Physical Performance and Sports Genetics: A Systematic Review of Candidate Gene Polymorphisms Involved in Team Sports
Abstract
1. Introduction
2. Materials and Methods
2.1. Experimental Approach to the Problem
2.2. Information Sources
2.3. Search Strategy
- PubMed/MEDLINE: (“genetic polymorphism” [Title/Abstract] or “gene variant” [Title/Abstract] or “genetic markers” [Title/Abstract] or “ACTN3” [Title/Abstract] or “ACE” [Title/Abstract] or “PPARGC1A” [Title/Abstract] or “NOS3” [Title/Abstract]) and (“team sports” [Title/Abstract] or “football” [Title/Abstract] or “rugby” [Title/Abstract] or “handball” [Title/Abstract] or “hockey” [Title/Abstract] or “basketball” [Title/Abstract] or “volleyball” [Title/Abstract]) and (“performance” [Title/Abstract] or “endurance” [Title/Abstract] or “strength” [Title/Abstract] or “power” [Title/Abstract] or “aerobic capacity” [Title/Abstract] or “injury risk” [Title/Abstract] or “sports performance prediction” [Title/Abstract]).
- Scopus: TITLE-ABS-KEY (“genetic polymorphism” or “gene variant” or “genetic markers” or “ACTN3” or “ACE” or “PPARGC1A” or “NOS3”) and TITLE-ABS-KEY (“team sports” or “football” or “rugby” or “handball” or “hockey” or “basketball” or “volleyball”) and TITLE-ABS-KEY (“performance” or “endurance” or “strength” OR “power” or “aerobic capacity” or “injury risk” or “sports performance prediction”).
- Web of Science: TS = (“genetic polymorphism” or “gene variant” OR “genetic markers” or “ACTN3” or “ACE” or “PPARGC1A” or “NOS3”) and TS = (“team sports” or “football” or “rugby” or “handball” or “hockey” or “basketball” or “volleyball”) AND TS = (“performance” or “endurance” or “strength” or “power” or “aerobic capacity” or “injury risk” or “sports performance prediction”).
- SPORTDiscus: AB (“genetic polymorphism” or “gene variant” or “genetic markers” or “ACTN3” or “ACE” or “PPARGC1A” or “NOS3”) and AB (“team sports” or “football” or “rugby” or “handball” or “hockey” or “basketball” or “volleyball”) and AB (“performance” or “endurance” or “strength” or “power” or “aerobic capacity” or “injury risk” or “sports performance prediction”).
- ProQuest Central and Google Scholar: the query was applied to the full text, as advanced filtering options were limited, using the same combination of terms.
2.4. Eligibility Criteria
2.4.1. Inclusion Criteria
- Original studies, published in English only;
- Studies investigating associations between genetic polymorphisms and physical performance in team sports disciplines such as football, handball, rugby, hockey, volleyball, and basketball;
- Studies containing detailed data on specific candidate genes (e.g., ACTN3, ACE, and AGT);
- Studies involving participants from athletic samples such as juniors, professional athletes, or elite-level competitors actively involved in organized competitions;
- Studies reporting data on at least one physiological performance parameter (e.g., strength, speed, endurance, recovery time, aerobic/anaerobic capacity, and injury risk).
- Full-text availability of the articles, either through open access or institutional access (e.g., via university subscriptions).
2.4.2. Exclusion Criteria
- Studies focused exclusively on individual sports or those addressing general topics in physical education without a clear link to performance in team sports;
- Non-scientific articles, such as personal opinions, editorials, letters to the editor, or short communications that do not provide rigorous and verifiable empirical data;
- Incomplete studies or those without full-text access, as well as studies that mentioned the genetic markers analyzed but provided data that was too limited or insufficient for comparative evaluation;
- Articles published in languages other than English.
2.5. Study Selection and Data Extraction Process
2.6. Assessment of Methodological Quality
2.7. Registration and Protocol
3. Results
3.1. Included Studies and General Characteristics
3.2. Candidate Genes and Association with Physical Performance
3.2.1. ACTN3 Gene
3.2.2. ACE Gene
3.2.3. Other Candidate Genes
- PPARA and HIF1A—involved in mitochondrial adaptation and lipid metabolism, relevant for mixed-type sports;
- BDKRB2 and IL6—linked to vasodilation, inflammation, and post-exercise recovery;
- FAAH—associated with the regulation of the endocannabinoid system and physiological stress;
- AGT—involved in blood pressure regulation, important for sustained effort;
- NOS3 (eNOS)—associated with endothelial function and blood flow regulation, with potential implications for aerobic performance and injury susceptibility;
- VEGF—plays a key role in angiogenesis, relevant to both aerobic capacity and tissue integrity;
- COL5A1—linked to collagen structure and predisposition to musculoskeletal injuries;
- MCT1—involved in lactate transport, impacting tolerance to high-intensity effort;
- HFE—regulates iron homeostasis, potentially affecting recovery and endurance;
- COMT—participates in neurocognitive processes and has been associated with concussion susceptibility;
- CD36—investigated for its role in susceptibility to non-contact tissue injuries;
- Polygenic approaches, such as the Total Genetic Score (TGS) or panels of multiple SNPs, have been employed to integrate the cumulative contribution of multiple genetic markers to athletic performance and injury risk prediction.
