Effects of the PCSK9 C378W Mutation on PCSK9 Levels and Lipid Profiles in Taiwanese Individuals: A Loss-of-Function Mutation with Potential Cardiovascular Benefits
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Cohort
2.2. Lipid Profiles and PCSK9 Levels
2.3. Detection of the C378W Mutation Through the Analysis of WGS Data
2.4. Polymerase Chain Reaction and Direct DNA Sequencing
2.5. Functional Characterization
2.6. Statistical Analysis
3. Results
3.1. Associations of PCSK9 Levels with Clinical Parameters and Lipid Profiles
3.2. Results of WGS Data Analysis
Genotyping of the C378W Mutation in 5901 TWB Participants
3.3. Functional Characteristics of the C378W Mutation
3.4. Associations of the C378W Mutation with PCSK9 and LDL-C Levels
4. Discussion
4.1. Minor Allele Frequency of the C378W Mutation
4.2. Association Between the C378W Mutation and PCSK9 Levels
4.3. Association Between the C378W Mutation and LDL-C Levels
4.4. Mediation Effect of PCSK9 Levels on the Association Between C378W Mutation and LDL-C Level
4.5. Limitations
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Acknowledgments
Conflicts of Interest
Abbreviations
PCSK9 | Proprotein convertase subtilisin/kexin type 9 |
LDL | low-density lipoprotein |
LDL-C | low-density lipoprotein cholesterol |
TWB | Taiwan Biobank |
WGS | whole-genome sequencing |
BMI | body mass index |
TC | total cholesterol |
HDL-C | high-density lipoprotein cholesterol |
TG | triglycerides |
SNP | single-nucleotide polymorphism |
RC | remnant cholesterol |
References
- Seidah, N.G.; Prat, A. The Multifaceted Biology of PCSK9. Endocr. Rev. 2022, 43, 558–582. [Google Scholar] [CrossRef]
- Barale, C.; Melchionda, E.; Morotti, A.; Russo, I. PCSK9 Biology and Its Role in Atherothrombosis. Int. J. Mol. Sci. 2021, 22, 5880. [Google Scholar] [CrossRef]
- Luquero, A.; Badimon, L.; Borrell-Pages, M. PCSK9 Functions in Atherosclerosis Are Not Limited to Plasmatic LDL-Cholesterol Regulation. Front. Cardiovasc. Med. 2021, 8, 639727. [Google Scholar] [CrossRef] [PubMed]
- Lakoski, S.G.; Lagace, T.A.; Cohen, J.C.; Horton, J.D.; Hobbs, H.H. Genetic and metabolic determinants of plasma PCSK9 levels. J. Clin. Endocrinol. Metab. 2009, 94, 2537–2543. [Google Scholar] [CrossRef] [PubMed]
- Enkhmaa, B.; Kim, K.; Zhang, W.; Prakash, N.; Truax, K.; Anuurad, E.; Berglund, L. PCSK9 in African Americans and Caucasians in Relation to Lp(a) Level, Apo(a) Size and Heritability. J. Endocr. Soc. 2020, 4, bvaa073. [Google Scholar] [CrossRef] [PubMed]
- Pott, J.; Gådin, J.R.; Theusch, E.; Kleber, M.E.; Delgado, G.E.; Kirsten, H.; Hauck, S.M.; Burkhardt, R.; Scharnagl, H.; Krauss, R.M.; et al. Meta-GWAS of PCSK9 levels detects two novel loci at APOB and TM6SF2. Hum. Mol. Genet. 2022, 31, 999–1011. [Google Scholar] [CrossRef]
- Brouwers, M.; Konrad, R.; Van Himbergen, T.; Isaacs, A.; Otokozawa, S.; Troutt, J.; Schaefer, E.; van Greevenbroek, M.; Stalenhoef, A.; de Graaf, J. Plasma proprotein convertase subtilisin kexin type 9 levels are related to markers of cholesterol synthesis in familial combined hyperlipidemia. Nutr. Metab. Cardiovasc. Dis. 2013, 23, 1115–1121. [Google Scholar] [CrossRef]
