Molecular Signatures of Obesity-Associated Infertility in Polycystic Ovary Syndrome: The Emerging Role of Exosomal microRNAs and Non-Coding RNAs
Abstract
1. Introduction
1.1. Molecular Foundations and Pathophysiology
- The PI3K/AKT pathway regulates glucose uptake, utilisation, and survival in granulosa cells.
- The signalling of AMP-activated protein kinase (AMPK) influences cellular energy homeostasis and steroidogenesis.
- The transforming growth factor-beta (TGF-β) pathway regulates follicular development and remodels the extracellular matrix.
- The Wnt/β-catenin signalling pathway affects the proliferation and differentiation of granulosa cells.
1.2. Clinical and Translational Relevance
2. PCOS, Obesity, and Infertility: A Pathophysiological Synopsis
2.1. Adipose Tissue as an Endocrine and Paracrine Organ in PCOS
2.2. Insulin Resistance, Hyperinsulinemia, and Ovarian Dysfunction
2.3. Chronic Low-Grade Inflammation and OS in PCOS
2.4. Hyperandrogenism and Ovarian Microenvironment Remodeling
3. Extracellular Vesicle-Mediated Mechanisms in Obese PCOS
3.1. EV Biogenesis and Secretion Pathways in the PCOS Microenvironment
3.2. Molecular Cargo Alterations: miRNAs, lncRNAs, and Proteins
3.3. Pathophysiological Impact of EV Cargo on Ovarian and Metabolic Tissues
3.4. EV Uptake Mechanisms and Intracellular Signaling
3.5. Systemic Crosstalk: From the Ovary to Peripheral Targets
3.6. Therapeutic and Diagnostic Potential of EV in Obese PCOS
4. Clinical Implications and Translational Perspectives
4.1. Integrating EV Biomarkers into PCOS Risk Stratification
4.2. EV-Based Interventions in ART
4.3. Personalized Therapeutics: Targeting Metabolic–Reproductive Axis Dysfunction
5. Discussion
5.1. Synthesis of Molecular and Clinical Evidence
5.2. Therapeutic Modulation of Extracellular Vesicles in Polycystic Ovary Syndrome
5.3. EVs as Diagnostic and Prognostic Biomarkers in Obese PCOS
5.4. Limitations, Challenges, and Regulatory Considerations
6. Conclusions and Future Directions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Su, P.; Chen, C.; Sun, Y. Physiopathology of polycystic ovary syndrome in endocrinology, metabolism and inflammation. J. Ovarian Res. 2025, 18, 34. [Google Scholar] [CrossRef] [PubMed]
- Singh, S.; Pal, N.; Shubham, S.; Sarma, D.K.; Verma, V.; Marotta, F.; Kumar, M. Polycystic Ovary Syndrome: Etiology, Current Management, and Future Therapeutics. J. Clin. Med. 2023, 12, 1454. [Google Scholar] [CrossRef] [PubMed]
- Lonardo, M.S.; Cacciapuoti, N.; Guida, B.; Di Lorenzo, M.; Chiurazzi, M.; Damiano, S.; Menale, C. Hypothalamic-Ovarian axis and Adiposity Relationship in Polycystic Ovary Syndrome: Physiopathology and Therapeutic Options for the Management of Metabolic and Inflammatory Aspects. Curr. Obes. Rep. 2024, 13, 51–70. [Google Scholar] [CrossRef] [PubMed]
- Chaudhary, H.; Patel, J.; Jain, N.K.; Joshi, R. The role of polymorphism in various potential genes on polycystic ovary syndrome susceptibility and pathogenesis. J. Ovarian Res. 2021, 14, 125. [Google Scholar] [CrossRef]
- La Marca, A.; Morgante, G.; Palumbo, M.; Cianci, A.; Petraglia, F.; De Leo, V. Insulin-lowering treatment reduces aromatase activity in response to follicle-stimulating hormone in women with polycystic ovary syndrome. Fertil. Steril. 2002, 78, 1234–1239. [Google Scholar] [CrossRef]
- Kim, J.J. Obesity and Polycystic Ovary Syndrome. J. Obes. Metab. Syndr. 2024, 33, 289–301. [Google Scholar] [CrossRef]
- Unluhizarci, K.; Karaca, Z.; Kelestimur, F. Role of insulin and insulin resistance in androgen excess disorders. World J. Diabetes 2021, 12, 616–629. [Google Scholar] [CrossRef]
- Qu, X.; Donnelly, R. Sex Hormone-Binding Globulin (SHBG) as an Early Biomarker and Therapeutic Target in Polycystic Ovary Syndrome. Int. J. Mol. Sci. 2020, 21, 8191. [Google Scholar] [CrossRef]
- Boucher, J.; Kleinridders, A.; Kahn, C.R. Insulin receptor signaling in normal and insulin-resistant states. Cold Spring Harb. Perspect. Biol. 2014, 6, a009191. [Google Scholar] [CrossRef]
- Zatterale, F.; Longo, M.; Naderi, J.; Raciti, G.A.; Desiderio, A.; Miele, C.; Beguinot, F. Chronic Adipose Tissue Inflammation Linking Obesity to Insulin Resistance and Type 2 Diabetes. Front. Physiol. 2019, 10, 1607. [Google Scholar] [CrossRef]
- MohanKumar, S.M.J.; Murugan, A.; Palaniyappan, A.; MohanKumar, P.S. Role of cytokines and reactive oxygen species in brain aging. Mech. Ageing Dev. 2023, 214, 111855. [Google Scholar] [CrossRef]
- Zhong, Y.; Ding, J.; Xia, F. DNA methylation and its impact on ovarian steroidogenesis in women with polycystic ovary syndrome: Insights from human and animal models. Arch. Gynecol. Obstet. 2025, 312, 363–374. [Google Scholar] [CrossRef]
- Lee, H.-T.; Oh, S.; Ro, D.H.; Yoo, H.; Kwon, Y.-W. The Key Role of DNA Methylation and Histone Acetylation in Epigenetics of Atherosclerosis. J. Lipid Atheroscler. 2020, 9, 419. [Google Scholar] [CrossRef]
- Ratti, M.; Lampis, A.; Ghidini, M.; Salati, M.; Mirchev, M.B.; Valeri, N.; Hahne, J.C. MicroRNAs (miRNAs) and Long Non-Coding RNAs (lncRNAs) as New Tools for Cancer Therapy: First Steps from Bench to Bedside. Target. Oncol. 2020, 15, 261–278. [Google Scholar] [CrossRef] [PubMed]
- Sørensen, A.; Wissing, M.; Salö, S.; Englund, A.; Dalgaard, L. MicroRNAs Related to Polycystic Ovary Syndrome (PCOS). Genes 2014, 5, 684–708. [Google Scholar] [CrossRef] [PubMed]
- Chen, Z.; Wang, X. The Role and Application of Exosomes and Their Cargos in Reproductive Diseases: A Systematic Review. Vet. Sci. 2022, 9, 706. [Google Scholar] [CrossRef] [PubMed]
- Kita, S.; Maeda, N.; Shimomura, I. Interorgan communication by exosomes, adipose tissue, and adiponectin in metabolic syndrome. J. Clin. Investig. 2019, 129, 4041–4049. [Google Scholar] [CrossRef]
- Groot, M.; Lee, H. Sorting Mechanisms for MicroRNAs into Extracellular Vesicles and Their Associated Diseases. Cells 2020, 9, 1044. [Google Scholar] [CrossRef]
- Udesen, P.B.; Sørensen, A.E.; Svendsen, R.; Frisk, N.L.S.; Hess, A.L.; Aziz, M.; Wissing, M.L.M.; Englund, A.L.M.; Dalgaard, L.T. Circulating miRNAs in Women with Polycystic Ovary Syndrome: A Longitudinal Cohort Study. Cells 2023, 12, 983. [Google Scholar] [CrossRef]
- Vogt, S.; Handke, D.; Behre, H.M.; Greither, T. Decreased Serum Levels of the Insulin Resistance-Related microRNA miR-320a in Patients with Polycystic Ovary Syndrome. Curr. Issues Mol. Biol. 2024, 46, 3379–3393. [Google Scholar] [CrossRef]
- Yi, Q.; Yue, J.; Liu, Y.; Shi, H.; Sun, W.; Feng, J.; Sun, W. Recent advances of exosomal circRNAs in cancer and their potential clinical applications. J. Transl. Med. 2023, 21, 516. [Google Scholar] [CrossRef] [PubMed]
- Rizk, N.M.; Sharif, E. Leptin as well as Free Leptin Receptor Is Associated with Polycystic Ovary Syndrome in Young Women. Int. J. Endocrinol. 2015, 2015, 927805. [Google Scholar] [CrossRef] [PubMed]
- Marquardt, R.M.; Kim, T.H.; Yoo, J.; Teasley, H.E.; Fazleabas, A.T.; Young, S.L.; Lessey, B.A.; Arora, R.; Jeong, J. Endometrial epithelial ARID1A is critical for uterine gland function in early pregnancy establishment. FASEB J. 2021, 35, e21209. [Google Scholar] [CrossRef] [PubMed]
- Zeng, X.; Xie, Y.; Liu, Y.; Long, S.; Mo, Z. Polycystic ovarian syndrome: Correlation between hyperandrogenism, insulin resistance and obesity. Clin. Chim. Acta 2020, 502, 214–221. [Google Scholar] [CrossRef]
- Dumesic, D.A.; Meldrum, D.R.; Katz-Jaffe, M.G.; Krisher, R.L.; Schoolcraft, W.B. Oocyte environment: Follicular fluid and cumulus cells are critical for oocyte health. Fertil. Steril. 2015, 103, 303–316. [Google Scholar] [CrossRef]
- Poudel, S.B.; Dixit, M.; Neginskaya, M.; Nagaraj, K.; Pavlov, E.; Werner, H.; Yakar, S. Effects of GH/IGF on the Aging Mitochondria. Cells 2020, 9, 1384. [Google Scholar] [CrossRef]
- Voros, C.; Varthaliti, A.; Athanasiou, D.; Mavrogianni, D.; Papahliou, A.-M.; Bananis, K.; Koulakmanidis, A.-M.; Athanasiou, A.; Athanasiou, A.; Zografos, C.G.; et al. The Whisper of the Follicle: A Systematic Review of Micro Ribonucleic Acids as Predictors of Oocyte Quality and In Vitro Fertilization Outcomes. Cells 2025, 14, 787. [Google Scholar] [CrossRef]
- Bonavina, G.; Taylor, H.S. Endometriosis-associated infertility: From pathophysiology to tailored treatment. Front. Endocrinol. 2022, 13, 1020827. [Google Scholar] [CrossRef]
- Cooney, L.G.; Dokras, A. Cardiometabolic Risk in Polycystic Ovary Syndrome. Endocrinol. Metab. Clin. N. Am. 2021, 50, 83–95. [Google Scholar] [CrossRef]