3.3. Candidate Genes and Their Distribution Across Team Sports
3.4. Genetic Predisposition to Injuries
3.5. General Synthesis of Genetic Associations
4. Discussion
4.1. Interpretation of Results in the Context of Team Sports
4.2. Consistencies and Discrepancies with the Scientific Literature
4.3. Implications for Sports Practice
4.4. Limitations
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Semenova, E.A.; Hall, E.C.; Ahmetov, I.I. Genes and athletic performance: The 2023 update. Genes 2023, 14, 1235. [Google Scholar] [CrossRef]
- Ahmetov, I.I.; Fedotovskaya, O.N. Sports genomics: Current state of knowledge and future directions. Cell. Mol. Exerc. Physiol. 2012, 1, 1. Available online: https://researchonline.ljmu.ac.uk/id/eprint/23069/ (accessed on 21 January 2025). [CrossRef]
- Eynon, N.; Ruiz, J.R.; Oliveira, J.; Duarte, J.A.; Birk, R.; Lucia, A. Genes and elite athletes: A roadmap for future research. J. Physiol. 2011, 589, 3063–3070. [Google Scholar] [CrossRef]
- Varillas-Delgado, D.; Del Coso, J.; Gutiérrez-Hellín, J.; Aguilar-Navarro, M.; Muñoz, A.; Maestro, A.; Morencos, E. Genetics and sports performance: The present and future in the identification of talent for sports based on DNA testing. Eur. J. Appl. Physiol. 2022, 122, 1811–1830. [Google Scholar] [CrossRef]
- Pickering, C.; Kiely, J. ACTN3: More than just a gene for speed. Front. Physiol. 2017, 8, 1080. [Google Scholar] [CrossRef]
- Eynon, N.; Banting, L.K.; Ruiz, J.R.; Cieszczyk, P.; Dyatlov, D.A.; Maciejewska-Karlowska, A.; Sawczuk, M.; Pushkarev, V.P.; Kulikov, L.M.; Pushkarev, E.D.; et al. ACTN3 R577X polymorphism and team-sport performance: A study involving three European cohorts. J. Sci. Med. Sport 2014, 17, 102–106. [Google Scholar] [CrossRef]
- Ahmetov, I.I.; Fedotovskaya, O.N. Current progress in sports genomics. Adv. Clin. Chem. 2015, 70, 247–314. [Google Scholar] [CrossRef]
- Lim, T.; Santiago, C.; Pareja-Galeano, H.; Iturriaga, T.; Sosa-Pedreschi, A.; Fuku, N.; Pérez-Ruiz, M.; Yvert, T. Genetic variations associated with non-contact muscle injuries in sport: A systematic review. Scand. J. Med. Sci. Sports 2021, 31, 2014–2032. [Google Scholar] [CrossRef]
- Sarmento, H.; Marques, A.; Field, A.; Martins, J.; Gouveia, É.R.; Mondagrón, L.; Ordoñez Saavedra, N.; Sanchez Rodriguez, D.A.; Clemente, F.M. Genetic influence on football performance: A systematic review. Hum. Mov. 2020, 21, 1–17. [Google Scholar] [CrossRef]
- Ryan-Moore, E.; Mavrommatis, Y.; Waldron, M. Systematic review and meta-analysis of candidate gene association studies with fracture risk in physically active participants. Front. Genet. 2020, 11, 551. [Google Scholar] [CrossRef]
- Murtagh, C.F.; Hall, E.C.; Brownlee, T.E.; Drust, B.; Williams, A.G.; Erskine, R.M. The genetic association with athlete status, physical performance, and injury risk in soccer. Int. J. Sports Med. 2023, 44, 941–960. [Google Scholar] [CrossRef]
- Roth, S.M. The current and future state of sports genomics. In Epigenetics of Exercise and Sports, Concepts, Methods, and Current Research; Translational, Epigenetics; Hackney, A.C., Ed.; Elsevier: Amsterdam, The Netherlands, 2021; Volume 25, pp. 217–233. [Google Scholar] [CrossRef]
- Ferreira, C.P.; Silvino, V.O.; Trevisano, R.G.; de Moura, R.C.; Almeida, S.S.; Pereira dos Santos, M.A. Influence of genetic polymorphism on sports talent performance versus non-athletes: A systematic review and meta-analysis. BMC Sports Sci. Med. Rehabil. 2024, 16, 223. [Google Scholar] [CrossRef]
- Ahmetov, I.I.; Egorova, E.S.; Gabdrakhmanova, L.J.; Fedotovskaya, O.N. Genes and athletic performance: An update. In Genetics and Sports, 2nd ed.; Encyclopedia of Sports, Medicine; Bouchard, C., Hoffman, E.P., Eds.; Wiley-Blackwell: Oxford, UK, 2016; Volume 61, pp. 41–54. [Google Scholar] [CrossRef]
- Orysiak, J.; Busko, K.; Michalski, R.; Mazur-Różycka, J.; Gajewski, J.; Malczewska-Lenczowska, J.; Sitkowski, D.; Pokrywka, A. Relationship between ACTN3 R577X polymorphism and maximal power output in elite Polish athletes. Medicina 2014, 50, 303–308. [Google Scholar] [CrossRef]
- Rethlefsen, M.L.; Kirtley, S.; Waffenschmidt, S.; Ayala, A.P.; Moher, D.; Page, M.J.; Koffel, J.B.; PRISMA-S Group. PRISMA-S: An extension to the PRISMA statement for reporting literature searches in systematic reviews. Syst. Rev. 2021, 10, 39. [Google Scholar] [CrossRef]
- Page, M.J.; McKenzie, J.E.; Bossuyt, P.M.; Boutron, I.; Hoffmann, T.C.; Mulrow, C.D.; Shamseer, L.; Tetzlaff, J.M.; Moher, D. Updating guidance for reporting systematic reviews: Development of the PRISMA 2020 statement. J. Clin. Epidemiol. 2021, 134, 103–112. [Google Scholar] [CrossRef]
- Page, M.J.; McKenzie, J.E.; Bossuyt, P.M.; Boutron, I.; Hoffmann, T.C.; Mulrow, C.D.; Shamseer, L.; Tetzlaff, J.M.; Akl, E.A.; Brennan, S.E.; et al. The PRISMA 2020 statement: An updated guideline for reporting systematic reviews. BMJ 2021, 372, n71. [Google Scholar] [CrossRef]
- Higgins, J.P.T.; Thomas, J.; Chandler, J.; Cumpston, M.; Li, T.; Page, M.J.; Welch, V.A. (Eds.) Cochrane Handbook for Systematic Reviews of Interventions; Version 6.3 (Updated February 2022); Cochrane: London, UK, 2023; Available online: www.training.cochrane.org/handbook (accessed on 2 August 2025).
