Forensic DNA Recovery from FFPE Tissue Using the Maxwell® RSC Xcelerate Kit: Optimization, Challenges, and Limitations
Abstract
1. Introduction
2. Material and Methods
2.1. DNA Extraction
2.2. DNA Quantification and Degradation Index
2.3. STR Amplification
2.4. Detection of PCR Products
3. Results
3.1. Legend
3.2. Forensic Relevance
4. Discussion
5. Conclusions
- FFPE tissues can be effectively utilized in STR profiling; however, this requires a careful approach for result validation and protocol optimization. Critical steps include the use of optimized DNA extraction methods, quality assessment of DNA prior to PCR, and cautious interpretation of results due to potential dropout and artifact occurrence.
- The utility of FFPE samples depends primarily on the degradation index (DI), the number of amplified loci, and DNA concentration. Samples with DI < 10 and a concentration > 5 ng/μL can be used for full STR analysis, whereas for samples with DI > 50, alternative approaches such as SNP analysis, miniSTR, or mtDNA analysis should be considered.
- DNA profiling from FFPE tissues in forensic practice carries inherent risks due to DNA degradation, but it can still provide valuable information when no other sources are available.
- Our study indicates that the Maxwell® RSC Xcelerate DNA FFPE Kit provides a convenient and efficient tool for DNA isolation from formalin-fixed, paraffin-embedded tissues. The automation of the process, the capacity to isolate up to 48 samples simultaneously, and high reproducibility make it an attractive solution for forensic and clinical laboratories, even though the obtained STR profiles are often partial and require careful interpretation.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Kassab, M.; Jehanzaib, M.; Başak, K.; Demir, D.; Keles, G.E.; Turan, M. FFPE++: Improving the quality of formalin-fixed paraffin-embedded tissue imaging via contrastive unpaired image-to-image translation. Med. Image Anal. 2024, 91, 102992. [Google Scholar] [CrossRef]
- Snyder, J.M.; Radaelli, E.; Goeken, A.; Businga, T.; Boyden, A.W.; Karandikar, N.J.; Gibson-Corley, K.N. Perfusion with 10% neutral-buffered formalin is equivalent to 4% paraformaldehyde for histopathology and immunohistochemistry in a mouse model of experimental autoimmune encephalomyelitis. Vet. Pathol. 2022, 59, 498. [Google Scholar] [CrossRef] [PubMed]
- Srinivasan, M.; Sedmak, D.; Jewell, S. Effect of Fixatives and Tissue Processing on the Content and Integrity of Nucleic Acids. Am. J. Pathol. 2002, 161, 1961–1971. [Google Scholar] [CrossRef]
- Gilbert, M.T.P.; Haselkorn, T.; Bunce, M.; Sanchez, J.J.; Lucas, S.B.; Jewell, L.D.; Van Marck, E.; Worobey, M.; Volff, J.-N. The Isolation of Nucleic Acids from Fixed, Paraffin-Embedded Tissues–Which Methods Are Useful When? PLoS ONE 2007, 2, e537. [Google Scholar] [CrossRef]