- Yung, J.H.M.; Giacca, A. Role of c-Jun N-terminal Kinase (JNK) in Obesity and Type 2 Diabetes. Cells 2020, 9, 706. [Google Scholar] [CrossRef]
- Bala, S.; Petrasek, J.; Mundkur, S.; Catalano, D.; Levin, I.; Ward, J.; Alao, H.; Kodys, K.; Szabo, G. Circulating microRNAs in exosomes indicate hepatocyte injury and inflammation in alcoholic, drug-induced, and inflammatory liver diseases. Hepatology 2012, 56, 1946–1957. [Google Scholar] [CrossRef] [PubMed]
- Yan, J.; Wu, T.; Zhang, J.; Gao, Y.; Wu, J.-M.; Wang, S. Revolutionizing the female reproductive system research using microfluidic chip platform. J. Nanobiotechnol. 2023, 21, 490. [Google Scholar] [CrossRef] [PubMed]
- Sarkisian, K.I.; Ho, L.; Yang, J.; Mandelbaum, R.; Stanczyk, F.Z. Neuroendocrine, neurotransmitter, and gut microbiota imbalance contributing to potential psychiatric disorder prevalence in polycystic ovarian syndrome. FS Rep. 2023, 4, 337–342. [Google Scholar] [CrossRef] [PubMed]
- Pinto, J.; Cera, N.; Pignatelli, D. Psychological symptoms and brain activity alterations in women with PCOS and their relation to the reduced quality of life: A narrative review. J. Endocrinol. Investig. 2024, 47, 1–22. [Google Scholar] [CrossRef]
- Rudnicka, E.; Suchta, K.; Grymowicz, M.; Calik-Ksepka, A.; Smolarczyk, K.; Duszewska, A.M.; Smolarczyk, R.; Meczekalski, B. Chronic Low Grade Inflammation in Pathogenesis of PCOS. Int. J. Mol. Sci. 2021, 22, 3789. [Google Scholar] [CrossRef]
- Johnson, G.P.; Jonas, K.C. Mechanistic insight into how gonadotropin hormone receptor complexes direct signaling. Biol. Reprod. 2020, 102, 773–783. [Google Scholar] [CrossRef]
- Bhattacharya, K.; Dey, R.; Sen, D.; Paul, N.; Basak, A.K.; Purkait, M.P.; Shukla, N.; Chaudhuri, G.R.; Bhattacharya, A.; Maiti, R.; et al. Polycystic ovary syndrome and its management: In view of oxidative stress. Biomol. Concepts 2024, 15, 20220038. [Google Scholar] [CrossRef]
- Yen, Y.; Chu, T.-Y.; Tseng, R.-C. Exosomal long noncoding RNAs and microRNAs in colorectal cancer. Tzu Chi Med. J. 2025, 37, 235–246. [Google Scholar] [CrossRef]
- Romero-Ruiz, A.; Pineda, B.; Ovelleiro, D.; Perdices-Lopez, C.; Torres, E.; Vazquez, M.J.; Guler, I.; Jiménez, Á.; Pineda, R.; Persano, M.; et al. Molecular diagnosis of polycystic ovary syndrome in obese and non-obese women by targeted plasma miRNA profiling. Eur. J. Endocrinol. 2021, 185, 637–652. [Google Scholar] [CrossRef]
- He, X.; Kuang, G.; Wu, Y.; Ou, C. Emerging roles of exosomal miRNAs in diabetes mellitus. Clin. Transl. Med. 2021, 11, e468. [Google Scholar] [CrossRef]
- Nappi, F. Non-Coding RNA-Targeted Therapy: A State-of-the-Art Review. Int. J. Mol. Sci. 2024, 25, 3630. [Google Scholar] [CrossRef]
- Liang, Y.; Duan, L.; Lu, J.; Xia, J. Engineering exosomes for targeted drug delivery. Theranostics 2021, 11, 3183–3195. [Google Scholar] [CrossRef]
- Spritzer, P.M.; Lecke, S.B.; Satler, F.; Morsch, D.M. Adipose tissue dysfunction, adipokines, and low-grade chronic inflammation in polycystic ovary syndrome. Reproduction 2015, 149, R219–R227. [Google Scholar] [CrossRef] [PubMed]
- Sakers, A.; De Siqueira, M.K.; Seale, P.; Villanueva, C.J. Adipose-tissue plasticity in health and disease. Cell 2022, 185, 419–446. [Google Scholar] [CrossRef] [PubMed]
- Rahat, M.A. Molecular mechanisms regulating macrophage response to hypoxia. Front. Immunol. 2011, 2, 45. [Google Scholar] [CrossRef] [PubMed]
- Kern, L.; Mittenbühler, M.J.; Vesting, A.J.; Ostermann, A.L.; Wunderlich, C.M.; Wunderlich, F.T. Obesity-Induced TNFα and IL-6 Signaling: The Missing Link between Obesity and Inflammation-Driven Liver and Colorectal Cancers. Cancers 2018, 11, 24. [Google Scholar] [CrossRef]
- Franks, S. Androgen production and action in the ovary. Curr. Opin. Endocr. Metab. Res. 2021, 18, 48–53. [Google Scholar] [CrossRef]
- Obaideen, M.; Önel, T.; Yıldırım, E.; Yaba, A. The role of leptin in the male reproductive system. J. Turk.-Ger. Gynecol. Assoc. 2024, 25, 247–258. [Google Scholar] [CrossRef]
- Zhao, S.; Kusminski, C.M.; Scherer, P.E. Adiponectin, Leptin and Cardiovascular Disorders. Circ. Res. 2021, 128, 136–149. [Google Scholar] [CrossRef]
- Żbikowski, A.; Błachnio-Zabielska, A.; Galli, M.; Zabielski, P. Adipose-Derived Exosomes as Possible Players in the Development of Insulin Resistance. Int. J. Mol. Sci. 2021, 22, 7427. [Google Scholar] [CrossRef]
- Lipke, K.; Kubis-Kubiak, A.; Piwowar, A. Molecular Mechanism of Lipotoxicity as an Interesting Aspect in the Development of Pathological States-Current View of Knowledge. Cells 2022, 11, 844. [Google Scholar] [CrossRef]
- Kim, G.; Lee, J.; Ha, J.; Kang, I.; Choe, W. Endoplasmic Reticulum Stress and Its Impact on Adipogenesis: Molecular Mechanisms Implicated. Nutrients 2023, 15, 5082. [Google Scholar] [CrossRef]
- Corbould, A.; Zhao, H.; Mirzoeva, S.; Aird, F.; Dunaif, A. Enhanced Mitogenic Signaling in Skeletal Muscle of Women With Polycystic Ovary Syndrome. Diabetes 2006, 55, 751–759. [Google Scholar] [CrossRef]
- Cao, R.; Tian, H.; Zhang, Y.; Liu, G.; Xu, H.; Rao, G.; Tian, Y.; Fu, X. Signaling pathways and intervention for therapy of type 2 diabetes mellitus. MedComm 2023, 4, e283. [Google Scholar] [CrossRef]
- Zhu, Y.; Pereira, R.O.; O’Neill, B.T.; Riehle, C.; Ilkun, O.; Wende, A.R.; Rawlings, T.A.; Zhang, Y.C.; Zhang, Q.; Klip, A.; et al. Cardiac PI3K-Akt Impairs Insulin-Stimulated Glucose Uptake Independent of mTORC1 and GLUT4 Translocation. Mol. Endocrinol. 2013, 27, 172–184. [Google Scholar] [CrossRef] [PubMed]
- Ratchford, A.M.; Esguerra, C.R.; Moley, K.H. Decreased Oocyte-Granulosa Cell Gap Junction Communication and Connexin Expression in a Type 1 Diabetic Mouse Model. Mol. Endocrinol. 2008, 22, 2643–2654. [Google Scholar] [CrossRef] [PubMed]
- Dong, T.; Chen, X.; Xu, H.; Song, Y.; Wang, H.; Gao, Y.; Wang, J.; Du, R.; Lou, H.; Dong, T. Mitochondrial metabolism mediated macrophage polarization in chronic lung diseases. Pharmacol. Ther. 2022, 239, 108208. [Google Scholar] [CrossRef]
- Shen, M.; Lin, F.; Zhang, J.; Tang, Y.; Chen, W.-K.; Liu, H. Involvement of the up-regulated FoxO1 expression in follicular granulosa cell apoptosis induced by oxidative stress. J. Biol. Chem. 2012, 287, 25727–25740. [Google Scholar] [CrossRef]
- Betancourt-Calle, S.; Calle, R.A.; Isales, C.M.; White, S.; Rasmussen, H.; Bollag, W.B. Differential effects of agonists of aldosterone secretion on steroidogenic acute regulatory phosphorylation. Mol. Cell. Endocrinol. 2001, 173, 87–94. [Google Scholar] [CrossRef]
- Rambaran, N.; Islam, M.S. Decoding androgen excess in polycystic ovary syndrome: Roles of insulin resistance and other key intraovarian and systemic factors. World J. Diabetes 2025, 16, 108789. [Google Scholar] [CrossRef]
- Xing, C.; Zhang, J.; Zhao, H.; He, B. Effect of Sex Hormone-Binding Globulin on Polycystic Ovary Syndrome: Mechanisms, Manifestations, Genetics, and Treatment. Int. J. Womens Health 2022, 14, 91–105. [Google Scholar] [CrossRef]
- Kwon, H.; Pessin, J.E. Adipokines Mediate Inflammation and Insulin Resistance. Front. Endocrinol. 2013, 4, 71. [Google Scholar] [CrossRef]
- Oeckinghaus, A.; Ghosh, S. The NF- B Family of Transcription Factors and Its Regulation. Cold Spring Harb. Perspect. Biol. 2009, 1, a000034. [Google Scholar] [CrossRef] [PubMed]
- Moustakli, E.; Stavros, S.; Katopodis, P.; Skentou, C.; Potiris, A.; Panagopoulos, P.; Domali, E.; Arkoulis, I.; Karampitsakos, T.; Sarafi, E.; et al. Oxidative Stress and the NLRP3 Inflammasome: Focus on Female Fertility and Reproductive Health. Cells 2025, 14, 36. [Google Scholar] [CrossRef] [PubMed]
- Kowalczyk, P.; Sulejczak, D.; Kleczkowska, P.; Bukowska-Ośko, I.; Kucia, M.; Popiel, M.; Wietrak, E.; Kramkowski, K.; Wrzosek, K.; Kaczyńska, K. Mitochondrial Oxidative Stress—A Causative Factor and Therapeutic Target in Many Diseases. Int. J. Mol. Sci. 2021, 22, 13384. [Google Scholar] [CrossRef] [PubMed]
- Xu, X.; Pang, Y.; Fan, X. Mitochondria in oxidative stress, inflammation and aging: From mechanisms to therapeutic advances. Signal Transduct. Target. Ther. 2025, 10, 190. [Google Scholar] [CrossRef]
- Zanfardino, P.; Amati, A.; Perrone, M.; Petruzzella, V. The Balance of MFN2 and OPA1 in Mitochondrial Dynamics, Cellular Homeostasis, and Disease. Biomolecules 2025, 15, 433. [Google Scholar] [CrossRef]
- Qasemi, M.; Amidi, F. Extracellular microRNA profiling in human follicular fluid: New biomarkers in female reproductive potential. J. Assist. Reprod. Genet. 2020, 37, 1769–1780. [Google Scholar] [CrossRef]