- Orysiak, J.; Mazur-Różycka, J.; Busko, K.; Gajewski, J.; Szczepańska, B.; Malczewska-Lenczowska, J. Individual and combined influence of ACE and ACTN3 genes on muscle phenotypes in Polish athletes. J. Strength Cond. Res. 2018, 32, 2776–2782. [Google Scholar] [CrossRef]
- Pasqualetti, M.; Onori, M.E.; Canu, G.; Moretti, G.; Minucci, A.; Baroni, S.; Galvani, C. The relationship between ACE, ACTN3 and MCT1 genetic polymorphisms and athletic performance in elite rugby union players: A preliminary study. Genes 2022, 13, 969. [Google Scholar] [CrossRef]
- McAuley, A.B.T.; Hughes, D.C.; Tsaprouni, L.G.; Varley, I.; Suraci, B.; Roos, T.R.; Herbert, A.J.; Jackson, D.T.; Kelly, A.L. A systematic review of the genetic predisposition to injury in football. J. Sci. Sport Exerc. 2023, 5, 97–115. [Google Scholar] [CrossRef]
- Lima, G.; Almeida, S.S.; Silva, E.D.; Rosa, J.P.P.; de Souza, A.L.; Sierra, A.P.R.; Doretto, A.R.; Costa, C.A.; Correia, P.R.; Pesquero, J.B. Association between basketball playing position and ACTN3 R577X polymorphism in athletes of first division Brazilian Basketball League. Gene 2023, 863, 147302. [Google Scholar] [CrossRef]
- Silva, H.H.; Tavares, V.; Neto, B.V.; Cerqueira, F.; Medeiros, R.; Silva, M.R.G. FAAH rs324420 polymorphism: Biological pathways, impact on elite athletic performance and insights for sport medicine. Genes 2023, 14, 1946. [Google Scholar] [CrossRef] [PubMed]
- Altynova, N.; Tokmurzina, S.; Kassymbekova, A.; Kereyev, T.; Musralina, L.; Lebedeva, L.; Djansugurova, L. Genetic markers of sports performance, interpretation of individual genotypes in the athlete’s genetic passport. Int. J. Biol. Chem. 2024, 17, 53–73. [Google Scholar] [CrossRef]
- Doğan, C.S.; Akkoç, O.; Özağır, M.; Avci, S.; Baikoglu, S.B.; Kurudirek, M.İ.; Ulucan, K. Comparison of athletic performance of Turkish ice hockey players with ACE I/D (rs1799752), ACTN3 (rs1815739), PPARA (rs4253778) and HIF1A (rs11549465) polymorphisms. Cell. Mol. Biol. 2024, 70, 142–153. [Google Scholar] [CrossRef]
- Maestro, A.; Del Coso, J.; Aguilar-Navarro, M.; Gutiérrez-Hellín, J.; Morencos, E.; Revuelta, G.; Ruiz Casares, E.; Perucho, T.; Varillas-Delgado, D. Genetic profile in genes associated with muscle injuries and injury etiology in professional soccer players. Front. Genet. 2022, 13, 1035899. [Google Scholar] [CrossRef]
- Massidda, M.; Flore, L.; Cugia, P.; Piras, F.; Scorcu, M.; Kikuchi, N.; Cięszczyk, P.; Maciejewska-Skrendo, A.; Tocco, F.; Calò, C.M. Association between total genotype score and muscle injuries in top-level football players: A pilot study. Sports Med. Open 2024, 10, 22. [Google Scholar] [CrossRef]
- Vavak, M.; Cihova, I.; Reichwalderova, K.; Vegh, D.; Dolezajova, L.; Slaninova, M. Changes in vertical jump parameters after training unit in relation to ACE, ACTN3, PPARA, HIF1A, and AMPD1 gene polymorphisms in volleyball and basketball players. Genes 2025, 16, 250. [Google Scholar] [CrossRef]
- Silvino, V.O.; Almeida, S.S.; Ferreira, C.P.; Apaza, H.M.; de Sousa, B.L.S.C.; Dos Santos, L.C.; Pinheiro, M.S.; Beleense, G.S.; Ribeiro, S.L.G.; Veras-Silva, A.S.; et al. Association between ACTN3 (R577X), BDKRB2 (−9/+9) and AGT (M235T) polymorphisms and physical performance in Brazilian junior handball players. Sci. Rep. 2025, 15, 5792. [Google Scholar] [CrossRef]
- La Montagna, R.; Canonico, R.; Alfano, L.; Bucci, E.; Boffo, S.; Staiano, L.; Fulco, B.; D’Andrea, E.; De Nicola, A.; Maiorano, P.; et al. Genomic analysis reveals association of specific SNPs with athletic performance and susceptibility to injuries in professional soccer players. J. Cell. Physiol. 2019, 235, 2139–2148. [Google Scholar] [CrossRef]
- El Ouali, E.M.; Kartibou, J.; Del Coso, J.; El Makhzen, B.; Bouguenouch, L.; El Akbir, R.; El Haboussi, A.; Akhouayri, O.; Ibrahimi, A.; Mesfioui, A.; et al. Exploring the Association Between CD36 rs1761667 Polymorphism and Susceptibility to Non-Contact Tissue Injuries in Moroccan Elite Cyclists and Field Hockey Players: A Pilot Study. Genes 2025, 16, 651. [Google Scholar] [CrossRef] [PubMed]