- Kheirkhah, A.; Lamina, C.; Kollerits, B.; Schachtl-Riess, J.F.; Schultheiss, U.T.; Forer, L.; Sekula, P.; Kotsis, F.; Eckardt, K.U.; Kronenberg, F. PCSK9 and Cardiovascular Disease in Individuals with Moderately Decreased Kidney Function. Clin. J. Am. Soc. Nephrol. CJASN 2022, 17, 809–818. [Google Scholar] [CrossRef]
- Dubuc, G.; Chamberland, A.; Wassef, H.; Davignon, J.; Seidah, N.G.; Bernier, L.; Prat, A. Statins upregulate PCSK9, the gene encoding the proprotein convertase neural apoptosis-regulated convertase-1 implicated in familial hypercholesterolemia. Arterioscler. Thromb. Vasc. Biol. 2004, 24, 1454–1459. [Google Scholar] [CrossRef]
- Maxwell, K.N.; Soccio, R.E.; Duncan, E.M.; Sehayek, E.; Breslow, J.L. Novel putative SREBP and LXR target genes identified by microarray analysis in liver of cholesterol-fed mice. J. Lipid Res. 2003, 44, 2109–2119. [Google Scholar] [CrossRef]
- Cappelluti, M.A.; Mollica Poeta, V.; Valsoni, S.; Quarato, P.; Merlin, S.; Merelli, I.; Lombardo, A. Durable and efficient gene silencing in vivo by hit-and-run epigenome editing. Nature 2024, 627, 416–423. [Google Scholar] [CrossRef] [PubMed]
- Kheirkhah, A.; Schachtl-Riess, J.F.; Lamina, C.; Di Maio, S.; Koller, A.; Schönherr, S.; Coassin, S.; Forer, L.; Sekula, P.; Gieger, C.; et al. Meta-GWAS on PCSK9 concentrations reveals associations of novel loci outside the PCSK9 locus in White populations. Atherosclerosis 2023, 386, 117384. [Google Scholar] [CrossRef]
- Ragusa, R.; Basta, G.; Neglia, D.; De Caterina, R.; Del Turco, S.; Caselli, C. PCSK9 and atherosclerosis: Looking beyond LDL regulation. Eur. J. Clin. Investig. 2021, 51, e13459. [Google Scholar] [CrossRef]
- Sundararaman, S.S.; Döring, Y.; van der Vorst, E.P.C. PCSK9: A Multi-Faceted Protein That Is Involved in Cardiovascular Biology. Biomedicines 2021, 9, 793. [Google Scholar] [CrossRef]
- Norata, G.D.; Tavori, H.; Pirillo, A.; Fazio, S.; Catapano, A.L. Biology of proprotein convertase subtilisin kexin 9: Beyond low-density lipoprotein cholesterol lowering. Cardiovasc. Res. 2016, 112, 429–442. [Google Scholar] [CrossRef]
- Hori, M.; Ohta, N.; Takahashi, A.; Masuda, H.; Isoda, R.; Yamamoto, S.; Son, C.; Ogura, M.; Hosoda, K.; Miyamoto, Y.; et al. Impact of LDLR and PCSK9 pathogenic variants in Japanese heterozygous familial hypercholesterolemia patients. Atherosclerosis 2019, 289, 101–108. [Google Scholar] [CrossRef]
- Hsu, L.A.; Teng, M.S.; Ko, Y.L.; Chang, C.J.; Wu, S.; Wang, C.L.; Hu, C.F. The PCSK9 gene E670G polymorphism affects low-density lipoprotein cholesterol levels but is not a risk factor for coronary artery disease in ethnic Chinese in Taiwan. Clin. Chem. Lab. Med. 2009, 47, 154–158. [Google Scholar] [CrossRef] [PubMed]