- Chelegahi, A.M.; Ebrahimi, S.O.; Reiisi, S.; Nezamnia, M. A glance into the roles of microRNAs (exosomal and non-exosomal) in polycystic ovary syndrome. Obstet. Gynecol. Sci. 2024, 67, 30–48. [Google Scholar] [CrossRef]
- Pan, B.; Toms, D.; Shen, W.; Li, J. MicroRNA-378 regulates oocyte maturation via the suppression of aromatase in porcine cumulus cells. Am. J. Physiol. Endocrinol. Metab. 2015, 308, E525–E534. [Google Scholar] [CrossRef]
- Shabbir, S.; Khurram, E.; Moorthi, V.S.; Eissa, Y.T.H.; Kamal, M.A.; Butler, A.E. The interplay between androgens and the immune response in polycystic ovary syndrome. J. Transl. Med. 2023, 21, 259. [Google Scholar] [CrossRef]
- Zhao, H.; Wu, L.; Yan, G.; Chen, Y.; Zhou, M.; Wu, Y.; Li, Y. Inflammation and tumor progression: Signaling pathways and targeted intervention. Signal Transduct. Target. Ther. 2021, 6, 263. [Google Scholar] [CrossRef]
- Rui, L.; Yuan, M.; Frantz, D.; Shoelson, S.; White, M.F. SOCS-1 and SOCS-3 Block Insulin Signaling by Ubiquitin-mediated Degradation of IRS1 and IRS2. J. Biol. Chem. 2002, 277, 42394–42398. [Google Scholar] [CrossRef]
- Shi, H.; Kokoeva, M.V.; Inouye, K.; Tzameli, I.; Yin, H.; Flier, J.S. TLR4 links innate immunity and fatty acid–induced insulin resistance. J. Clin. Investig. 2006, 116, 3015–3025. [Google Scholar] [CrossRef] [PubMed]
- Paik, S.; Kim, J.K.; Silwal, P.; Sasakawa, C.; Jo, E.-K. An update on the regulatory mechanisms of NLRP3 inflammasome activation. Cell. Mol. Immunol. 2021, 18, 1141–1160. [Google Scholar] [CrossRef] [PubMed]
- Lliberos, C.; Liew, S.H.; Zareie, P.; La Gruta, N.L.; Mansell, A.; Hutt, K. Evaluation of inflammation and follicle depletion during ovarian ageing in mice. Sci. Rep. 2021, 11, 278. [Google Scholar] [CrossRef] [PubMed]
- Das, N.; Kumar, T.R. Molecular regulation of follicle-stimulating hormone synthesis, secretion and action. J. Mol. Endocrinol. 2018, 60, R131–R155. [Google Scholar] [CrossRef]
- Yan, F.; Zhao, Q.; Li, Y.; Zheng, Z.; Kong, X.; Shu, C.; Liu, Y.; Shi, Y. The role of oxidative stress in ovarian aging: A review. J. Ovarian Res. 2022, 15, 100. [Google Scholar] [CrossRef]
- Romo-González, M.; Ijurko, C.; Alonso, M.T.; Gómez De Cedrón, M.; Ramirez De Molina, A.; Soriano, M.E.; Hernández-Hernández, Á. NOX2 and NOX4 control mitochondrial function in chronic myeloid leukaemia. Free Radic. Biol. Med. 2023, 198, 92–108. [Google Scholar] [CrossRef]
- Zorov, D.B.; Juhaszova, M.; Sollott, S.J. Mitochondrial Reactive Oxygen Species (ROS) and ROS-Induced ROS Release. Physiol. Rev. 2014, 94, 909–950. [Google Scholar] [CrossRef]
- Mustafa, M.; Ahmad, R.; Tantry, I.Q.; Ahmad, W.; Siddiqui, S.; Alam, M.; Abbas, K.; Moinuddin; Hassan, M.I.; Habib, S.; et al. Apoptosis: A Comprehensive Overview of Signaling Pathways, Morphological Changes, and Physiological Significance and Therapeutic Implications. Cells 2024, 13, 1838. [Google Scholar] [CrossRef]
- Xian, H.; Karin, M. Oxidized mitochondrial DNA: A protective signal gone awry. Trends Immunol. 2023, 44, 188–200. [Google Scholar] [CrossRef]
- Gęgotek, A.; Skrzydlewska, E. Lipid peroxidation products’ role in autophagy regulation. Free Radic. Biol. Med. 2024, 212, 375–383. [Google Scholar] [CrossRef] [PubMed]
- Cui, H.; Zhao, G.; Wen, J.; Tong, W. Follicle-stimulating hormone promotes the transformation of cholesterol to estrogen in mouse adipose tissue. Biochem. Biophys. Res. Commun. 2018, 495, 2331–2337. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Zhao, J.; Han, L.; Zhang, Z.; Wang, C.; Long, W.; Meng, K.; Wang, X. Research progress of extracellular vesicles in the treatment of ovarian diseases (Review). Exp. Ther. Med. 2023, 27, 15. [Google Scholar] [CrossRef] [PubMed]
- Lingappan, K. NF-κB in oxidative stress. Curr. Opin. Toxicol. 2018, 7, 81–86. [Google Scholar] [CrossRef]
- Lopez-Castejon, G.; Brough, D. Understanding the mechanism of IL-1β secretion. Cytokine Growth Factor Rev. 2011, 22, 189–195. [Google Scholar] [CrossRef]
- Wang, M.; Zhang, B.-Q.; Ma, S.; Xu, Y.; Zhao, D.-H.; Zhang, J.-S.; Li, C.-J.; Zhou, X.; Zheng, L.-W. Broadening horizons: The role of ferroptosis in polycystic ovary syndrome. Front. Endocrinol. 2024, 15, 1390013. [Google Scholar] [CrossRef]
- Witchel, S.F.; Oberfield, S.E.; Peña, A.S. Polycystic Ovary Syndrome: Pathophysiology, Presentation, and Treatment with Emphasis on Adolescent Girls. J. Endocr. Soc. 2019, 3, 1545–1573. [Google Scholar] [CrossRef]
- Fukuda, S.; Orisaka, M.; Tajima, K.; Hattori, K.; Kotsuji, F. Luteinizing hormone-induced Akt phosphorylation and androgen production are modulated by MAP Kinase in bovine theca cells. J. Ovarian Res. 2009, 2, 17. [Google Scholar] [CrossRef]
- Koganti, P.P.; Zhao, A.H.; Kern, M.C.; Fassinou, A.C.R.; Selvaraj, V. STAR/STARD1: A mitochondrial intermembrane space cholesterol shuttle degraded through mitophagy. bioRxiv 2025. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; Khalil, R.A. Matrix Metalloproteinases, Vascular Remodeling, and Vascular Disease. Adv. Pharmacol. 2018, 81, 241–330. [Google Scholar] [CrossRef] [PubMed]
- Abu Shelbayeh, O.; Arroum, T.; Morris, S.; Busch, K.B. PGC-1α Is a Master Regulator of Mitochondrial Lifecycle and ROS Stress Response. Antioxidants 2023, 12, 1075. [Google Scholar] [CrossRef] [PubMed]
- Yuan, X.; Yang, J.; Sun, D.; Luo, K.; Jiang, X.; Wang, L.; Xiang, S.; Jiang, Y.; Ge, K.; Zhou, Z.; et al. 1,25-Dihydroxyvitamin D inhibits hepatic diacyglycerol accumulation and ameliorates metabolic dysfunction in polycystic ovary syndrome rat models. Front. Pharmacol. 2023, 14, 1077014. [Google Scholar] [CrossRef]
- Tsushima, K.; Bugger, H.; Wende, A.R.; Soto, J.; Jenson, G.A.; Tor, A.R.; McGlauflin, R.; Kenny, H.C.; Zhang, Y.; Souvenir, R.; et al. Mitochondrial Reactive Oxygen Species in Lipotoxic Hearts Induce Post-Translational Modifications of AKAP121, DRP1, and OPA1 That Promote Mitochondrial Fission. Circ. Res. 2018, 122, 58–73. [Google Scholar] [CrossRef]
- Chiaratti, M.R. Uncovering the important role of mitochondrial dynamics in oogenesis: Impact on fertility and metabolic disorder transmission. Biophys. Rev. 2021, 13, 967–981. [Google Scholar] [CrossRef]
- Salinas, I.; Sinha, N.; Sen, A. Androgen-induced epigenetic modulations in the ovary. J. Endocrinol. 2021, 249, R53–R64. [Google Scholar] [CrossRef]
- Ait-Si-Ali, S.; Polesskaya, A.; Filleur, S.; Ferreira, R.; Duquet, A.; Robin, P.; Vervish, A.; Trouche, D.; Cabon, F.; Harel-Bellan, A. CBP/p300 histone acetyl-transferase activity is important for the G1/S transition. Oncogene 2000, 19, 2430–2437. [Google Scholar] [CrossRef]
- Handy, D.E.; Castro, R.; Loscalzo, J. Epigenetic Modifications: Basic Mechanisms and Role in Cardiovascular Disease. Circulation 2011, 123, 2145–2156. [Google Scholar] [CrossRef]
- Tak, P.P.; Firestein, G.S. NF-κB: A key role in inflammatory diseases. J. Clin. Investig. 2001, 107, 7–11. [Google Scholar] [CrossRef]
- Block, K.; Gorin, Y. Aiding and abetting roles of NOX oxidases in cellular transformation. Nat. Rev. Cancer 2012, 12, 627–637. [Google Scholar] [CrossRef]
- Fernandes-Alnemri, T.; Wu, J.; Yu, J.-W.; Datta, P.; Miller, B.; Jankowski, W.; Rosenberg, S.; Zhang, J.; Alnemri, E.S. The pyroptosome: A supramolecular assembly of ASC dimers mediating inflammatory cell death via caspase-1 activation. Cell Death Differ. 2007, 14, 1590–1604. [Google Scholar] [CrossRef]
- Shao, X.; Yu, L.; Li, C.; Qian, J.; Yang, X.; Yang, H.; Liao, J.; Fan, X.; Xu, X.; Fan, X. Extracellular vesicle-derived miRNA-mediated cell–cell communication inference for single-cell transcriptomic data with miRTalk. Genome Biol. 2025, 26, 95. [Google Scholar] [CrossRef] [PubMed]
- Doncheva, A.I.; Romero, S.; Ramirez-Garrastacho, M.; Lee, S.; Kolnes, K.J.; Tangen, D.S.; Olsen, T.; Drevon, C.A.; Llorente, A.; Dalen, K.T.; et al. Extracellular vesicles and microRNAs are altered in response to exercise, insulin sensitivity and overweight. Acta Physiol. 2022, 236, e13897. [Google Scholar] [CrossRef] [PubMed]
- Rome, S.; Tacconi, S. High-fat diets: You are what you eat… your extracellular vesicles too! J. Extracell. Vesicles 2024, 13, e12382. [Google Scholar] [CrossRef] [PubMed]
- Lee, J.; Choi, W.G.; Rhee, M.; Lee, S.-H. Extracellular Vesicle-Mediated Network in the Pathogenesis of Obesity, Diabetes, Steatotic Liver Disease, and Cardiovascular Disease. Diabetes Metab. J. 2025, 49, 348–367. [Google Scholar] [CrossRef]
- Mu, F.-T.; Callaghan, J.M.; Steele-Mortimer, O.; Stenmark, H.; Parton, R.G.; Campbell, P.L.; McCluskey, J.; Yeo, J.-P.; Tock, E.P.C.; Toh, B.-H. EEA1, an Early Endosome-Associated Protein. J. Biol. Chem. 1995, 270, 13503–13511. [Google Scholar] [CrossRef]