- Silvino, V.O.; Almeida, S.S.; Apaza, H.M.; de Moura, R.C.; Costa, C.M.; Ferreira, C.P.; Beleense, G.S.; Ribeiro, S.L.G.; Dos Santos, M.A.P. Association between ACE (I/D) polymorphism and physical performance in Brazilian handballers. Int. J. Sports Med. 2025, 46, 296–301. [Google Scholar] [CrossRef]
- Antrobus, M.R.; Brazier, J.; Callus, P.; Herbert, A.J.; Stebbings, G.K.; Day, S.H.; Kilduff, L.P.; Bennett, M.A.; Erskine, R.M.; Raleigh, S.M.; et al. Concussion-Associated Gene Variant COMT rs4680 Is Associated With Elite Rugby Athlete Status. Clin. J. Sport Med. 2023, 1, e145–e151. [Google Scholar] [CrossRef] [PubMed]
- Rodas, G.; Osaba, L.; Arteta, D.; Pruna, R.; Fernández, D.; Lucia, A. Genomic Prediction of Tendinopathy Risk in Elite Team Sports. Int. J. Sports Physiol. Perform. 2019, 15, 489–495. [Google Scholar] [CrossRef]
- Sohani, Z.N.; Meyre, D.; de Souza, R.J.; Joseph, P.G.; Gandhi, M.; Dennis, B.B.; Norman, G.; Anand, S.S. Assessing the quality of published genetic association studies in meta-analyses: The quality of genetic studies (Q-Genie) tool. BMC Genet. 2015, 16, 50. [Google Scholar] [CrossRef] [PubMed]
- Garatachea, N.; Verde, Z.; Santos-Lozano, A.; Yvert, T.; Rodriguez-Romo, G.; Sarasa, F.J.; Hernández-Sánchez, S.; Santiago, C.; Lucia, A. ACTN3 R577X polymorphism and explosive leg-muscle power in elite basketball players. Int. J. Sport Physiol. Perform. 2014, 9, 226–232. [Google Scholar] [CrossRef]
- Heffernan, S.M.; Kilduff, L.P.; Erskine, R.M.; Day, S.H.; McPhee, J.S.; McMahon, G.E.; Stebbings, G.K.; Neale, J.P.H.; Lockey, S.J.; Ribbans, W.J.; et al. Association of ACTN3 R577X but not ACE I/D gene variants with elite rugby union player status and playing position. Physiol. Genom. 2016, 48, 196–201. [Google Scholar] [CrossRef]
- Yang, S.; Lin, W.; Jia, M.; Chen, H. Association between ACE and ACTN3 genes polymorphisms and athletic performance in elite and sub-elite Chinese youth male football players. PeerJ 2023, 11, e14893. [Google Scholar] [CrossRef]
- Konopka, M.J.; Sperlich, B.; Rietjens, G.; Zeegers, M.P. Genetics and athletic performance: A systematic SWOT analysis of non-systematic reviews. Front. Genet. 2023, 14, 1232987. [Google Scholar] [CrossRef]
- Ma, F.; Yang, Y.; Li, X.; Zhou, F.; Gao, C.; Li, M.; Gao, L. The association of sport performance with ACE and ACTN3 genetic polymorphisms: A systematic review and meta-analysis. PLoS ONE 2013, 8, e54685. [Google Scholar] [CrossRef]
- Papadimitriou, I.D.; Lockey, S.J.; Voisin, S.; Herbert, A.J.; Garton, F.; Houweling, P.J.; Cieszczyk, P.; Maciejewska-Skrendo, A.; Sawczuk, M.; Massidda, M.; et al. No association between ACTN3 R577X and ACE I/D polymorphisms and endurance running times in 698 Caucasian athletes. BMC Genom. 2018, 19, 13. [Google Scholar] [CrossRef]
- McAuley, A.B.T.; Hughes, D.C.; Tsaprouni, L.G.; Varley, I.; Suraci, B.; Roos, T.R.; Herbert, A.J.; Jackson, D.T.; Kelly, A.L. The association of the ACTN3 R577X and ACE I/D polymorphisms with athlete status in football: A systematic review and meta-analysis. J. Sports Sci. 2020, 39, 200–211. [Google Scholar] [CrossRef] [PubMed]
- de Almeida, K.Y.; Cetolin, T.; Marrero, A.R.; Aguiar Junior, A.S.; Mohr, P.; Kikuchi, N. A pilot study on the prediction of non-contact muscle injuries based on ACTN3 R577X and ACE I/D polymorphisms in professional soccer athletes. Genes 2022, 13, 2009. [Google Scholar] [CrossRef]
- González-García, J.; Varillas-Delgado, D. The relationship between genetic variability and seasonal changes in vertical jump performance in amateur soccer players. Appl. Sci. 2024, 14, 6145. [Google Scholar] [CrossRef]
- Weyerstraß, J.; Stewart, K.; Wesselius, A.; Zeegers, M.P. Nine genetic polymorphisms associated with power athlete status—A meta-analysis. J. Sci. Med. Sport 2018, 21, 213–220. [Google Scholar] [CrossRef] [PubMed]