- Oba, U.; Kohashi, K.; Sangatsuda, Y.; Oda, Y.; Sonoda, K.-H.; Ohga, S.; Yoshimoto, K.; Arai, Y.; Yachida, S.; Shibata, T.; et al. An efficient procedure for the recovery of DNA from formalin-fixed paraffin-embedded tissue sections. Biol. Methods Protoc. 2022, 7, bpac014. [Google Scholar] [CrossRef]
- Shi, S.-R.; Datar, R.; Liu, C.; Wu, L.; Zhang, Z.; Cote, R.J.; Taylor, C.R. DNA extraction from archival formalin-fixed, paraffin-embedded tissues: Heat-induced retrieval in alkaline solution. Histochem. Cell Biol. 2004, 122, 211–218. [Google Scholar] [CrossRef]
- Thavarajah, R.; Mudimbaimannar, V.K.; Elizabeth, J.; Rao, U.K.; Ranganathan, K. Chemical and physical basics of routine formaldehyde fixation. J. Oral Maxillofac. Pathol. 2012, 16, 400. [Google Scholar] [CrossRef]
- Likhithaswamy, H.R.; Madhushankari, G.S.; Selvamani, M.; Kumar, K.P.M.; Kokila, G.; Mahalakshmi, S. Assessing the quality of long-term stored tissues in formalin and in paraffin-embedded blocks for histopathological analysis. J. Microsc. Ultrastruct. 2022, 10, 23–29. [Google Scholar] [CrossRef] [PubMed]
- Ludyga, N.; Grünwald, B.; Azimzadeh, O.; Englert, S.; Höfler, H.; Tapio, S.; Aubele, M. Nucleic acids from long-term preserved FFPE tissues are suitable for downstream analyses. Virchows Arch. 2012, 460, 131–140. [Google Scholar] [CrossRef] [PubMed]
- Lu, K.; Ye, W.; Zhou, L.; Collins, L.B.; Chen, X.; Gold, A.; Ball, L.M.; Swenberg, J.A. Structural characterization of formaldehyde-induced cross-links between amino acids and deoxynucleosides and their oligomers. J. Am. Chem. Soc. 2010, 132, 3388–3399. [Google Scholar] [CrossRef]
- Vitošević, K.; Todorović, M.; Slović, Ž.; Varljen, T.; Matić, S.; Todorović, D. DNA isolated from formalin-fixed paraffin-embedded healthy tissue after 30 years of storage can be used for forensic studies. Forensic Sci. Med. Pathol. 2021, 17, 47–57. [Google Scholar] [CrossRef]
- Reid, K.M.; Maistry, S.; Ramesar, R.; Heathfield, L.J. A review of the optimisation of the use of formalin fixed paraffin embedded tissue for molecular analysis in a forensic post-mortem setting. Forensic Sci. Int. 2017, 280, 181–187. [Google Scholar] [CrossRef]
- Ullah, S.; Garg, R.K.; Noor, F. DNA perspectives of fixed and paraffin embedded human tissues as resource materials for the identification. Egypt. J. Forensic Sci. 2017, 7, 23. [Google Scholar] [CrossRef]
- A Alzahrani, S.; Alswaimil, N.F.; Alammari, A.M.; Al Saeed, W.H.; Menezes, R.G. Postmortem Genetic Testing in Sudden Unexpected Death: A Narrative Review. Cureus 2023, 15, e33728. [Google Scholar] [CrossRef]
- Latimer, R.; MacLeod, H.; Dellefave-Castillo, L.; Macaya, D.; Hart, T.R. Postmortem Genetic Testing Is an Increasingly Utilized Tool in Death Investigation. Acad. Forensic Pathol. 2022, 12, 129. [Google Scholar] [CrossRef]
- Geisenberger, C.; Chimal, E.; Jurmeister, P.; Klauschen, F. A cost-effective and scalable approach for DNA extraction from FFPE tissues. Biol. Methods Protoc. 2025, 10, bpaf003. [Google Scholar] [CrossRef] [PubMed]