- Henne, W.M.; Buchkovich, N.J.; Emr, S.D. The ESCRT Pathway. Dev. Cell 2011, 21, 77–91. [Google Scholar] [CrossRef]
- Hicke, L.; Dunn, R. Regulation of Membrane Protein Transport by Ubiquitin and Ubiquitin-Binding Proteins. Annu. Rev. Cell Dev. Biol. 2003, 19, 141–172. [Google Scholar] [CrossRef]
- Sindhu, S.; Leung, Y.H.; Arefanian, H.; Madiraju, S.R.M.; Al-Mulla, F.; Ahmad, R.; Prentki, M. Neutral sphingomyelinase-2 and cardiometabolic diseases. Obes. Rev. 2021, 22, e13248. [Google Scholar] [CrossRef]
- Muralidharan-Chari, V.; Clancy, J.W.; Sedgwick, A.; D’Souza-Schorey, C. Microvesicles: Mediators of extracellular communication during cancer progression. J. Cell Sci. 2010, 123, 1603–1611. [Google Scholar] [CrossRef] [PubMed]
- Lin, T.; Zeng, L.; Liu, Y.; DeFea, K.; Schwartz, M.A.; Chien, S.; Shyy, J.Y.-J. Rho-ROCK-LIMK-Cofilin Pathway Regulates Shear Stress Activation of Sterol Regulatory Element Binding Proteins. Circ. Res. 2003, 92, 1296–1304. [Google Scholar] [CrossRef] [PubMed]
- Prakash, Y.S.; Thompson, M.A.; Vaa, B.; Matabdin, I.; Peterson, T.E.; He, T.; Pabelick, C.M. Caveolins and intracellular calcium regulation in human airway smooth muscle. Am. J. Physiol.-Lung Cell. Mol. Physiol. 2007, 293, L1118–L1126. [Google Scholar] [CrossRef] [PubMed]
- Sakuragi, T.; Nagata, S. Regulation of phospholipid distribution in the lipid bilayer by flippases and scramblases. Nat. Rev. Mol. Cell Biol. 2023, 24, 576–596. [Google Scholar] [CrossRef]
- Liang, Y.; Kaushal, D.; Wilson, R.B. Cellular Senescence and Extracellular Vesicles in the Pathogenesis and Treatment of Obesity—A Narrative Review. Int. J. Mol. Sci. 2024, 25, 7943. [Google Scholar] [CrossRef]
- Dorayappan, K.D.P.; Wanner, R.; Wallbillich, J.J.; Saini, U.; Zingarelli, R.; Suarez, A.A.; Cohn, D.E.; Selvendiran, K. Hypoxia-induced exosomes contribute to a more aggressive and chemoresistant ovarian cancer phenotype: A novel mechanism linking STAT3/Rab proteins. Oncogene 2018, 37, 3806–3821. [Google Scholar] [CrossRef]
- Sha, H.; He, Y.; Chen, H.; Wang, C.; Zenno, A.; Shi, H.; Yang, X.; Zhang, X.; Qi, L. The IRE1α-XBP1 Pathway of the Unfolded Protein Response Is Required for Adipogenesis. Cell Metab. 2009, 9, 556–564. [Google Scholar] [CrossRef]
- Patel, J.; Chaudhary, H.; Panchal, S.; Joshi, T.; Joshi, R. Endocrine-disrupting chemicals and hormonal profiles in PCOS women: A comparative study between urban and rural environment. Reprod. Toxicol. 2024, 125, 108562. [Google Scholar] [CrossRef]
- Liao, Z.; Zhou, Y.; Tao, W.; Shen, L.; Qian, K.; Zhang, H. Correlation between the follicular fluid extracellular-vesicle-derived microRNAs and signaling disturbance in the oocytes of women with polycystic ovary syndrome. J. Ovarian Res. 2025, 18, 31. [Google Scholar] [CrossRef]
- Luo, Y.; Cui, C.; Han, X.; Wang, Q.; Zhang, C. The role of miRNAs in polycystic ovary syndrome with insulin resistance. J. Assist. Reprod. Genet. 2021, 38, 289–304. [Google Scholar] [CrossRef]
- Jiang, L.; Huang, J.; Li, L.; Chen, Y.; Chen, X.; Zhao, X.; Yang, D. MicroRNA-93 Promotes Ovarian Granulosa Cells Proliferation Through Targeting CDKN1A in Polycystic Ovarian Syndrome. J. Clin. Endocrinol. Metab. 2015, 100, E729–E738. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.; Wang, W.; Morgan, M.P.; Robson, T.; Annett, S. Obesity, non-alcoholic fatty liver disease and hepatocellular carcinoma: Current status and therapeutic targets. Front. Endocrinol. 2023, 14, 1148934. [Google Scholar] [CrossRef] [PubMed]
- Ferro, A.; Saccu, G.; Mattivi, S.; Gaido, A.; Herrera Sanchez, M.B.; Haque, S.; Silengo, L.; Altruda, F.; Durazzo, M.; Fagoonee, S. Extracellular Vesicles as Delivery Vehicles for Non-Coding RNAs: Potential Biomarkers for Chronic Liver Diseases. Biomolecules 2024, 14, 277. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Huang, S.; Shi, L.; Chen, G.; Liu, X.; Liu, M.; Guo, G. Interaction between long noncoding RNA and microRNA in lung inflammatory diseases. Immun. Inflamm. Dis. 2024, 12, e1129. [Google Scholar] [CrossRef]
- Chen, Y.; Liang, R.; Li, Y.; Jiang, L.; Ma, D.; Luo, Q.; Song, G. Chromatin accessibility: Biological functions, molecular mechanisms and therapeutic application. Signal Transduct. Target. Ther. 2024, 9, 340. [Google Scholar] [CrossRef]
- Chang, Q.; Wang, S.; Mai, Q.; Zhou, C. Impact of obesity on proteomic profiles of follicular fluid-derived small extracellular vesicles: A comparison between PCOS and non-PCOS women. J. Ovarian Res. 2025, 18, 121. [Google Scholar] [CrossRef]
- Miller, W.L.; Auchus, R.J. The Molecular Biology, Biochemistry, and Physiology of Human Steroidogenesis and Its Disorders. Endocr. Rev. 2011, 32, 81–151. [Google Scholar] [CrossRef]
- Sui, C.; Liao, Z.; Bai, J.; Hu, D.; Yue, J.; Yang, S. Current knowledge on the role of extracellular vesicles in endometrial receptivity. Eur. J. Med. Res. 2023, 28, 471. [Google Scholar] [CrossRef]
- Li, J.; Jiang, X.; Li, C.; Che, H.; Ling, L.; Wei, Z. Proteomic alteration of endometrial tissues during secretion in polycystic ovary syndrome may affect endometrial receptivity. Clin. Proteom. 2022, 19, 19. [Google Scholar] [CrossRef]
- Jankovičová, J.; Sečová, P.; Michalková, K.; Antalíková, J. Tetraspanins, More than Markers of Extracellular Vesicles in Reproduction. Int. J. Mol. Sci. 2020, 21, 7568. [Google Scholar] [CrossRef]
- Chatterjee, E.; Betti, M.J.; Sheng, Q.; Lin, P.; Emont, M.P.; Li, G.; Amancherla, K.; Garcia-Contreras, M.; Gokulnath, P.; Limpitikul, W.B.; et al. The extracellular vesicle transcriptome provides tissue-specific functional genomic annotation relevant to disease susceptibility in obesity. Cell Genom. 2025, 5, 100925. [Google Scholar] [CrossRef]
- Chaves, M.A.; Ferst, J.G.; Fiorenza, M.F.; da Silveira, J.C. The Influence of Ovarian-Derived Extracellular Vesicles in Reproduction. In Advances in Anatomy, Embryology and Cell Biology; Springer: Berlin/Heidelberg, Germany, 2024. [Google Scholar] [CrossRef]
- Nasser, J.S.; Altahoo, N.; Almosawi, S.; Alhermi, A.; Butler, A.E. The Role of MicroRNA, Long Non-Coding RNA and Circular RNA in the Pathogenesis of Polycystic Ovary Syndrome: A Literature Review. Int. J. Mol. Sci. 2024, 25, 903. [Google Scholar] [CrossRef] [PubMed]
- Hayes, E.; Winston, N.; Stocco, C. Molecular crosstalk between insulin-like growth factors and follicle-stimulating hormone in the regulation of granulosa cell function. Reprod. Med. Biol. 2024, 23, e12575. [Google Scholar] [CrossRef] [PubMed]
- Duval, C.; Wyse, B.A.; Tsang, B.K.; Librach, C.L. Extracellular vesicles and their content in the context of polycystic ovarian syndrome and endometriosis: A review. J. Ovarian Res. 2024, 17, 160. [Google Scholar] [CrossRef] [PubMed]
- Mu, J.; Yu, P.; Li, Q. microRNA-103 Contributes to Progression of Polycystic Ovary Syndrome Through Modulating the IRS1/PI3K/AKT Signal Axis. Arch. Med. Res. 2021, 52, 494–504. [Google Scholar] [CrossRef]
- Lombardo, M.; Aiello, G.; Fratantonio, D.; Karav, S.; Baldelli, S. Functional Role of Extracellular Vesicles in Skeletal Muscle Physiology and Sarcopenia: The Importance of Physical Exercise and Nutrition. Nutrients 2024, 16, 3097. [Google Scholar] [CrossRef]
- Granchi, C.; Bertini, S.; Macchia, M.; Minutolo, F. Inhibitors of lactate dehydrogenase isoforms and their therapeutic potentials. Curr. Med. Chem. 2010, 17, 672–697. [Google Scholar] [CrossRef]
- Duggan, M.E.; Hutchinson, J.H. Ligands to the integrin receptor αvβ3. Expert Opin. Ther. Pat. 2000, 10, 1367–1383. [Google Scholar] [CrossRef]
- Voros, C.; Varthaliti, A.; Athanasiou, D.; Mavrogianni, D.; Bananis, K.; Athanasiou, A.; Athanasiou, A.; Papahliou, A.-M.; Zografos, C.G.; Kondili, P.; et al. MicroRNA Signatures in Endometrial Receptivity—Unlocking Their Role in Embryo Implantation and IVF Success: A Systematic Review. Biomedicines 2025, 13, 1189. [Google Scholar] [CrossRef]
- Nunzi, E.; Mezzasoma, L.; Bellezza, I.; Zelante, T.; Orvietani, P.; Coata, G.; Giardina, I.; Sagini, K.; Manni, G.; Di Michele, A.; et al. Microbiota-Associated HAF-EVs Regulate Monocytes by Triggering or Inhibiting Inflammasome Activation. Int. J. Mol. Sci. 2023, 24, 2527. [Google Scholar] [CrossRef]
- Budani, M.C.; Tiboni, G.M. Novel Insights on the Role of Nitric Oxide in the Ovary: A Review of the Literature. Int. J. Environ. Res. Public Health 2021, 18, 980. [Google Scholar] [CrossRef]