- Myerson, S.; Hemingway, H.; Budget, R.; Martin, J.; Humphries, S.; Montgomery, H. Human angiotensin I-converting enzyme gene and endurance performance. J. Appl. Physiol. 1999, 87, 1313–1316. [Google Scholar] [CrossRef] [PubMed]
- Collins, M.; Raleigh, S.M. Genetic risk factors for musculoskeletal soft tissue injuries. In Medicine and Sport Science; Motohashi, Y., Ed.; Karger: Basel, Switzerland, 2009; Volume 54, pp. 136–149. [Google Scholar] [CrossRef]
- Maciejewska-Skrendo, A.; Cięszczyk, P.; Chycki, J.; Sawczuk, M.; Smółka, W. Genetic markers associated with power athlete status. J. Hum. Kinet. 2019, 68, 17–36. [Google Scholar] [CrossRef] [PubMed]
- Eynon, N.; Meckel, Y.; Sagiv, M.; Yamin, C.; Amir, R.; Sagiv, M.; Goldhammer, E.; Duarte, J.A.; Oliveira, J. Do PPARGC1A and PPARα polymorphisms influence sprint or endurance phenotypes? Scand. J. Med. Sci. Sports 2010, 20, e145–e150. [Google Scholar] [CrossRef]
- Ahmetov, I.I.; Gavrilov, D.N.; Astratenkova, I.V.; Druzhevskaya, A.M.; Malinin, A.V.; Romanova, E.E.; Rogozkin, V.A. The association of ACE, ACTN3 and PPARA gene variants with strength phenotypes in middle school-age children. J. Physiol. Sci. 2013, 63, 79–85. [Google Scholar] [CrossRef]
- Ginevičienė, V.; Jakaitienė, A.; Aksenov, M.; Aksenova, A.; Druzhevskaya, A.; Astratenkova, I.; Egorova, E.S.; Gabdrakhmanova, L.; Tubelis, L.; Kucinskas, V.; et al. Association analysis of ACE, ACTN3 and PPARGC1A gene polymorphisms in two cohorts of European strength and power athletes. Biol. Sport 2016, 33, 199–206. [Google Scholar] [CrossRef]
- Ischenko, D.S.; Galeeva, A.A.; Kulemin, N.A.; Kostryukova, E.S.; Alexeev, D.G.; Egorova, E.S.; Gabdrakhmanova, L.J.; Larin, A.K.; Generozov, E.V.; Ospanova, E.A.; et al. Genome-wide association study of elite power athlete status. Eur. J. Hum. Genet. 2015, 23 (Suppl. S1), 472. [Google Scholar]
- Drozdovska, S.B.; Dosenko, V.E.; Ahmetov, I.I.; Ilyin, V.N. The association of gene polymorphisms with athlete status in Ukrainians. Biol. Sport 2013, 30, 163–167. [Google Scholar] [CrossRef]
- Gomez-Gallego, F.; Ruiz, J.R.; Buxens, A.; Artieda, M.; Arteta, D.; Santiago, C.; Rodríguez-Romo, G.; Lao, J.I.; Lucia, A. The −786 T/C polymorphism of the NOS3 gene is associated with elite performance in power sports. Eur. J. Appl. Physiol. 2009, 107, 565–569. [Google Scholar] [CrossRef] [PubMed]
- Sessa, F.; Chetta, M.; Petito, A.; Franzetti, M.; Bafunno, V.; Pisanelli, D.; Sarno, M.; Iuso, S.; Margaglione, M. Gene polymorphisms and sport attitude in Italian athletes. Genet. Test. Mol. Biomarkers 2011, 15, 285–290. [Google Scholar] [CrossRef] [PubMed]
- Hall, E.; Almeida, S.S.; Heffernan, S.M.; Lockey, S.J.; Herbert, A.J.; Callus, P.; Day, S.H.; Pedlar, C.R.; Kipps, C.; Collins, M.; et al. Genetic polymorphisms related to VO2max adaptation are associated with elite rugby union status and competitive marathon performance. Int. J. Sports Physiol. Perform. 2021, 16, 1761–1770. [Google Scholar] [CrossRef] [PubMed]
- Balberova, O.V.; Bykov, E.V.; Medvedev, G.V. Candidate genes associated with athletes’ skeletal muscle functions regulation. Sports Med. Sci. Pract. 2021, 1, 83–94. [Google Scholar] [CrossRef]
- Pranckeviciene, E.; Gineviciene, V.; Jakaitiene, A.; Januska, L.; Utkus, A. Total genotype score modelling of polygenic endurance-power profiles in Lithuanian elite athletes. Genes 2021, 12, 1067. [Google Scholar] [CrossRef]
- Sarzynski, M.A.; Ghosh, S.; Bouchard, C. Genomic and transcriptomic predictors of response levels to endurance exercise training. J. Physiol. 2016, 595, 2931–2939. [Google Scholar] [CrossRef]
P (Population): | I (Intervention): | C (Comparison): | O (Outcomes): |
---|---|---|---|