- Huang, C.C.; Niu, D.M.; Charng, M.J. Genetic Analysis in a Taiwanese Cohort of 750 Index Patients with Clinically Diagnosed Familial Hypercholesterolemia. J. Atheroscler. Thromb. 2022, 29, 639–653. [Google Scholar] [CrossRef]
- Kim, H.I.; Ye, B.; Gosalia, N.; Köroğlu, Ç.; Hanson, R.L.; Hsueh, W.C.; Knowler, W.C.; Baier, L.J.; Bogardus, C.; Shuldiner, A.R.; et al. Characterization of Exome Variants and Their Metabolic Impact in 6,716 American Indians from the Southwest US. Am. J. Hum. Genet. 2020, 107, 251–264. [Google Scholar] [CrossRef] [PubMed]
- Lee, C.J.; Lee, Y.; Park, S.; Kang, S.M.; Jang, Y.; Lee, J.H.; Lee, S.H. Rare and common variants of APOB and PCSK9 in Korean patients with extremely low low-density lipoprotein-cholesterol levels. PLoS ONE 2017, 12, e0186446. [Google Scholar] [CrossRef]
- Lu, X.; Li, J.; Li, H.; Chen, Y.; Wang, L.; He, M.; Wang, Y.; Sun, L.; Hu, Y.; Huang, J.; et al. Coding-sequence variants are associated with blood lipid levels in 14,473 Chinese. Hum. Mol. Genet. 2016, 25, 4107–4116. [Google Scholar] [CrossRef]
- Moon, S.; Kim, Y.J.; Han, S.; Hwang, M.Y.; Shin, D.M.; Park, M.Y.; Lu, Y.; Yoon, K.; Jang, H.M.; Kim, Y.K.; et al. The Korea Biobank Array: Design and Identification of Coding Variants Associated with Blood Biochemical Traits. Sci. Rep. 2019, 9, 1382. [Google Scholar] [CrossRef]
- Qiu, C.; Zeng, P.; Li, X.; Zhang, Z.; Pan, B.; Peng, Z.Y.F.; Li, Y.; Ma, Y.; Leng, Y.; Chen, R. What is the impact of PCSK9 rs505151 and rs11591147 polymorphisms on serum lipids level and cardiovascular risk: A meta-analysis. Lipids Health Dis. 2017, 16, 111. [Google Scholar] [CrossRef]
- Tang, C.S.; Zhang, H.; Cheung, C.Y.; Xu, M.; Ho, J.C.; Zhou, W.; Cherny, S.S.; Zhang, Y.; Holmen, O.; Au, K.W.; et al. Exome-wide association analysis reveals novel coding sequence variants associated with lipid traits in Chinese. Nat. Commun. 2015, 6, 10206. [Google Scholar] [CrossRef]
- Hsu, L.A.; Teng, M.S.; Wu, S.; Chou, H.H.; Ko, Y.L. Common and Rare PCSK9 Variants Associated with Low-Density Lipoprotein Cholesterol Levels and the Risk of Diabetes Mellitus: A Mendelian Randomization Study. Int. J. Mol. Sci. 2022, 23, 10418. [Google Scholar] [CrossRef]
- Meng, F.H.; Liu, S.; Xiao, J.; Zhou, Y.X.; Dong, L.W.; Li, Y.F.; Zhang, Y.Q.; Li, W.H.; Wang, J.Q.; Wang, Y.; et al. New Loss-of-Function Mutations in PCSK9 Reduce Plasma LDL Cholesterol. Arterioscler. Thromb. Vasc. Biol. 2023, 43, 1219–1233. [Google Scholar] [CrossRef]
- Raczy, C.; Petrovski, R.; Saunders, C.T.; Chorny, I.; Kruglyak, S.; Margulies, E.H.; Chuang, H.Y.; Källberg, M.; Kumar, S.A.; Liao, A.; et al. Isaac: Ultra-fast whole-genome secondary analysis on Illumina sequencing platforms. Bioinformatics 2013, 29, 2041–2043. [Google Scholar] [CrossRef]
- Das, K.C.; Hossain, M.U.; Moniruzzaman, M.; Salimullah, M.; Akhteruzzaman, S. High-Risk Polymorphisms Associated with the Molecular Function of Human HMGCR Gene Infer the Inhibition of Cholesterol Biosynthesis. BioMed Res. Int. 2022, 2022, 4558867. [Google Scholar] [CrossRef]