- Krock, B.L.; Skuli, N.; Simon, M.C. Hypoxia-induced angiogenesis: Good and evil. Genes Cancer 2011, 2, 1117–1133. [Google Scholar] [CrossRef]
- Nikolov, A.; Popovski, N. Role of Gelatinases MMP-2 and MMP-9 in Healthy and Complicated Pregnancy and Their Future Potential as Preeclampsia Biomarkers. Diagnostics 2021, 11, 480. [Google Scholar] [CrossRef] [PubMed]
- Elfenbein, A.; Simons, M. Syndecan-4 signaling at a glance. J. Cell Sci. 2013, 126, 3799–3804. [Google Scholar] [CrossRef] [PubMed]
- Bänfer, S.; Jacob, R. Galectins in Intra- and Extracellular Vesicles. Biomolecules 2020, 10, 1232. [Google Scholar] [CrossRef] [PubMed]
- Fantini, J. Lipid rafts and human diseases: Why we need to target gangliosides. FEBS Open Bio 2023, 13, 1636–1650. [Google Scholar] [CrossRef]
- Dixson, A.C.; Dawson, T.R.; Di Vizio, D.; Weaver, A.M. Context-specific regulation of extracellular vesicle biogenesis and cargo selection. Nat. Rev. Mol. Cell Biol. 2023, 24, 454–476. [Google Scholar] [CrossRef]
- Xu, M.; Ji, J.; Jin, D.; Wu, Y.; Wu, T.; Lin, R.; Zhu, S.; Jiang, F.; Ji, Y.; Bao, B.; et al. The biogenesis and secretion of exosomes and multivesicular bodies (MVBs): Intercellular shuttles and implications in human diseases. Genes Dis. 2023, 10, 1894–1907. [Google Scholar] [CrossRef]
- Vagnozzi, A.N.; Praticò, D. Endosomal sorting and trafficking, the retromer complex and neurodegeneration. Mol. Psychiatry 2019, 24, 857–868. [Google Scholar] [CrossRef]
- Tsagakis, I.; Douka, K.; Birds, I.; Aspden, J.L. Long non-coding RNAs in development and disease: Conservation to mechanisms. J. Pathol. 2020, 250, 480–495. [Google Scholar] [CrossRef]
- Karbowski, M.; Oshima, Y.; Verhoeven, N. Mitochondrial proteotoxicity: Implications and ubiquitin-dependent quality control mechanisms. Cell. Mol. Life Sci. 2022, 79, 574. [Google Scholar] [CrossRef]
- Sandoval-Bórquez, A.; Carrión, P.; Hernández, M.P.; Pérez, J.A.; Tapia-Castillo, A.; Vecchiola, A.; Fardella, C.E.; Carvajal, C.A. Adipose Tissue Dysfunction and the Role of Adipocyte-Derived Extracellular Vesicles in Obesity and Metabolic Syndrome. J. Endocr. Soc. 2024, 8, bvae126. [Google Scholar] [CrossRef] [PubMed]
- Chang, M.; Zhao, M.; Whang, E.M.; Lee, R.A.; Scott, D.K.; Wang, J.-C. The sphingosine-1-phosphate receptor 2 S1PR2 mediates chronic glucocorticoid exposure-induced hepatic steatosis and hypertriglyceridemia. J. Biol. Chem. 2025, 301, 110353. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.; Zhao, Y.; Yan, W. The role of extracellular vesicles in skeletal muscle wasting. J. Cachexia Sarcopenia Muscle 2023, 14, 2462–2472. [Google Scholar] [CrossRef] [PubMed]
- Simons, M.; Gordon, E.; Claesson-Welsh, L. Mechanisms and regulation of endothelial VEGF receptor signalling. Nat. Rev. Mol. Cell Biol. 2016, 17, 611–625. [Google Scholar] [CrossRef]
- Zhao, M.; Wang, J.; Zhu, S.; Wang, M.; Chen, C.; Wang, L.; Liu, J. Mitochondrion-based organellar therapies for central nervous system diseases. Cell Commun. Signal. 2024, 22, 487. [Google Scholar] [CrossRef]
- Hense, J.D.; Isola, J.V.V.; Garcia, D.N.; Magalhães, L.S.; Masternak, M.M.; Stout, M.B.; Schneider, A. The role of cellular senescence in ovarian aging. npj Aging 2024, 10, 35. [Google Scholar] [CrossRef]
- Wang, J.; Wang, D.; Zhang, Y.; Sun, P.; Yi, L.; Han, A.; Zhao, W.; Zhang, Y.; Ma, H. Extracellular vesicles in reproductive biology and disorders: A comprehensive review. Front. Endocrinol. 2025, 16, 1550068. [Google Scholar] [CrossRef]
- Mahabamunuge, J.; Sekula, N.M.; Lepore, C.; Kudrimoti, M.; Upadhyay, A.; Alshowaikh, K.; Li, H.J.; Seifer, D.B.; AlAshqar, A. The Molecular Basis of Polycystic Ovary Syndrome and Its Cardiometabolic Correlates: Exploring the Intersection and Its Clinical Implications—A Narrative Review. Biomedicines 2025, 13, 709. [Google Scholar] [CrossRef]
- Dai, B.; Jiang, J. Increased miR-188-3p in Ovarian Granulosa Cells of Patients with Polycystic Ovary Syndrome. Comput. Math. Methods Med. 2021, 2021, 5587412. [Google Scholar] [CrossRef]
- Liu, L.; Fang, Y. The Role of Ovarian Granulosa Cells Related-ncRNAs in Ovarian Dysfunctions: Mechanism Research and Clinical Exploration. Reprod. Sci. 2025, 32, 2098–2120. [Google Scholar] [CrossRef]
- Kumar, M.A.; Baba, S.K.; Sadida, H.Q.; Marzooqi, S.A.; Jerobin, J.; Altemani, F.H.; Algehainy, N.; Alanazi, M.A.; Abou-Samra, A.-B.; Kumar, R.; et al. Extracellular vesicles as tools and targets in therapy for diseases. Signal Transduct. Target. Ther. 2024, 9, 27. [Google Scholar] [CrossRef] [PubMed]
- Sun, L.; Ke, M.; Yin, M.; Zeng, Y.; Ji, Y.; Hu, Y.; Fu, S.; Zhang, C. Extracellular vesicle-encapsulated microRNA-296-3p from cancer-associated fibroblasts promotes ovarian cancer development through regulation of the PTEN/AKT and SOCS6/STAT3 pathways. Cancer Sci. 2024, 115, 155–169. [Google Scholar] [CrossRef] [PubMed]
- Hoxhaj, G.; Manning, B.D. The PI3K–AKT network at the interface of oncogenic signalling and cancer metabolism. Nat. Rev. Cancer 2020, 20, 74–88. [Google Scholar] [CrossRef] [PubMed]
- White, M.F.; Kahn, C.R. Insulin action at a molecular level—100 years of progress. Mol. Metab. 2021, 52, 101304. [Google Scholar] [CrossRef]
- Nuyttens, L.; Vandewalle, J.; Libert, C. Sepsis-induced changes in pyruvate metabolism: Insights and potential therapeutic approaches. EMBO Mol. Med. 2024, 16, 2678–2698. [Google Scholar] [CrossRef]
- Agostini, F.; Bisaglia, M.; Plotegher, N. Linking ROS Levels to Autophagy: The Key Role of AMPK. Antioxidants 2023, 12, 1406. [Google Scholar] [CrossRef]
- Shreya, S.; Grosset, C.F.; Jain, B.P. Unfolded Protein Response Signaling in Liver Disorders: A 2023 Updated Review. Int. J. Mol. Sci. 2023, 24, 14066. [Google Scholar] [CrossRef]
- He, L.; Li, Y.; Zeng, N.; Stiles, B.L. Regulation of basal expression of hepatic PEPCK and G6Pase by AKT2. Biochem. J. 2020, 477, 1021–1031. [Google Scholar] [CrossRef]
- Xu, Y.; Hernández-Ledezma, J.J.; Hutchison, S.M.; Bogan, R.L. The liver X receptors and sterol regulatory element binding proteins alter progesterone secretion and are regulated by human chorionic gonadotropin in human luteinized granulosa cells. Mol. Cell. Endocrinol. 2018, 473, 124–135. [Google Scholar] [CrossRef]
- Wu, X.; Fan, W.; Fang, R.; Wu, G. Regulation of microRNA-155 in endothelial inflammation by targeting nuclear factor (NF)-κB P65: MICRORNA-155 TARGETNUCLEARFACTOR(NF)-κB P65. J. Cell. Biochem. 2014, 115, 1928–1936. [Google Scholar] [CrossRef]
- Cattaneo, M.G.; Cappellini, E.; Benfante, R.; Ragni, M.; Omodeo-Salè, F.; Nisoli, E.; Borgese, N.; Vicentini, L.M. Chronic Deficiency of Nitric Oxide Affects Hypoxia Inducible Factor-1α (HIF-1α) Stability and Migration in Human Endothelial Cells. PLoS ONE 2011, 6, e29680. [Google Scholar] [CrossRef]
- Dash, S.P.; Gupta, S.; Sarangi, P.P. Monocytes and macrophages: Origin, homing, differentiation, and functionality during inflammation. Heliyon 2024, 10, e29686. [Google Scholar] [CrossRef] [PubMed]
- Martoriati, A.; Gérard, N. Interleukin-1 (IL-1) system gene expression in granulosa cells: Kinetics during terminal preovulatory follicle maturation in the mare. Reprod. Biol. Endocrinol. 2003, 1, 42. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Jiang, W.; Xu, Y.; Chen, J.-C.; Lee, Y.-H.; Hu, Y.; Liu, C.-H.; Chen, E.; Tang, H.; Zhang, H.; Wu, D. Role of extracellular vesicles in nonalcoholic fatty liver disease. Front. Endocrinol. 2023, 14, 1196831. [Google Scholar] [CrossRef] [PubMed]
- Mitchelson, K.R. Roles of the canonical myomiRs miR-1, -133 and -206 in cell development and disease. World J. Biol. Chem. 2015, 6, 162. [Google Scholar] [CrossRef]
- Diez-Roda, P.; Perez-Navarro, E.; Garcia-Martin, R. Adipose Tissue as a Major Launch Spot for Circulating Extracellular Vesicle-Carried MicroRNAs Coordinating Tissue and Systemic Metabolism. Int. J. Mol. Sci. 2024, 25, 13488. [Google Scholar] [CrossRef]
- Jin, X.; Qiu, T.; Li, L.; Yu, R.; Chen, X.; Li, C.; Proud, C.G.; Jiang, T. Pathophysiology of obesity and its associated diseases. Acta Pharm. Sin. B 2023, 13, 2403–2424. [Google Scholar] [CrossRef]
- Guan, Y.; Drake, J.C.; Yan, Z. Exercise-Induced Mitophagy in Skeletal Muscle and Heart. Exerc. Sport Sci. Rev. 2019, 47, 151–156. [Google Scholar] [CrossRef]
- Basseri, S.; Austin, R.C. Endoplasmic Reticulum Stress and Lipid Metabolism: Mechanisms and Therapeutic Potential. Biochem. Res. Int. 2012, 2012, 841362. [Google Scholar] [CrossRef]
- Deng, H.; Qiu, W.; Zhang, Y.; Hua, J. Extracellular vesicles in atherosclerosis cardiovascular disease: Emerging roles and mechanisms. Front. Cardiovasc. Med. 2025, 12, 1611557. [Google Scholar] [CrossRef] [PubMed]