- A Steiert, T.; Parra, G.; Gut, M.; Arnold, N.; Trotta, J.-R.; Tonda, R.; Moussy, A.; Gerber, Z.; Abuja, P.M.; Zatloukal, K.; et al. A critical spotlight on the paradigms of FFPE-DNA sequencing. Nucleic Acids Res. 2023, 51, 7143. [Google Scholar] [CrossRef] [PubMed]
- Do, H.; Dobrovic, A. Sequence Artifacts in DNA from Formalin-Fixed Tissues: Causes and Strategies for Minimization. Clin. Chem. 2015, 61, 64–71. [Google Scholar] [CrossRef]
- Zhang, J.; Li, L.; Bai, X.; Zhang, Z.; Yuan, L. DNA quality and STR success rate in different formalin-fixed tissues. Int. J. Leg. Med. 2024, 139, 995–1003. [Google Scholar] [CrossRef]
- Meizarini, A.; Puteri, A.; Yasan, Y.D.R.; Hussaini, H.M. Optimization of proteinase K incubation protocol duration during DNA extraction from oral squamous cell carcinoma FFPE samples. Dent. J. 2023, 56, 233–237. [Google Scholar] [CrossRef]
- Cazzato, G.; Caporusso, C.; Arezzo, F.; Cimmino, A.; Colagrande, A.; Loizzi, V.; Cormio, G.; Lettini, T.; Maiorano, E.; Scarcella, V.S.; et al. Formalin-fixed and paraffin-embedded samples for next generation sequencing: Problems and solutions. Genes 2021, 12, 1472. [Google Scholar] [CrossRef]
- Guo, Q.; Lakatos, E.; Al Bakir, I.; Curtius, K.; Graham, T.A.; Mustonen, V. The mutational signatures of formalin fixation on the human genome. Nat. Commun. 2022, 13, 4487. [Google Scholar] [CrossRef]
- Yun, B.H.; Guo, J.; Turesky, R.J. Formalin-Fixed Paraffin-Embedded Tissues—An Untapped Biospecimen for Biomonitoring DNA Adducts by Mass Spectrometry. Toxics 2018, 6, 30. [Google Scholar] [CrossRef] [PubMed]
- Kim, S.; Park, C.; Ji, Y.; Kim, D.G.; Bae, H.; van Vrancken, M.; Kim, D.-H.; Kim, K.-M. Deamination Effects in Formalin-Fixed, Paraffin-Embedded Tissue Samples in the Era of Precision Medicine. J. Mol. Diagn. 2017, 19, 137–146. [Google Scholar] [CrossRef] [PubMed]
- Essawy, M.M.; Campbell, C. Enzymatic Processing of DNA–Protein Crosslinks. Genes 2024, 15, 85. [Google Scholar] [CrossRef] [PubMed]
- Koshiba, M.; Ogawa, K.; Hamazaki, S.; Sugiyama, T.; Ogawa, O.; Kitajima, T. The Effect of Formalin Fixation on DNA and the Extraction of High-molecular-weight DNA from Fixed and Embedded Tissues. Pathol. Res. Pract. 1993, 189, 66–72. [Google Scholar] [CrossRef]
- Bhoyar, L.; Mehar, P.; Chavali, K. An overview of DNA degradation and its implications in forensic caseworks. Egypt. J. Forensic Sci. 2024, 14, 15. [Google Scholar] [CrossRef]
- Gill, P.; Fereday, L.; Morling, N.; Schneider, P.M. The evolution of DNA databases-Recommendations for new European STR loci. Forensic Sci. Int. 2006, 156, 242–244. [Google Scholar] [CrossRef]
- Schneider, P.M. tHe eSS loCi Expansion of the European Standard Set of DNA Database Loci-the Current Situation. 2009. Available online: https://www.promega.com/-/media/files/resources/profiles-in-dna/1201/expansion-of-the-european-standard-set.pdf?utm_source=chatgpt.com (accessed on 21 August 2025).