- Liu, T.Y.; Lu, H.F.; Chen, Y.C.; Liao, C.C.; Lin, Y.J.; Yang, J.S.; Liao, W.L.; Lin, W.D.; Chen, S.Y.; Huang, Y.C.; et al. Diversity and longitudinal records: Genetic architecture of disease associations and polygenic risk in the Taiwanese Han population. Sci. Adv. 2025, 11, eadt0539. [Google Scholar] [CrossRef]
- Price, A.L.; Patterson, N.J.; Plenge, R.M.; Weinblatt, M.E.; Shadick, N.A.; Reich, D. Principal components analysis corrects for stratification in genome-wide association studies. Nat. Genet. 2006, 38, 904–909. [Google Scholar] [CrossRef]
- Wei, C.Y.; Yang, J.H.; Yeh, E.C.; Tsai, M.F.; Kao, H.J.; Lo, C.Z.; Chang, L.P.; Lin, W.J.; Hsieh, F.J.; Belsare, S.; et al. Genetic profiles of 103,106 individuals in the Taiwan Biobank provide insights into the health and history of Han Chinese. NPJ Genom. Med. 2021, 6, 10. [Google Scholar] [CrossRef]
- Kopanos, C.; Tsiolkas, V.; Kouris, A.; Chapple, C.E.; Albarca Aguilera, M.; Meyer, R.; Massouras, A. VarSome: The human genomic variant search engine. Bioinformatics 2019, 35, 1978–1980. [Google Scholar] [CrossRef]
- Glicksberg, B.S.; Amadori, L.; Akers, N.K.; Sukhavasi, K.; Franzén, O.; Li, L.; Belbin, G.M.; Ayers, K.L.; Shameer, K.; Badgeley, M.A.; et al. Integrative analysis of loss-of-function variants in clinical and genomic data reveals novel genes associated with cardiovascular traits. BMC Med. Genom. 2019, 12, 108. [Google Scholar] [CrossRef]
- Karczewski, K.J.; Francioli, L.C.; Tiao, G.; Cummings, B.B.; Alföldi, J.; Wang, Q.; Collins, R.L.; Laricchia, K.M.; Ganna, A.; Birnbaum, D.P.; et al. The mutational constraint spectrum quantified from variation in 141,456 humans. Nature 2020, 581, 434–443. [Google Scholar] [CrossRef]
- Hummelgaard, S.; Vilstrup, J.P.; Gustafsen, C.; Glerup, S.; Weyer, K. Targeting PCSK9 to tackle cardiovascular disease. Pharmacol. Ther. 2023, 249, 108480. [Google Scholar] [CrossRef]
- Lewington, S.; Whitlock, G.; Clarke, R.; Sherliker, P.; Emberson, J.; Halsey, J.; Qizilbash, N.; Peto, R.; Collins, R. Blood cholesterol and vascular mortality by age, sex, and blood pressure: A meta-analysis of individual data from 61 prospective studies with 55,000 vascular deaths. Lancet 2007, 370, 1829–1839. [Google Scholar] [CrossRef]
- Johannesen, C.D.L.; Langsted, A.; Mortensen, M.B.; Nordestgaard, B.G. Association between low density lipoprotein and all cause and cause specific mortality in Denmark: Prospective cohort study. BMJ (Clin. Res. Ed.) 2020, 371, m4266. [Google Scholar] [CrossRef]
- Baigent, C.; Blackwell, L.; Emberson, J.; Holland, L.E.; Reith, C.; Bhala, N.; Peto, R.; Barnes, E.H.; Keech, A.; Simes, J.; et al. Efficacy and safety of more intensive lowering of LDL cholesterol: A meta-analysis of data from 170,000 participants in 26 randomised trials. Lancet 2010, 376, 1670–1681. [Google Scholar] [CrossRef]