Athletes from team sports, both elite and amateur, are active in disciplines such as football, handball, rugby, hockey, basketball, etc. | Presence of genetic polymorphisms in candidate genes involved in physiological mechanisms essential to performance (e.g., ACTN3 R577X, ACE I/D, PPARGC1A, IL6, NOS3, and Brain-Derived Neurotrophic Factor (BDNF)). | Alternative genotypes (e.g., ACTN3 XX vs. RR), absence of polymorphisms, athletes without a specific genetic profile, and athletes from individual or different types of sports (endurance vs. strength). | Physical performance parameters: speed, explosive strength, aerobic endurance, intermittent effort capacity, recovery time, physiological adaptation to training, and predisposition to muscular and osteoarticular injuries. |
Author(s) And Year | Country | Sport/Population | Genes Analyzed | Evaluated Parameters | Key Findings |
---|---|---|---|---|---|
Orysiak et al., 2018 [20] | Poland | Polish athletes (various sports) | ACE, ACTN3 | Muscle composition, strength | Combined influence of ACE and ACTN3 polymorphisms on muscle profile |
Pasqualetti et al., 2022 [21] | Italy | Elite-level rugby players | ACE, ACTN3, Monocarboxylate Transporter 1 (MCT1) | Sports performance | Preliminary associations between polymorphisms and performance level |
McAuley et al., 2023 [22] | - | Football players | Systematic review—multiple genes | Injury predisposition | Genetic evidence of increased injury risk in football |
Lima et al., 2023 [23] | Brazil | Basketball players, Brazilian League I | ACTN3 R577X | Field position | Association between ACTN3 genotype and playing position (center vs. wing) |
Silva et al., 2023 [24] | Portugal | Elite athletes (sport unspecified) | FAAH rs324420 | General performance, metabolic potential | Possible role of FAAH in optimizing elite performance |
Altynova et al., 2024 [25] | Kazakhstan | Athletes from multiple disciplines | Multiple genetic markers (genetic passport) | General performance | An individual genetic profile may guide personalized training |
Doğan et al., 2024 [26] | Turkey | Ice hockey players | ACE, ACTN3, PPARA, and Hypoxia-Inducible Factor 1-Alpha (HIF1A) | General physical performance | Different genotypes correlated with distinct physical outcomes |
Maestro et al., 2022 [27] | Spain | High-level football players | ACTN3, ACE, Collagen Type V Alpha 1 Chain (COL5A1), Insulin-Like Growth Factor 2 (IGF2), IL6, Tumor Necrosis Factor (TNF), NOS3, and Vascular Endothelial Growth Factor A (VEGFA) | Types of muscle injuries, injury history | ACTN3 XX, COL5A1 TT, and IL6 GG genotypes are associated with increased muscle injury risk |
Massidda et al., 2024 [28] | Italy | High-level football players | Total Genotype Score (TGS) | Muscle injuries | TGS correlated with the frequency of muscle injuries in football players |
Vavak et al., 2025 [29] | Slovakia | Volleyball and basketball players | ACE, ACTN3, PPARA, HIF1A, and Adenosine Monophosphate Deaminase 1 (AMPD1) | Vertical jump | Genetic correlations with jump parameter variations |
Silvino et al., 2025 [30] | Brazil | Junior handball players | ACTN3, Bradykinin Receptor B2 (BDKRB2), and AGT | Physical performance | Significant associations between ACTN3 and BDKRB2 with physical performance |
La Montagna et al., 2019 [31] | Italy | Professional football players | ACTN3, COL5A1, MCT1, VEGF, and Homeostatic Iron Regulator (HFE) | Performance and injuries | ACTN3 and VEGF are associated with performance; COL5A1 and HFE are associated with injury predisposition |
El Ouali et al., 2025 [32] | Morocco | Elite cyclists and hockey players | Cluster of Differentiation 36 (CD36) rs1761667 | Susceptibility to non-contact injuries | CD36 is associated with an increased risk of tissue injuries |
Silvino et al., 2025 [33] | Brazil | Handball players | ACE (I/D) | Physical performance | Association between ACE I/D polymorphism and physical performance |
Antrobus et al., 2023 [34] | UK | Elite rugby players | Catechol-O-Methyltransferase (COMT) rs4680 | Elite athlete status, concussion risk | COMT rs4680 is associated with elite status and predisposition to concussions |
Rodas et al., 2019 [35] | Spain | Football, futsal, handball, basketball, hockey players | Multiple SNPs | Tendinopathy risk prediction | Genomic profile predictive of tendinopathy in team sports |