- Kidd, K.K.; Pakstis, A.J.; Speed, W.C.; Grigorenko, E.L.; Kajuna, S.L.; Karoma, N.J.; Kungulilo, S.; Kim, J.-J.; Lu, R.-B.; Odunsi, A.; et al. Developing a SNP panel for forensic identification of individuals. Forensic Sci. Int. 2006, 164, 20–32. [Google Scholar] [CrossRef]
- Kidd, K.K.; Speed, W.C.; Pakstis, A.J.; Furtado, M.R.; Fang, R.; Madbouly, A.; Maiers, M.; Middha, M.; Friedlaender, F.R.; Kidd, J.R. Progress toward an efficient panel of SNPs for ancestry inference. Forensic Sci. Int. Genet. 2014, 10, 23–32. [Google Scholar] [CrossRef]
- Eduardoff, M.; Santos, C.; de la Puente, M.; Gross, T.; Fondevila, M.; Strobl, C.; Sobrino, B.; Ballard, D.; Schneider, P.; Carracedo, Á.; et al. Inter-laboratory evaluation of SNP-based forensic identification by massively parallel sequencing using the Ion PGMTM. Forensic Sci. Int. Genet. 2015, 17, 110–121. [Google Scholar] [CrossRef] [PubMed]
- Parson, W.; Ballard, D.; Budowle, B.; Butler, J.M.; Gettings, K.B.; Gill, P.; Gusmão, L.; Hares, D.R.; Irwin, J.A.; King, J.L.; et al. Massively parallel sequencing of forensic STRs: Considerations of the DNA commission of the International Society for Forensic Genetics (ISFG) on minimal nomenclature requirements. Forensic Sci. Int. Genet. 2016, 22, 54–63. [Google Scholar] [CrossRef]
- Terrado-Ortuño, N.; May, P. Forensic DNA phenotyping: A review on SNP panels, genotyping techniques, and prediction models. Forensic Sci. Res. 2024, 10, owae013. [Google Scholar] [CrossRef]
- Stelloo, E.; Meijers, R.W.; Swennenhuis, J.F.; Allahyar, A.; Hajo, K.; Cangiano, M.; de Leng, W.W.; van Helvert, S.; Van der Meulen, J.; Creytens, D.; et al. Formalin-Fixed, Paraffin-Embedded–Targeted Locus Capture: A Next-Generation Sequencing Technology for Accurate DNA-Based Gene Fusion Detection in Bone and Soft Tissue Tumors. J. Mol. Diagn. 2023, 25, 758–770. [Google Scholar] [CrossRef]
- Bonnet, E.; Moutet, M.-L.; Baulard, C.; Bacq-Daian, D.; Sandron, F.; Mesrob, L.; Fin, B.; Delépine, M.; Palomares, M.-A.; Jubin, C.; et al. Performance comparison of three DNA extraction kits on human whole-exome data from formalin-fixed paraffin-embedded normal and tumor samples. PLoS ONE 2018, 13, e0195471. [Google Scholar] [CrossRef]
- Okojie, J.; O’neal, N.; Burr, M.; Worley, P.; Packer, I.; Anderson, D.; Davis, J.; Kearns, B.; Fatema, K.; Dixon, K.; et al. DNA Quantity and Quality Comparisons between Cryopreserved and FFPE Tumors from Matched Pan-Cancer Samples. Curr. Oncol. 2024, 31, 2441–2452. [Google Scholar] [CrossRef]
- Daş, T.; Buğra, A.; Buğra, A.K. Evaluation of histopathological findings of cardiac deaths in forensic autopsies. Ir. J. Med. Sci. 2022, 191, 937–944. [Google Scholar] [CrossRef] [PubMed]
- Viljoen, R.; Reid, K.M.; Mole, C.G.; Rangwaga, M.; Heathfield, L.J. Towards molecular autopsies: Development of a FFPE tissue DNA extraction workflow. Sci. Justice 2022, 62, 137–144. [Google Scholar] [CrossRef]
- Inoue, F.; Sone, K.; Toyohara, Y.; Takahashi, Y.; Kukita, A.; Hara, A.; Taguchi, A.; Tanikawa, M.; Tsuruga, T.; Osuga, Y. Targeting Epigenetic Regulators for Endometrial Cancer Therapy: Its Molecular Biology and Potential Clinical Applications. Int. J. Mol. Sci. 2021, 22, 2305. [Google Scholar] [CrossRef]