- Boekholdt, S.M.; Arsenault, B.J.; Mora, S.; Pedersen, T.R.; LaRosa, J.C.; Nestel, P.J.; Simes, R.J.; Durrington, P.; Hitman, G.A.; Welch, K.M.; et al. Association of LDL cholesterol, non-HDL cholesterol, and apolipoprotein B levels with risk of cardiovascular events among patients treated with statins: A meta-analysis. JAMA 2012, 307, 1302–1309. [Google Scholar] [CrossRef]
- Ference, B.A.; Ginsberg, H.N.; Graham, I.; Ray, K.K.; Packard, C.J.; Bruckert, E.; Hegele, R.A.; Krauss, R.M.; Raal, F.J.; Schunkert, H. Low-density lipoproteins cause atherosclerotic cardiovascular disease. 1. Evidence from genetic, epidemiologic, and clinical studies. A consensus statement from the European Atherosclerosis Society Consensus Panel. Eur. Heart J. 2017, 38, 2459–2472. [Google Scholar] [CrossRef]
- Teng, M.S.; Yeh, K.H.; Hsu, L.A.; Chou, H.H.; Er, L.K.; Wu, S.; Ko, Y.L. Differential Effects of ABCG5/G8 Gene Region Variants on Lipid Profile, Blood Pressure Status, and Gallstone Disease History in Taiwan. Genes 2023, 14, 754. [Google Scholar] [CrossRef] [PubMed]
- Jang, S.J.; Tuan, W.L.; Hsu, L.A.; Er, L.K.; Teng, M.S.; Wu, S.; Ko, Y.L. Pleiotropic Effects of APOB Variants on Lipid Profiles, Metabolic Syndrome, and the Risk of Diabetes Mellitus. Int. J. Mol. Sci. 2022, 23, 14963. [Google Scholar] [CrossRef]
- Yeh, K.H.; Wan, H.L.; Teng, M.S.; Chou, H.H.; Hsu, L.A.; Ko, Y.L. Genetic Variants at the APOE Locus Predict Cardiometabolic Traits and Metabolic Syndrome: A Taiwan Biobank Study. Genes 2022, 13, 1366. [Google Scholar] [CrossRef]
- Leander, K.; Mälarstig, A.; Van’t Hooft, F.M.; Hyde, C.; Hellénius, M.L.; Troutt, J.S.; Konrad, R.J.; Öhrvik, J.; Hamsten, A.; de Faire, U. Circulating Proprotein Convertase Subtilisin/Kexin Type 9 (PCSK9) Predicts Future Risk of Cardiovascular Events Independently of Established Risk Factors. Circulation 2016, 133, 1230–1239. [Google Scholar] [CrossRef]
- Pott, J.; Schlegel, V.; Teren, A.; Horn, K.; Kirsten, H.; Bluecher, C.; Kratzsch, J.; Loeffler, M.; Thiery, J.; Burkhardt, R.; et al. Genetic Regulation of PCSK9 (Proprotein Convertase Subtilisin/Kexin Type 9) Plasma Levels and Its Impact on Atherosclerotic Vascular Disease Phenotypes. Circulation. Genom. Precis. Med. 2018, 11, e001992. [Google Scholar] [CrossRef]
- Sabatine, M.S.; Giugliano, R.P.; Keech, A.C.; Honarpour, N.; Wiviott, S.D.; Murphy, S.A.; Kuder, J.F.; Wang, H.; Liu, T.; Wasserman, S.M.; et al. Evolocumab and Clinical Outcomes in Patients with Cardiovascular Disease. N. Engl. J. Med. 2017, 376, 1713–1722. [Google Scholar] [CrossRef] [PubMed]
- Schwartz, G.G.; Steg, P.G.; Szarek, M.; Bhatt, D.L.; Bittner, V.A.; Diaz, R.; Edelberg, J.M.; Goodman, S.G.; Hanotin, C.; Harrington, R.A.; et al. Alirocumab and Cardiovascular Outcomes after Acute Coronary Syndrome. N. Engl. J. Med. 2018, 379, 2097–2107. [Google Scholar] [CrossRef] [PubMed]
- Nave, O. A mathematical model for treatment using chemo-immunotherapy. Heliyon 2022, 8, e09288. [Google Scholar] [CrossRef]
Total Study Participants | Participants with WGS | Participants Without WGS | |
---|---|---|---|
Number | 5901 | 1486 | 4415 |
Age (years) | 48.82 ± 11.08 | 49.46 ± 11.27 | 48.60 ± 11.01 |
