71 |
CFB | NDE | NELFE | NDE | 68 |
STS | DE | WDR53 | NDE | 10 |
ABCC5 | DE | MSH5 | NDE | 9 |
ABCC4 | DE | PTCHD1-AS | NDE | 9 |
NR4A3 | DE | TYK2 | DE | 2 |
Type 1 Diabetes | ||||
LRIG1 | NDE | PHTF1 | NDE | 86 |
MAGI3 | NDE | NOTCH4 | NDE | 45 |
GTF2H4 | NDE | TSBP1 | NDE | 42 |
HES1 | NDE | TAP2 | NDE | 28 |
CD226 | NDE | GPAT4 | NDE | 19 |
GPSM3 | NDE | PTPN22 | DE | 6 |
Type 2 Diabetes | ||||
MCF2 | NDE | RAD51B | NDE | 43 |
DNAJC2 | NDE | PMPCB | NDE | 37 |
DAB1 | NDE | HGF | NDE | 36 |
CCDC12 | NDE | PRR16 | NDE | 25 |
GRM7 | NDE | SLC25A15 | NDE | 19 |
LRMDA | NDE | TCF7L2 | DE | 4 |
Gene | Ctd | Number of Occurrences |
---|---|---|
Bipolar Disorder | ||
LRIG1 | NDE | 260 |
FSTL5 | DE | 204 |
COL19A1 | NDE | 145 |
RERE | NDE | 96 |
EYA3 | NDE | 85 |
NTNG2 | DE | 2 |
Coronary Artery Disease | ||
DMD | NDE | 647 |
FRMPD4 | NDE | 455 |
PTCHD1-AS | NDE | 308 |
GFOD1 | DE | 50 |
GUCY1A1 | DE | 4 |
MRAS | DE | 3 |
Crohn’s Disease | ||
RFTN1 | NDE | 669 |
IL23R | DE | 658 |
DAB1 | NDE | 558 |
ERBB4 | NDE | 506 |
ATG16L1 | DE | 108 |
NOD2 | DE | 73 |
Hypertension | ||
MIER1 | NDE | 195 |
DNAH7 | NDE | 183 |
PIK3R3 | NDE | 128 |
P3R3URF-PIK3R3 | NDE | 128 |
TGFA | DE | 6 |
ACE2 | DE | 4 |
Rheumatoid Arthritis | ||
TSBP1 | NDE | 1057 |
PTCHD1-AS | NDE | 712 |
DMD | NDE | 675 |
NR4A3 | DE | 115 |
STS | DE | 50 |
ABCC5 | DE | 15 |
Type 1 Diabetes | ||
PHTF1 | NDE | 119 |
TSBP1 | NDE | 107 |
LY6G5B | NDE | 95 |
LRIG1 | NDE | 89 |
TAP2 | NDE | 74 |
PTPN22 | DE | 6 |
Type 2 Diabetes | ||
CCDC12 | NDE | 85 |
HGF | NDE | 71 |
RAD51B | NDE | 61 |
MCF2 | NDE | 54 |
TCF7L2 | DE | 14 |
GLIS3 | DE | 2 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sun, L.; Xin, Y.; Qu, S.; Zheng, L.; Jiang, L. GPBSO: Gene Pool-Based Brain Storm Optimization for SNP Epistasis Detection. Genes 2025, 16, 1114. https://doi.org/10.3390/genes16091114
Sun L, Xin Y, Qu S, Zheng L, Jiang L. GPBSO: Gene Pool-Based Brain Storm Optimization for SNP Epistasis Detection. Genes. 2025; 16(9):1114. https://doi.org/10.3390/genes16091114
Chicago/Turabian StyleSun, Liyan, Yi Xin, Shen Qu, Linxuan Zheng, and Linqing Jiang. 2025. "GPBSO: Gene Pool-Based Brain Storm Optimization for SNP Epistasis Detection" Genes 16, no. 9: 1114. https://doi.org/10.3390/genes16091114
APA StyleSun, L., Xin, Y., Qu, S., Zheng, L., & Jiang, L. (2025). GPBSO: Gene Pool-Based Brain Storm Optimization for SNP Epistasis Detection. Genes, 16(9), 1114. https://doi.org/10.3390/genes16091114