- Do, H.; Dobrovic, A. Dramatic reduction of sequence artefacts from DNA isolated from formalin-fixed cancer biopsies by treatment with uracil-DNA glycosylase. Oncotarget 2012, 3, 546–558. [Google Scholar] [CrossRef] [PubMed]
- Osinski, B.L.; BenTaieb, A.; Ho, I.; Jones, R.D.; Joshi, R.P.; Westley, A.; Carlson, M.; Willis, C.; Schleicher, L.; Mahon, B.M.; et al. Artificial intelligence-augmented histopathologic review using image analysis to optimize DNA yield from formalin-fixed paraffin-embedded slides. Mod. Pathol. 2022, 35, 1791–1803. [Google Scholar] [CrossRef]
- Gill, P.; Whitaker, J.; Flaxman, C.; Brown, N.; Buckleton, J. An investigation of the rigor of interpretation rules for STRs derived from less than 100 pg of DNA. Forensic Sci. Int. 2000, 112, 17–40. [Google Scholar] [CrossRef] [PubMed]
- Bieber, F.R.; Buckleton, J.S.; Budowle, B.; Butler, J.M.; Coble, M.D. Evaluation of forensic DNA mixture evidence: Protocol for evaluation, interpretation, and statistical calculations using the combined probability of inclusion. BMC Genet. 2016, 17, 125. [Google Scholar] [CrossRef] [PubMed]
- Gill, P.; Brenner, C.H.; Buckleton, J.S.; Carracedo, A.; Krawczak, M.; Mayr, W.R.; Morling, N.; Prinz, M.; Schneider, P.M.; Weir, B.S.; et al. DNA commission of the International Society of Forensic Genetics: Recommendations on the interpretation of mixtures. Forensic Sci. Int. 2006, 160, 90–101. [Google Scholar] [CrossRef] [PubMed]
- Gouveia, G.R.; Ferreira, S.C.; Siqueira, S.A.; Pereira, J. Nucleic Acids Extraction from Formalin-Fixed and Paraffin-Embedded Tissues. In Nucleic Acids—From Basic Aspects to Laboratory Tools; IntechOpen Limited: London, UK, 2016. [Google Scholar] [CrossRef]
No. | Sample Name | Target Name | CT Mean | Quantity Mean | Degradation Index |
---|---|---|---|---|---|
1 | 27338-23 | T.IPC | 27.28462982 | - | - |
27338-23 | T.Large Autosomal | 28.03167725 | 0.191929743 | 51.59603119 | |
27338-23 | T.Small Autosomal | 23.33320999 | 9.902812958 | 51.59603119 | |
2 | 780-24 | T.IPC | 27.39422417 | - | - |
780-24 | T.Large Autosomal | 28.05417442 | 0.189387381 | 19.14279175 | |
780-24 | T.Small Autosomal | 24.87759399 | 3.625403166 | 19.14279175 | |
3 | 24387-24 | T.IPC | 27.86660004 | - | - |
24387-24 | T.Large Autosomal | 22.4848175 | 5.140621662 | 4.666538239 | |
24387-24 | T.Small Autosomal | 21.97338104 | 23.98890686 | 4.666538239 | |
4 | 7622-23 | T.IPC | 27.42311668 | - | - |
7622-23 | T.Large Autosomal | 26.39240265 | 0.507136106 | 18.29960823 | |
7622-23 | T.Small Autosomal | 23.43297958 | 9.280391693 | 18.29960823 | |
5 | 47239-23 | T.IPC | 27.35767174 | - | - |
47239-23 | T.Large Autosomal | 30.1026268 | 0.056239072 | 88.9747467 | |
47239-23 | T.Small Autosomal | 24.38232994 | 5.003857136 | 88.9747467 | |
6 | 15330-24 | T.IPC | 27.6943512 | - | - |
15330-24 | T.Large Autosomal | 25.44915199 | 0.887025833 | 5.82336092 | |