Sex (M/F) | 2703/3198 (=5901) | 745/741 (=1486) | 1958/2457 (=4415) |
BMI (kg/m2) | 24.24 ± 3.64 | 24.36 ± 3.70 | 24.19 ± 3.62 |
Current smoking (Yes/No) | 632/5269 (10.71%) | 150/1336 (10.09%) | 482/3933 (10.92%) |
TC (mg/dL) | 193.75 ± 35.65 | 194.46 ± 35.21 | 193.53 ± 35.79 |
LDL-C (mg/dL) | 116.90 ± 31.32 | 118.25 ± 31.64 | 116.45 ± 31.19 |
HDL-C (mg/dL) | 53.96 ± 13.22 | 53.81 ± 13.91 | 54.01 ± 12.98 |
TG (mg/dL) | 116.62 ± 98.12 | 113.93 ± 91.27 | 117.53 ± 100.32 |
RC (mg/dL) | 22.90 ± 17.43 | 23.39 ± 15.63 | 23.07 ± 17.99 |
Non-HDL-C (mg/dL) | 139.80 ± 35.42 | 140.65 ± 34.48 | 139.52 ± 35.73 |
PCSK9 level (ng/mL) | 155.49 ± 47.09 | 159.63 ± 48.21 | 154.06 ± 46.59 |
Clinical and Laboratory Parameters | Beta | SE | p | Adjusted p * |
---|---|---|---|---|
Anthropology | ||||
Age (years) a | 0.0021 | 0.0002 | 1.16 × 10−39 | 1.16 × 10−38 |
BMI (kg/m2) b | 0.0034 | 0.0005 | 1.61 × 10−12 | 1.61 × 10−11 |
Sex (Female/Male) c | 1.9735 | 0.2382 | 1.19 × 10−16 | 1.19 × 10−15 |
Current smoking (Yes/No) d | 1.1768 | 0.3737 | 0.0016 | 0.016 |
Lipid profiles e | ||||
TC (mg/dL) | 0.2611 | 0.0225 | 1.07 × 10−30 | 1.07 × 10−29 |
HDL-C (mg/dL) | 0.0332 | 0.0190 | 0.0038 | 0.038 |
LDL-C (mg/dL) | 0.1209 | 0.0150 | 1.10 × 10−15 | 1.10 × 10−14 |
TG (mg/dL) | 0.1236 | 0.0081 | 1.83 × 10−51 | 1.83 × 10−50 |
Non-HDL-C (mg/dL) | 0.1862 | 0.0166 | 7.61 × 10−29 | 7.61 × 10−28 |
RC (mg/dL) | 0.0377 | 0.0059 | 1.29 × 10−10 | 1.29 × 10−9 |
Participants | Age (Years) | Sex | BMI (kg/m2) | History of Hyperlipidemia | Smoking Status | TC (mg/dL) | LDL-C (mg/dL) | HDL-C (mg/dL) | TG (mg/dL) | PCSK9 (ng/mL) |
---|---|---|---|---|---|---|---|---|---|---|
1 | 34 | Male | 23.26 | No | No | 175 | 114 | 56 | 46 | 54.02 |
2 | 47 | Female | 26.94 | No | No | 166 | 94 | 49 | 163 | 87.23 |
3 | 49 | Female | 22.66 | No | No | 152 | 71 | 67 | 74 | 65.34 |
4 | 57 | Male | 23.54 | No | No | 132 | 48 | 48 | 136 | 81.70 |
5 | 63 | Female | 23.44 | No | No | 179 | 107 | 62 | 69 | 65.27 |
6 | 68 | Male | 24.80 | No | No | 139 | 64 | 64 | 62 | 49.66 |
7 | 42 | Male | 21.55 | No | No | 141 | 81 | 50 | 73 | 75.89 |
Tools | Information Used for Prediction | Score or Reliability Index Value | Probability/Prediction | Threshold | Remark |
---|---|---|---|---|---|
SIFT | Conserved region | 0 | Damaging | Deleterious if ≤0.05 | |
Polyphen-2 (HumDiv) | Structural homology | 1 | Damaging | Sensitivity: 0.00; specificity: 1.00 | |
PolyPhen-2 (Humvar) | 0.986 | Damaging | Sensitivity: 0.54; specificity: 0.94 | ||
SNPs&GO | Functional information categorized by gene ontology | 9 | Disease | ||
PANTHER-PSEP | Evolutional preservation | 1 (preservation time) | Probably benign | >450 million years ago | 0.02 (probability of deleterious effects) |
I-Mutant 2.0 | Changes in structural stability | 4 (Reliability Index) | Reduced stability | ||
MutPred2 | Sequence information for labeling mutations and neural networks for processing the information | 0.723 | Probability (predicted conservation scores) | Molecular mechanisms with a p value of ≤0.05 | |