- Yang, L.; Liu, T.; Liao, Y.; Ren, Y.; Zheng, Z.; Zhang, M.; Yu, Y.; Liu, C.; Wang, C.; Chen, T.; et al. Potential therapeutic application and mechanism of gut microbiota-derived extracellular vesicles in polycystic ovary syndrome. Biomed. Pharmacother. 2024, 180, 117504. [Google Scholar] [CrossRef] [PubMed]
- Zhao, Q.; Lin, X.; Wang, G. Targeting SREBP-1-Mediated Lipogenesis as Potential Strategies for Cancer. Front. Oncol. 2022, 12, 952371. [Google Scholar] [CrossRef] [PubMed]
- Liu, K.; Tong, H.; Li, T.; Wang, X.; Chen, Y. Research progress in molecular biology related quantitative methods of MicroRNA. Am. J. Transl. Res. 2020, 12, 3198–3211. [Google Scholar]
- Inceu, A.-I.; Neag, M.-A.; Craciun, A.-E.; Buzoianu, A.-D. Gut Molecules in Cardiometabolic Diseases: The Mechanisms behind the Story. Int. J. Mol. Sci. 2023, 24, 3385. [Google Scholar] [CrossRef]
- Payandeh, Z.; Tangruksa, B.; Synnergren, J.; Heydarkhan-Hagvall, S.; Nordin, J.Z.; Andaloussi, S.E.; Borén, J.; Wiseman, J.; Bohlooly-Y, M.; Lindfors, L.; et al. Extracellular vesicles transport RNA between cells: Unraveling their dual role in diagnostics and therapeutics. Mol. Asp. Med. 2024, 99, 101302. [Google Scholar] [CrossRef]
- Li, Y.; Tan, J.; Miao, Y.; Zhang, Q. MicroRNA in extracellular vesicles regulates inflammation through macrophages under hypoxia. Cell Death Discov. 2021, 7, 285. [Google Scholar] [CrossRef]
- Willeit, P.; Skroblin, P.; Moschen, A.R.; Yin, X.; Kaudewitz, D.; Zampetaki, A.; Barwari, T.; Whitehead, M.; Ramírez, C.M.; Goedeke, L.; et al. Circulating MicroRNA-122 Is Associated With the Risk of New-Onset Metabolic Syndrome and Type 2 Diabetes. Diabetes 2017, 66, 347–357. [Google Scholar] [CrossRef]
- Mori, M.A.; Ludwig, R.G.; Garcia-Martin, R.; Brandão, B.B.; Kahn, C.R. Extracellular miRNAs: From Biomarkers to Mediators of Physiology and Disease. Cell Metab. 2019, 30, 656–673. [Google Scholar] [CrossRef]
- Al-Dossary, A.A.; Tawfik, E.A.; Isichei, A.C.; Sun, X.; Li, J.; Alshehri, A.A.; Alomari, M.; Almughem, F.A.; Aldossary, A.M.; Sabit, H.; et al. Engineered EV-Mimetic Nanoparticles as Therapeutic Delivery Vehicles for High-Grade Serous Ovarian Cancer. Cancers 2021, 13, 3075. [Google Scholar] [CrossRef]
- Liu, Q.; Li, D.; Pan, X.; Liang, Y. Targeted therapy using engineered extracellular vesicles: Principles and strategies for membrane modification. J. Nanobiotechnol. 2023, 21, 334. [Google Scholar] [CrossRef]
- Zelada, D.; Saldivia, N.; Samano, S.; George, D.; Chaudhari, K.; Nguyen, D.; Simchuk, D.; Van Breemen, R.; Givogri, M. Amelioration of Inflammation and Metabolic Blockage in GALC Deficient Mice After Enzyme Replacement Therapy via Extracellular Vesicles. Int. J. Nanomed. 2025, 20, 9093–9110. [Google Scholar] [CrossRef]
- Zeber-Lubecka, N.; Ciebiera, M.; Hennig, E.E. Polycystic Ovary Syndrome and Oxidative Stress—From Bench to Bedside. Int. J. Mol. Sci. 2023, 24, 14126. [Google Scholar] [CrossRef] [PubMed]
- Karar, J.; Maity, A. PI3K/AKT/mTOR Pathway in Angiogenesis. Front. Mol. Neurosci. 2011, 4, 51. [Google Scholar] [CrossRef] [PubMed]
- Miron, R.J.; Estrin, N.E.; Sculean, A.; Zhang, Y. Understanding exosomes: Part 2—Emerging leaders in regenerative medicine. Periodontology 2000 2024, 94, 257–414. [Google Scholar] [CrossRef] [PubMed]
- Kushawaha, B.; Rem, T.T.; Pelosi, E. Harnessing Microbiome, Bacterial Extracellular Vesicle, and Artificial Intelligence for Polycystic Ovary Syndrome Diagnosis and Management. Biomolecules 2025, 15, 834. [Google Scholar] [CrossRef]
- Kheirollahi, A.; Hamidi, H.; Vatannejad, A. Distribution of polycystic ovary syndrome (PCOS) phenotypes in Iranian women: A cross-sectional study. BMC Res. Notes 2025, 18, 215. [Google Scholar] [CrossRef]
- Wyse, B.A.; Salehi, R.; Russell, S.J.; Sangaralingam, M.; Jahangiri, S.; Tsang, B.K.; Librach, C.L. Obesity and PCOS radically alters the snRNA composition of follicular fluid extracellular vesicles. Front. Endocrinol. 2023, 14, 1205385. [Google Scholar] [CrossRef]
- Nigi, L.; Grieco, G.E.; Ventriglia, G.; Brusco, N.; Mancarella, F.; Formichi, C.; Dotta, F.; Sebastiani, G. MicroRNAs as Regulators of Insulin Signaling: Research Updates and Potential Therapeutic Perspectives in Type 2 Diabetes. Int. J. Mol. Sci. 2018, 19, 3705. [Google Scholar] [CrossRef]
- Velthut-Meikas, A.; Simm, J.; Tuuri, T.; Tapanainen, J.S.; Metsis, M.; Salumets, A. Research Resource: Small RNA-seq of Human Granulosa Cells Reveals miRNAs in FSHR and Aromatase Genes. Mol. Endocrinol. 2013, 27, 1128–1141. [Google Scholar] [CrossRef]
- Liu, B.; Lash, G.; Wei, F.; Pantham, P. (Eds.) Advances in Research on Aging in Female Infertility and Pathologic Pregnancy; Frontiers Research Topics; Frontiers Media SA: Lausanne, Switzerland, 2024; ISBN 978-2-8325-4798-4. Available online: https://www.frontiersin.org/research-topics/49141/advances-in-research-on-aging-in-female-infertility-and-pathologic-pregnancy/magazine (accessed on 15 August 2025).
- Von Lersner, A.K.; Fernandes, F.C.L.; Ozawa, P.M.M.; Lima, S.M.; Vagner, T.; Sung, B.H.; Wehbe, M.; Franze, K.; Wilson, J.T.; Irish, J.M.; et al. EV Fingerprinting: Resolving extracellular vesicle heterogeneity using multi-parametric flow cytometry. bioRxiv 2022. [Google Scholar] [CrossRef]
- Monguió-Tortajada, M.; Gálvez-Montón, C.; Bayes-Genis, A.; Roura, S.; Borràs, F.E. Extracellular vesicle isolation methods: Rising impact of size-exclusion chromatography. Cell. Mol. Life Sci. 2019, 76, 2369–2382. [Google Scholar] [CrossRef] [PubMed]
- Maas, S.L.N.; De Vrij, J.; Broekman, M.L.D. Quantification and Size-profiling of Extracellular Vesicles Using Tunable Resistive Pulse Sensing. J. Vis. Exp. 2014, 92, e51623. [Google Scholar] [CrossRef]
- Wang, R.; Hong, J.; Cao, Y.; Shi, J.; Gu, W.; Ning, G.; Zhang, Y.; Wang, W. Elevated circulating microRNA-122 is associated with obesity and insulin resistance in young adults. Eur. J. Endocrinol. 2015, 172, 291–300. [Google Scholar] [CrossRef]
- Al-Jipouri, A.; Eritja, À.; Bozic, M. Unraveling the Multifaceted Roles of Extracellular Vesicles: Insights into Biology, Pharmacology, and Pharmaceutical Applications for Drug Delivery. Int. J. Mol. Sci. 2023, 25, 485. [Google Scholar] [CrossRef]
- Yuan, H.; Xu, R.; Li, S.; Zheng, M.; Tong, Q.; Xiang, M.; Zhang, Y. The Malignant Transformation of Viral Hepatitis to Hepatocellular Carcinoma: Mechanisms and Interventions. MedComm 2025, 6, e70121. [Google Scholar] [CrossRef]
- Saadh, M.J.; Allela, O.Q.B.; Al-Hussainy, A.F.; Baldaniya, L.; Rekha, M.M.; Nathiya, D.; Kaur, P.; Aminov, Z.; Sameer, H.N.; Hameed, H.G.; et al. Exosomal non-coding RNAs: Gatekeepers of inflammation in autoimmune disease. J. Inflamm. Lond. Engl. 2025, 22, 18. [Google Scholar] [CrossRef]
- Orisaka, M.; Mizutani, T.; Miyazaki, Y.; Shirafuji, A.; Tamamura, C.; Fujita, M.; Tsuyoshi, H.; Yoshida, Y. Chronic low-grade inflammation and ovarian dysfunction in women with polycystic ovarian syndrome, endometriosis, and aging. Front. Endocrinol. 2023, 14, 1324429. [Google Scholar] [CrossRef]
- Di Rocco, G.; Baldari, S.; Toietta, G. Towards Therapeutic Delivery of Extracellular Vesicles: Strategies for In Vivo Tracking and Biodistribution Analysis. Stem Cells Int. 2016, 2016, 5029619. [Google Scholar] [CrossRef]
- Liao, Z.; Liu, C.; Wang, L.; Sui, C.; Zhang, H. Therapeutic Role of Mesenchymal Stem Cell-Derived Extracellular Vesicles in Female Reproductive Diseases. Front. Endocrinol. 2021, 12, 665645. [Google Scholar] [CrossRef]
- Fiedler, S.D.; Christenson, L.K. Transcriptional Regulation of miRNA-212/132 Expression in Murine Periovulatory Granulosa Cells. Biol. Reprod. 2008, 78, 140. [Google Scholar] [CrossRef]
- Wen, H.; Deng, H.; Li, B.; Chen, J.; Zhu, J.; Zhang, X.; Yoshida, S.; Zhou, Y. Mitochondrial diseases: From molecular mechanisms to therapeutic advances. Signal Transduct. Target. Ther. 2025, 10, 9. [Google Scholar] [CrossRef]
- Xue, Y.; Zheng, H.; Xiong, Y.; Li, K. Extracellular vesicles affecting embryo development in vitro: A potential culture medium supplement. Front. Pharmacol. 2024, 15, 1366992. [Google Scholar] [CrossRef]
- Guan, G.; Chen, Y.; Dong, Y. Unraveling the AMPK-SIRT1-FOXO Pathway: The In-Depth Analysis and Breakthrough Prospects of Oxidative Stress-Induced Diseases. Antioxidants 2025, 14, 70. [Google Scholar] [CrossRef]
- Bajpai, J. Vascular endothelial growth factor as an angiogenic swich in ovarian carcinoma. South Asian J. Cancer 2013, 2, 136. [Google Scholar] [CrossRef]