No | Study | D1 | D2 | D3 | D4 | D5 | D6 | D7 | D8 | D9 | D10 | D11 | Total Score | Quality Rating |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
1 | Orysiak et al., 2018 [20] | 7 | 4 | 6 | 6 | 7 | 4 | 3 | 4 | 5 | 5 | 3 | 54 | High |
2 | Lima et al., 2023 [23] | 7 | 3 | 7 | 3 | 6 | 5 | 6 | 7 | 7 | 3 | 3 | 57 | High |
3 | Vavak et al., 2025 [29] | 3 | 6 | 3 | 5 | 3 | 4 | 7 | 4 | 6 | 6 | 3 | 50 | High |
4 | Altynova et al., 2024 [25] | 6 | 3 | 4 | 3 | 3 | 7 | 7 | 7 | 5 | 4 | 6 | 55 | High |
5 | Pasqualetti et al., 2022 [21] | 3 | 7 | 3 | 7 | 6 | 4 | 6 | 6 | 6 | 4 | 6 | 58 | High |
6 | Doğan et al., 2024 [26] | 6 | 7 | 6 | 4 | 6 | 4 | 4 | 4 | 5 | 6 | 5 | 57 | High |
7 | Silvino et al., 2025 [30] | 5 | 6 | 6 | 5 | 3 | 7 | 6 | 4 | 4 | 7 | 6 | 59 | High |
8 | Silva et al., 2023 [24] | 7 | 7 | 7 | 6 | 6 | 3 | 7 | 6 | 3 | 5 | 5 | 62 | High |
9 | Maestro et al., 2022 [27] | 6 | 5 | 6 | 7 | 7 | 3 | 7 | 6 | 4 | 5 | 7 | 63 | High |
10 | McAuley et al., 2023 [22] | 7 | 4 | 4 | 5 | 3 | 7 | 5 | 7 | 3 | 5 | 6 | 56 | High |
11 | Massidda et al., 2024 [28] | 5 | 7 | 4 | 5 | 4 | 4 | 7 | 4 | 3 | 7 | 4 | 54 | High |
12 | La Montagna et al., 2019 [31] | 7 | 6 | 6 | 7 | 6 | 5 | 6 | 7 | 6 | 6 | 6 | 68 | High |
13 | Rodas et al., 2019 [35] | 6 | 6 | 6 | 6 | 5 | 6 | 5 | 6 | 6 | 5 | 5 | 62 | High |
14 | Antrobus et al., 2023 [34] | 6 | 5 | 5 | 5 | 6 | 5 | 6 | 6 | 5 | 5 | 5 | 59 | High |
15 | El Ouali et al., 2025 [32] | 5 | 6 | 5 | 5 | 4 | 5 | 5 | 6 | 5 | 6 | 4 | 56 | High |
16 | Silvino et al., 2025 [33] | 6 | 6 | 6 | 6 | 6 | 6 | 6 | 6 | 5 | 6 | 6 | 65 | High |
Gene | Polymorphism | Associated Physiological Parameter | Team Sports Investigated | Type of Association | Included Studies |
---|---|---|---|---|---|
ACTN3 | R577X (rs1815739) | Strength, speed, and sprint | Football, handball, basketball, and volleyball | Positive association (RR with power sports; XX with endurance sports) | Orysiak et al., 2018 [20]; Lima et al., 2023 [23]; Silvino et al., 2025 [30]; La Montagna et al., 2019 [31] |
ACE | I/D (rs1799752) | Endurance, anaerobic effort | Football, rugby, hockey | I allele → endurance; D allele → strength | Orysiak et al., 2018 [20]; Pasqualetti et al., 2022 [21]; Doğan et al., 2024 [26]; Silvino et al., 2025 [33] |
PPARA | rs4253778 | Lipid metabolism, adaptation to mixed effort | Basketball, volleyball | Functional association with mixed-type effort | Vavak et al., 2025 [29]; Doğan et al., 2024 [26] |
HIF1A | rs11549465 | Metabolic efficiency under hypoxia | Volleyball, hockey | Positive association in intermittent sports | Vavak et al., 2025 [29]; Doğan et al., 2024 [26] |
AGT | M235T (rs699) | Blood pressure regulation, physiological stress | Handball | Association with cardiovascular adaptation | Silvino et al., 2025 [30] |
BDKRB2 | −9/+9 (rs5810761) | Vasodilation, recovery | Handball | Association with post-effort recovery time | Silvino et al., 2025 [30] |
IL6 | rs1800795 (G174C) | Inflammation, recovery | Football | Association with inflammatory response and injuries | Maestro et al., 2022 [27]; McAuley et al., 2023 [22] |
FAAH | rs324420 | Stress tolerance, neuromodulatory regulation | Elite sports (unspecified) | Theoretical association with general physiological response | Silva et al., 2023 [33] |
NOS3 (eNOS) | Glu298Asp (rs1799983) | Endothelial function, blood flow, and muscle injuries | Football | Association with aerobic performance and injury susceptibility | Maestro et al., 2022 [27] |
COL5A1 | rs12722 | Collagen integrity, injury risk | Football | Association with muscle injuries | La Montagna et al., 2019 [31] |
MCT1 | rs1049434 | Lactate transport, exercise tolerance | Football | Association with tolerance to high-intensity exercise | La Montagna et al., 2019 [31] |
HFE | C282Y and others | Iron homeostasis | Football | Possible impact on recovery and performance | La Montagna et al., 2019 [31] |