SNAP-2 | Networks for assessing the effects of single-amino-acid substitutions | 78 | Effect (predicted effect) | 85% (expected accuracy) | |
PMUT | Machine learning model and software package integrating genetic and molecular data | 0.40 (86%) | Neutral effect | ||
Varsome | Information from the Global Genomics Community of >500,000 health-care professionals and researchers; the tool features a massive knowledge base comprising 140+ data resources and a powerful variant search engine | Point score: 6 | Pathogenic strong | Engines are assigned a prediction score on the basis of the strength of the calibrated prediction * | The predictors determine pathogenicity on the basis of combined evidence from multiple other in silico predictors |
CC (5409) | CG (6) | β | SE | P1 | Adjusted P1 * | β | SE | P2 | Adjusted P2 * | |
---|---|---|---|---|---|---|---|---|---|---|
TC (mg/dL) | 193.18 ± 35.22 | 157.17 ± 19.30 | −0.0907 | 0.0311 | 0.0035 | 0.0245 | −0.058 | 0.0309 | 0.0609 | 0.4263 |
TG (mg/dL) | 112.72 ± 94.33 | 91.67 ± 46.57 | −0.0644 | 0.0859 | 0.4532 | 3.1724 | 0.0618 | 0.0844 | 0.4638 | 3.2466 |
HDL-C (mg/dL) | 54.26 ± 13.24 | 57.67 ± 7.97 | 0.0355 | 0.0373 | 0.3419 | 2.3933 | 0.0414 | 0.0375 | 0.2701 | 1.8907 |
LDL-C (mg/dL) | 116.70 ± 30.70 | 81.17 ± 21.79 | −0.165 | 0.0474 | 0.0005 | 0.0035 | −0.1396 | 0.0475 | 0.0033 | 0.0231 |
Non-HDL-C (mg/dL) | 138.91 ± 34.97 | 99.50 ± 20.22 | −0.1472 | 0.0423 | 0.0005 | 0.0035 | −0.1038 | 0.042 | 0.0135 | 0.0945 |
RC (mg/dL) | 22.22 ± 17.09 | 18.33 ± 9.31 | −0.0639 | 0.0842 | 0.4477 | 3.1339 | 0.061 | 0.0826 | 0.4606 | 3.2242 |
PCSK9 level (ng/mL) | 154.02 ± 45.52 | 67.20 ± 14.83 | −0.3527 | 0.0506 | 3.59 × 10−12 | 2.51 × 10−11 | −0.3392 | 0.0505 | 2.12 × 10−11 | 1.48 × 10−10 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wu, S.; Hsu, L.-A.; Yeh, K.-H.; Ko, Y.-L. Effects of the PCSK9 C378W Mutation on PCSK9 Levels and Lipid Profiles in Taiwanese Individuals: A Loss-of-Function Mutation with Potential Cardiovascular Benefits. Genes 2025, 16, 1113. https://doi.org/10.3390/genes16091113
Wu S, Hsu L-A, Yeh K-H, Ko Y-L. Effects of the PCSK9 C378W Mutation on PCSK9 Levels and Lipid Profiles in Taiwanese Individuals: A Loss-of-Function Mutation with Potential Cardiovascular Benefits. Genes. 2025; 16(9):1113. https://doi.org/10.3390/genes16091113
Chicago/Turabian StyleWu, Semon, Lung-An Hsu, Kuan-Hung Yeh, and Yu-Lin Ko. 2025. "Effects of the PCSK9 C378W Mutation on PCSK9 Levels and Lipid Profiles in Taiwanese Individuals: A Loss-of-Function Mutation with Potential Cardiovascular Benefits" Genes 16, no. 9: 1113. https://doi.org/10.3390/genes16091113
APA StyleWu, S., Hsu, L.-A., Yeh, K.-H., & Ko, Y.-L. (2025). Effects of the PCSK9 C378W Mutation on PCSK9 Levels and Lipid Profiles in Taiwanese Individuals: A Loss-of-Function Mutation with Potential Cardiovascular Benefits. Genes, 16(9), 1113. https://doi.org/10.3390/genes16091113