- Mestdagh, P.; Boström, A.-K.; Impens, F.; Fredlund, E.; Van Peer, G.; De Antonellis, P.; Von Stedingk, K.; Ghesquière, B.; Schulte, S.; Dews, M.; et al. The miR-17-92 MicroRNA Cluster Regulates Multiple Components of the TGF-β Pathway in Neuroblastoma. Mol. Cell 2010, 40, 762–773. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; Luo, S.; Zhang, J.; Yuan, Y.; Jiang, W.; Zhu, H.; Ding, X.; Zhan, L.; Wu, H.; Xie, Y.; et al. lncRNA H19 Alleviated Myocardial I/RI via Suppressing miR-877-3p/Bcl-2-Mediated Mitochondrial Apoptosis. Mol. Ther.-Nucleic Acids 2019, 17, 297–309. [Google Scholar] [CrossRef]
- Davis, E.H.; Jones, C.; Coward, K. Rethinking the application of nanoparticles in women’s reproductive health and assisted reproduction. Nanomedicine 2024, 19, 1231–1251. [Google Scholar] [CrossRef] [PubMed]
- Berumen Sánchez, G.; Bunn, K.E.; Pua, H.H.; Rafat, M. Extracellular vesicles: Mediators of intercellular communication in tissue injury and disease. Cell Commun. Signal. 2021, 19, 104. [Google Scholar] [CrossRef]
- Bond, S.T.; Calkin, A.C.; Drew, B.G. Adipose-Derived Extracellular Vesicles: Systemic Messengers and Metabolic Regulators in Health and Disease. Front. Physiol. 2022, 13, 837001. [Google Scholar] [CrossRef]
- Park, H.-S.; Cetin, E.; Siblini, H.; Seok, J.; Alkelani, H.; Alkhrait, S.; Liakath Ali, F.; Mousaei Ghasroldasht, M.; Beckman, A.; Al-Hendy, A. Therapeutic Potential of Mesenchymal Stem Cell-Derived Extracellular Vesicles to Treat PCOS. Int. J. Mol. Sci. 2023, 24, 11151. [Google Scholar] [CrossRef]
- Babuta, M.; Szabo, G. Extracellular vesicles in inflammation: Focus on the microRNA cargo of EVs in modulation of liver diseases. J. Leukoc. Biol. 2021, 111, 75–92. [Google Scholar] [CrossRef]
- Esteves, J.V.; Enguita, F.J.; Machado, U.F. MicroRNAs-Mediated Regulation of Skeletal Muscle GLUT4 Expression and Translocation in Insulin Resistance. J. Diabetes Res. 2017, 2017, 7267910. [Google Scholar] [CrossRef] [PubMed]
- Latif, S.; Saridogan, E. Endometriosis, Oocyte, and Embryo Quality. J. Clin. Med. 2023, 12, 4186. [Google Scholar] [CrossRef] [PubMed]
- Yu, L.; Wang, C.; Liu, M.; Xia, L.; Liu, T.; Che, Q.; Cai, W.; Dong, X.; Pan, B.; Wang, B.; et al. Follicular fluid-derived exosomal LncRNA LIPE-AS1 modulates steroid metabolism and survival of granulosa cells leading to oocyte maturation arrest in polycystic ovary syndrome. J. Assist. Reprod. Genet. 2024, 41, 1387–1401. [Google Scholar] [CrossRef] [PubMed]
- Mafi, A.; Mannani, R.; Khalilollah, S.; Hedayati, N.; Salami, R.; Rezaee, M.; Dehmordi, R.M.; Ghorbanhosseini, S.S.; Alimohammadi, M.; Akhavan-Sigari, R. The Significant Role of microRNAs in Gliomas Angiogenesis: A Particular Focus on Molecular Mechanisms and Opportunities for Clinical Application. Cell. Mol. Neurobiol. 2023, 43, 3277–3299. [Google Scholar] [CrossRef]
- Sun, Y.; Sun, F.; Xu, W.; Qian, H. Engineered Extracellular Vesicles as a Targeted Delivery Platform for Precision Therapy. Tissue Eng. Regen. Med. 2023, 20, 157–175. [Google Scholar] [CrossRef]
- Maas, S.L.N.; Breakefield, X.O.; Weaver, A.M. Extracellular Vesicles: Unique Intercellular Delivery Vehicles. Trends Cell Biol. 2017, 27, 172–188. [Google Scholar] [CrossRef]
- Zhang, H.; Wang, Y.; Zhang, J.; Potter, B.J.; Sowers, J.R.; Zhang, C. Bariatric Surgery Reduces Visceral Adipose Inflammation and Improves Endothelial Function in Type 2 Diabetic Mice. Arterioscler. Thromb. Vasc. Biol. 2011, 31, 2063–2069. [Google Scholar] [CrossRef]
- Castaño, C.; Meza-Ramos, A.; Batlle, M.; Guasch, E.; Novials, A.; Párrizas, M. Treatment with EV-miRNAs Alleviates Obesity-Associated Metabolic Dysfunction in Mice. Int. J. Mol. Sci. 2022, 23, 14920. [Google Scholar] [CrossRef]
- Nunez Lopez, Y.O.; Casu, A.; Kovacova, Z.; Petrilli, A.M.; Sideleva, O.; Tharp, W.G.; Pratley, R.E. Coordinated regulation of gene expression and microRNA changes in adipose tissue and circulating extracellular vesicles in response to pioglitazone treatment in humans with type 2 diabetes. Front. Endocrinol. 2022, 13, 955593. [Google Scholar] [CrossRef]
- Le, T.K.C.; Dao, X.D.; Nguyen, D.V.; Luu, D.H.; Bui, T.M.H.; Le, T.H.; Nguyen, H.T.; Le, T.N.; Hosaka, T.; Nguyen, T.T.T. Insulin signaling and its application. Front. Endocrinol. 2023, 14, 1226655. [Google Scholar] [CrossRef]
- Fang, Y.-Q.; Zhang, H.-K.; Wei, Q.-Q.; Li, Y.-H. Brown adipose tissue-derived exosomes improve polycystic ovary syndrome in mice via STAT3/GPX4 signaling pathway. FASEB J. 2024, 38, e70062. [Google Scholar] [CrossRef] [PubMed]
- Voros, C.; Athanasiou, D.; Mavrogianni, D.; Varthaliti, A.; Bananis, K.; Athanasiou, A.; Athanasiou, A.; Papadimas, G.; Gkirgkinoudis, A.; Papapanagiotou, I.; et al. Exosomal Communication Between Cumulus–Oocyte Complexes and Granulosa Cells: A New Molecular Axis for Oocyte Competence in Human-Assisted Reproduction. Int. J. Mol. Sci. 2025, 26, 5363. [Google Scholar] [CrossRef] [PubMed]
- Revenfeld, A.L.S.; Bæk, R.; Nielsen, M.H.; Stensballe, A.; Varming, K.; Jørgensen, M. Diagnostic and Prognostic Potential of Extracellular Vesicles in Peripheral Blood. Clin. Ther. 2014, 36, 830–846. [Google Scholar] [CrossRef] [PubMed]
- Sepúlveda, F.; Mayorga-Lobos, C.; Guzmán, K.; Durán-Jara, E.; Lobos-González, L. EV-miRNA-Mediated Intercellular Communication in the Breast Tumor Microenvironment. Int. J. Mol. Sci. 2023, 24, 13085. [Google Scholar] [CrossRef]
- Muraoka, A.; Yokoi, A.; Yoshida, K.; Kitagawa, M.; Asano-Inami, E.; Murakami, M.; Bayasula; Miyake, N.; Nakanishi, N.; Nakamura, T.; et al. Small extracellular vesicles in follicular fluids for predicting reproductive outcomes in assisted reproductive technology. Commun. Med. 2024, 4, 33. [Google Scholar] [CrossRef]
- Cui, X.; Lei, X.; Huang, T.; Mao, X.; Shen, Z.; Yang, X.; Peng, W.; Yu, J.; Zhang, S.; Huo, P. Follicular fluid-derived extracellular vesicles miR-34a-5p regulates granulosa cell glycolysis in polycystic ovary syndrome by targeting LDHA. J. Ovarian Res. 2024, 17, 223. [Google Scholar] [CrossRef]
- Patel, V.A.; Massenburg, D.; Vujicic, S.; Feng, L.; Tang, M.; Litbarg, N.; Antoni, A.; Rauch, J.; Lieberthal, W.; Levine, J.S. Apoptotic Cells Activate AMP-activated Protein Kinase (AMPK) and Inhibit Epithelial Cell Growth without Change in Intracellular Energy Stores. J. Biol. Chem. 2015, 290, 22352–22369. [Google Scholar] [CrossRef]
- Jiang, M.; Zhang, K.; Zhang, Z.; Zeng, X.; Huang, Z.; Qin, P.; Xie, Z.; Cai, X.; Ashrafizadeh, M.; Tian, Y.; et al. PI3K/AKT/mTOR Axis in Cancer: From Pathogenesis to Treatment. MedComm 2025, 6, e70295. [Google Scholar] [CrossRef]
- Moschos, S.; Chan, J.L.; Mantzoros, C.S. Leptin and reproduction: A review. Fertil. Steril. 2002, 77, 433–444. [Google Scholar] [CrossRef]
- Esfandyari, S.; Elkafas, H.; Chugh, R.M.; Park, H.; Navarro, A.; Al-Hendy, A. Exosomes as Biomarkers for Female Reproductive Diseases Diagnosis and Therapy. Int. J. Mol. Sci. 2021, 22, 2165. [Google Scholar] [CrossRef]
- Fox, C.W.; Zhang, L.; Sohni, A.; Doblado, M.; Wilkinson, M.F.; Chang, R.J.; Duleba, A.J. Inflammatory Stimuli Trigger Increased Androgen Production and Shifts in Gene Expression in Theca-Interstitial Cells. Endocrinology 2019, 160, 2946–2958. [Google Scholar] [CrossRef]
- Kumari, M.; Kumar, S.; Das, J. Adipokine Dysregulation in Obese and Non-Obese Polycystic Ovary Syndrome (PCOS) Patients: Association with Visceral Adiposity Index and Metabolic Risk. Cureus 2025, 17, e87755. [Google Scholar] [CrossRef]
| Source Tissue | EV Cargo | Target Tissue(s) | Molecular Pathways Activated | Pathophysiological Outcome |
|---|---|---|---|---|
| Ovary (Granulosa/Theca Cells) | miR-103, miR-125b, miR-21, HMGB1, oxidized phospholipids, lncRNAs, circRNAs | Adipose tissue, skeletal muscle, liver, endothelium, immune system | PI3K–AKT–mTOR inhibition, PPARγ suppression, NF-κB activation | Insulin resistance, lipolysis, FFA release, systemic inflammation |
| Adipose Tissue (Visceral) | miR-27a, miR-34a, ceramides, inflammatory lipids | Ovary (granulosa cells, theca cells) | Aromatase inhibition, mitochondrial dysfunction (MFN1/2↓, OPA1↓) | Reduced estrogen synthesis, hyperandrogenism |
| Skeletal Muscle | miR-29a, miR-34a, PP2A subunits, myomiRs (miR-1, miR-206) | Ovary (cumulus–oocyte complex), systemic circulation | AMPK–PGC1α suppression, ULK1 inhibition, ROS accumulation | Mitochondrial dysfunction in oocytes, impaired ATP production |