COMT | Val158Met (rs4680) | Neurotransmission, risk of head trauma (concussions) | Rugby | Association with elite status and concussions | Antrobus et al., 2023 [34] |
CD36 | rs1761667 | Lipid metabolism, injury risk | Field hockey | Association with non-contact injuries | El Ouali et al., 2025 [32] |
VEGF | −634 C > G (rs2010963) | Angiogenesis, performance, and injuries | Football | Association with performance and injuries | La Montagna et al., 2019 [31] |
TGS (polygenic) | — | Composite genetic score | Football | Correlated with injuries | Massidda et al., 2024 [28] |
Multi-SNPs (panel) | — | Tendinopathy prediction | Football, futsal, basketball, handball, and hockey | Predictive genomic profile | Rodas et al., 2019 [35] |
Team Sport Discipline | No. of Studies | Analyzed Population | Genes Studied |
---|---|---|---|
Football | 6 | Junior and professional athletes | ACTN3, ACE, IL6, AGT, NOS3, COL5A1, MCT1, and Multi-SNP panel |
Handball | 3 | Junior and performance athletes | ACTN3, BDKRB2, AGT, ACE, and Multi-SNP panel |
Basketball | 3 | First league players (Brazil), performance athletes | ACTN3, PPARA, and Multi-SNP panel |
Volleyball | 2 | Performance athletes, mixed volleyball | ACTN3, PPARA, and HIF1A |
Rugby | 2 | Elite athletes (Italy, UK) | ACE, ACTN3, MCT1, and COMT |
Hockey (ice and field) | 3 | National athletes (Turkey, Morocco), elite athletes | ACE, HIF1A, PPARA, CD36, and Multi-SNP panel |
Futsal | 1 | Elite athletes | Multi-SNP panel |
Gene | Polymorphism | Associated Risk | Source Study(ies) |
---|---|---|---|
IL6 | rs1800795 | Increased inflammation, delayed recovery | Maestro et al., 2022 [27]; McAuley et al., 2023 [22] |
AGT | rs699 (M235T) | Vascular susceptibility, mechanical stress | Silvino et al., 2025 [30] |
BDKRB2 | rs5810761 (−9/+9) | Risk of micro muscle injuries | Silvino et al., 2025 [30] |
FAAH | rs324420 | Low pain tolerance, physiological stress | Silva et al., 2023 [24] |
NOS3 (eNOS) | rs1799983 (Glu298Asp) | Predisposition to muscle injuries via endothelial dysfunction | Maestro et al., 2022 [27] |
COL5A1 | rs12722 | Collagen integrity, increased risk of musculoskeletal injuries | La Montagna et al., 2019 [31] |
VEGF | rs2010963 (−634C > G) | Injury susceptibility, influence on angiogenesis | Maestro et al., 2022 [27]; La Montagna et al., 2019 [31] |
HFE | C282Y and other variants | Possible impact on recovery and injury susceptibility | La Montagna et al., 2019 [31] |
COMT | rs4680 (Val158Met) | Increased risk of concussions (head trauma) | Antrobus et al., 2023 [34] |
Multi-SNP panels | A combination of SNPs from multiple candidate genes | Predictive genomic profile for tendinopathy and injuries | Rodas et al., 2019 [35] |
Composite Genotype (TGS) | A combination of polymorphisms from multiple genes | Cumulative score associated with the risk of muscle injuries | Massidda et al., 2024 [28]; Maestro et al., 2022 [27] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mijaica, R.; Tohănean, D.I.; Alexe, D.I.; Balint, L. Physical Performance and Sports Genetics: A Systematic Review of Candidate Gene Polymorphisms Involved in Team Sports. Genes 2025, 16, 1079. https://doi.org/10.3390/genes16091079
Mijaica R, Tohănean DI, Alexe DI, Balint L. Physical Performance and Sports Genetics: A Systematic Review of Candidate Gene Polymorphisms Involved in Team Sports. Genes. 2025; 16(9):1079. https://doi.org/10.3390/genes16091079
Chicago/Turabian StyleMijaica, Raluca, Dragoș Ioan Tohănean, Dan Iulian Alexe, and Lorand Balint. 2025. "Physical Performance and Sports Genetics: A Systematic Review of Candidate Gene Polymorphisms Involved in Team Sports" Genes 16, no. 9: 1079. https://doi.org/10.3390/genes16091079
APA StyleMijaica, R., Tohănean, D. I., Alexe, D. I., & Balint, L. (2025). Physical Performance and Sports Genetics: A Systematic Review of Candidate Gene Polymorphisms Involved in Team Sports. Genes, 16(9), 1079. https://doi.org/10.3390/genes16091079