| Liver (Hepatocytes) | miR-122, miR-192, PTP1B, apolipoprotein fragments | Ovary, adipose tissue, systemic metabolism | PERK–eIF2α–ATF4 activation, LXR–SREBP1c lipogenesis | Increased gluconeogenesis, dyslipidemia, androgen excess |
| Endothelium | miR-155, miR-21, ICAM-1, VCAM-1 mRNA | Ovary (stroma, vasculature) | NF-κB–p65 activation, eNOS downregulation, endothelin-1 upregulation | Reduced ovarian perfusion, aberrant angiogenesis |
| Immune Cells (Macrophages/Monocytes) | S100A8/A9, oxidized cardiolipin, pro-inflammatory cytokine mRNAs | Ovary (granulosa cells), liver, skeletal muscle | NLRP3 inflammasome activation, MAPK p38/JNK signaling | Cytokine-induced androgen production, systemic insulin resistance |
| Category | EV Source | Cargo/Marker | Primary Target Tissue | Pathway Readout | Intended Outcome | Evidence Level | Translational Notes |
|---|---|---|---|---|---|---|---|
| Diagnostic | Plasma (circulating) | miR-122, miR-27b, miR-21, miR-103, miR-222, miR-320 | Systemic (biomarker) | SREBP1/FASN; PI3K–AKT–mTOR; MAPK/ERK | Early detection of metabolic–reproductive imbalance | Clinical observational (pilot–moderate) | ddPCR/NGS panels; pre-analytical standardization required |
| Diagnostic | Serum (exosomes) | Proteins: p-AKT, SOCS3, adiponectin receptor fragments | Systemic (biomarker) | Insulin signaling integrity; IR severity | Risk stratification for IR-dominant phenotype | Preclinical + small clinical | Immunoassays; multiplex proteomics feasible |
| Diagnostic | Follicular fluid | miR-21, miR-93, miR-146a, miR-320; lncRNA H19; EV tetraspanins (CD63) | Ovary (local biomarker) | FSHR–cAMP–PKA; NF-κB; mitochondrial biogenesis | Oocyte competence and ART outcome prediction | Preclinical + IVF cohort correlative | In-theatre sampling; integrates with FF metabolomics |
| Diagnostic | Urine (non-invasive) | miR-21, miR-125b (renal-stable) | Systemic (biomarker) | Inflammation/HA surrogate | Screening adjunct for obese PCOS | Exploratory | Standardized isolation (SEC/TFF) advised |
| Therapeutic (Engineered EV) | Hepatocyte-derived EV | anti–miR-122 (antagomir) | Liver → Ovary (indirect) | SREBP1c; VLDL output; systemic insulin load | Reduce hepatic lipogenesis; alleviate ovarian HA | Preclinical (rodent) | Assess off-target lipid handling; biodistribution mapping |
| Therapeutic (Engineered EV) | Adipocyte-derived EV | miR-223 mimic | Ovary (TC/GC) | NF-κB dampening; IRS/PI3K balance | Lower ovarian inflammation; improve insulin sensitivity | Preclinical (in vitro/in vivo) | FSHR/LHR ligand decoration to enhance targeting |
| Therapeutic (Engineered EV) | Granulosa cell-derived EV | let-7 family mimics | Theca cells | IRS2–PI3K restraint; steroidogenesis normalization | Reduce androgen biosynthesis; restore E2/T balance | Preclinical (cellular) | Local intra-ovarian delivery during ART |
| Therapeutic (Engineered EV) | Generic producer line (HEK/MSC) | miR-320 mimic | Ovary (GC/CC) | MAPK–ERK–c-Fos modulation; proliferation/apoptosis | Enhance GC survival; support folliculogenesis | Preclinical (rodent follicles) | Potency release: qPCR + functional bioassay |
| Therapeutic (MSC-EV) | Mesenchymal stromal cells | SIRT1 protein; catalase/SOD2; VEGF-A/ANGPT1 | Ovary (stroma/GC) | AMPK–PGC1α–NRF1; PI3K–AKT–eNOS | Mitochondrial rescue; anti-OS; pro-angiogenesis | Preclinical (rodent PCOS models) | GMP sourcing; immunogenicity and release criteria |
| Therapeutic (Inflammation) | Engineered EV | NLRP3 inhibitor (small molecule) or siNLRP3 | Ovary (GC/immune) | Inflammasome inhibition; IL-1β/IL-18 reduction | Preserve follicular viability; reduce pyroptosis | Preclinical (in vivo) | Pyrogen testing; cytokine panel pharmacodynamics |
| Therapeutic (Metabolic) | Engineered EV | AMPK activator (e.g., AICAR derivative) | Ovary/Adipose/Skeletal muscle | AMPK–ULK1; GLUT4 trafficking; β-oxidation | Systemic insulin sensitization; reduce HA indirectly | Preclinical (multi-organ) | Targeting by tissue-specific peptides |
| System Modulation | Host (all tissues) | nSMase2 inhibition (e.g., GW4869) | Systemic (EV biogenesis) | Ceramide-dependent exosome release | Lower pathogenic EV burden | Preclinical | Monitor physiological EV functions; dosing windows |
| System Modulation | Host (adipose) | Ceramide synthase blockade; myriocin | Adipose → Ovary (indirect) | Sphingolipid remodeling; TLR4 tone | Reduce inflammatory EV cargo/uptake | Preclinical | Lipidomics-guided response monitoring |
| System Modulation | Host circulation | Decoy nanoparticles/EV traps | Systemic (sink) | Competitive binding to integrins/tetraspanins | Sequester pathogenic EV before uptake | Exploratory | Biodistribution and clearance profiling needed |
| Companion Dx | Plasma/FF | Multi-omic EV panel (miRNA + protein + lipid) | Systemic (biomarker) | IR/HA/Inflammation classifiers | Phenotype stratification; therapy selection | Preclinical + pilot clinical | ML models; cross-lab standardization |
| EV Source | Key Biomarker/Cargo | Primary Molecular Targets | Involved Pathways | Clinical Relevance in Obese PCOS |
|---|---|---|---|---|
| Follicular fluid small EVs | miR-16-2-3p, miR-378a-3p, miR-483-5p | CCND1, CDK6, PGC-1α, VEGFA, IGF2-related transcripts | PI3K–AKT–mTOR, mitochondrial metabolism, steroidogenesis | Predicts clinical pregnancy; identifies high-quality oocytes in ART |
| Follicular fluid small EVs | miR-34a-5p | LDHA, AMPK–mTORC1 axis, cytochrome c, caspase-3 | Glycolysis, oxidative phosphorylation, apoptosis regulation | Restores GC metabolism and viability when inhibited; potential therapeutic target |
| Follicular fluid small EVs | miR-93-3p, miR-152-3p, miR-625-5p, miR-17-5p | PTEN, TSC1, spindle assembly checkpoint components | PI3K–AKT–mTOR, MAPK, autophagy, chromosome segregation | Biomarkers of meiotic error risk and embryo developmental competence |
| Follicular fluid EVs | miR-379, miR-200 family | TGF-β–SMAD, Wnt/β-catenin pathway regulators | Follicular cell proliferation, ECM remodeling, cumulus expansion | Potential indicators of GC dysfunction and impaired folliculogenesis |
| Follicular fluid EVs | DENND1A.V2 RNA, S100-A9 protein | CYP17A1 (via DENND1A.V2), TLR4 (via S100-A9) | Steroidogenesis, NF-κB-mediated inflammation | Markers of hyperandrogenism and chronic ovarian inflammation |
| Serum/circulating EVs | miR-320a | HPO axis regulators, insulin signaling mediators | HPO axis signaling, reproductive endocrine feedback | Correlates with pregnancy outcomes in IR-positive PCOS |
| Adipose tissue-derived EVs | Resistin, leptin, palmitate-enriched phospholipids | IRS1/2 phosphorylation sites, inflammatory lipid metabolism enzymes | Insulin signaling disruption, NF-κB activation, lipotoxic stress | Mediators of systemic metabolic dysfunction impacting ovarian response |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Voros, C.; Papadimas, G.; Mavrogianni, D.; Koulakmanidis, A.-M.; Athanasiou, D.; Bananis, K.; Athanasiou, A.; Athanasiou, A.; Papapanagiotou, I.; Vaitsis, D.; et al. Molecular Signatures of Obesity-Associated Infertility in Polycystic Ovary Syndrome: The Emerging Role of Exosomal microRNAs and Non-Coding RNAs. Genes 2025, 16, 1101. https://doi.org/10.3390/genes16091101
Voros C, Papadimas G, Mavrogianni D, Koulakmanidis A-M, Athanasiou D, Bananis K, Athanasiou A, Athanasiou A, Papapanagiotou I, Vaitsis D, et al. Molecular Signatures of Obesity-Associated Infertility in Polycystic Ovary Syndrome: The Emerging Role of Exosomal microRNAs and Non-Coding RNAs. Genes. 2025; 16(9):1101. https://doi.org/10.3390/genes16091101
Chicago/Turabian StyleVoros, Charalampos, Georgios Papadimas, Despoina Mavrogianni, Aristotelis-Marios Koulakmanidis, Diamantis Athanasiou, Kyriakos Bananis, Antonia Athanasiou, Aikaterini Athanasiou, Ioannis Papapanagiotou, Dimitrios Vaitsis, and et al. 2025. "Molecular Signatures of Obesity-Associated Infertility in Polycystic Ovary Syndrome: The Emerging Role of Exosomal microRNAs and Non-Coding RNAs" Genes 16, no. 9: 1101. https://doi.org/10.3390/genes16091101
APA StyleVoros, C., Papadimas, G., Mavrogianni, D., Koulakmanidis, A.-M., Athanasiou, D., Bananis, K., Athanasiou, A., Athanasiou, A., Papapanagiotou, I., Vaitsis, D., Tsimpoukelis, C., Daskalaki, M. A., Topalis, V., Theodora, M., Thomakos, N., Chatzinikolaou, F., Antsaklis, P., Loutradis, D., Menenakos, E., & Daskalakis, G. (2025). Molecular Signatures of Obesity-Associated Infertility in Polycystic Ovary Syndrome: The Emerging Role of Exosomal microRNAs and Non-Coding RNAs. Genes, 16(9), 1101. https://doi.org/10.3390/genes16091101