15330-24 | T.Small Autosomal | 24.33347511 | 5.165471554 | 5.82336092 | |
7 | 27577-24 | T.IPC | 27.62685204 | - | - |
27577-24 | T.Large Autosomal | 26.77074432 | 0.405258179 | 16.854599 | |
27577-24 | T.Small Autosomal | 23.90406418 | 6.830463886 | 16.854599 | |
8 | 52934-23 | T.IPC | 27.72996712 | - | - |
52934-23 | T.Large Autosomal | 31.37101936 | 0.026517242 | 23.76406479 | |
52934-23 | T.Small Autosomal | 27.56682968 | 0.630157471 | 23.76406479 | |
9 | 816-24 | T.IPC | 27.65239334 | - | - |
816-24 | T.Large Autosomal | 28.73755455 | 0.126309276 | 8.61333847 | |
816-24 | T.Small Autosomal | 26.72755241 | 1.087944508 | 8.61333847 | |
10 | 2104-24 | T.IPC | 27.51393509 | - | - |
2104-24 | T.Large Autosomal | 26.5255928 | 0.468639314 | 5.778486252 | |
2104-24 | T.Small Autosomal | 25.32598495 | 2.708025932 | 5.778486252 | |
11 | 31954-23 | T.IPC | 27.62247467 | - | - |
31954-23 | T.Large Autosomal | 27.56675911 | 0.252825886 | 36.40428925 | |
31954-23 | T.Small Autosomal | 23.44569206 | 9.203947067 | 36.40428925 | |
12 | 3445-23 | T.IPC | 27.84559059 | - | - |
3445-23 | T.Large Autosomal | 23.90898895 | 2.21006608 | 5.168225765 | |
3445-23 | T.Small Autosomal | 23.1138401 | 11.42212009 | 5.168225765 | |
13 | 17486-24 | T.IPC | 28.19722366 | - | - |
17486-24 | T.Large Autosomal | 31.04796028 | 0.032113694 | 15.91148281 | |
17486-24 | T.Small Autosomal | 27.88903999 | 0.510976493 | 15.91148281 | |
14 | 18670-23 | T.IPC | 27.39790535 | - | - |
18670-23 | T.Large Autosomal | 26.94467926 | 0.365558952 | 41.77180481 | |
18670-23 | T.Small Autosomal | 22.66760635 | 15.27005672 | 41.77180481 | |
15 | 6180-24 | T.IPC | 27.63027191 | - | - |
6180-24 | T.Large Autosomal | 31.10833549 | 0.030984785 | 145.5412598 | |
6180-24 | T.Small Autosomal | 24.54218292 | 4.509564877 | 145.5412598 | |
16 | 1834-24 | T.IPC | 27.69294167 | - | - |
1834-24 | T.Large Autosomal | 29.10348129 | 0.101680651 | 139.039566 | |
1834-24 | T.Small Autosomal | 22.78603172 | 14.13763428 | 139.039566 | |
17 | 1754-23 | T.IPC | 28.40914917 | - | - |
1754-23 | T.Large Autosomal | 30.97937202 | 0.033446159 | 36.38529587 | |
1754-23 | T.Small Autosomal | 26.55533028 | 1.21694839 | 36.38529587 | |
18 | 11857-24 | T.IPC | 27.78021049 | - | - |
11857-24 | T.Large Autosomal | 27.37384796 | 0.283452809 | 34.22826004 | |
11857-24 | T.Small Autosomal | 23.36468124 | 9.702096939 | 34.22826004 | |
19 | 43248-24 | T.IPC | 28.07854462 | - | - |
43248-24 | T.Large Autosomal | 29.62934685 | 0.074450895 | 37.04236221 | |
43248-24 | T.Small Autosomal | 25.29797173 | 2.757837057 | 37.04236221 | |
20 | 6288-23 | T.IPC | 27.88058853 | - | - |
6288-23 | T.Large Autosomal | 22.76756859 | 4.347402096 | 6.776962757 | |
6288-23 | T.Small Autosomal | 21.65751839 | 29.462183 | 6.776962757 | |
21 | 5700-24 | T.IPC | 27.52523613 | - | - |
5700-24 | T.Large Autosomal | 29.39518356 | 0.085535869 | 123.2788162 | |
5700-24 | T.Small Autosomal | 23.23667526 | 10.5447607 | 123.2788162 | |
22 | 10623-24 | T.IPC | 27.41611862 | - | - |
10623-24 | T.Large Autosomal | 26.42856407 | 0.496381819 | 13.13532639 | |
10623-24 | T.Small Autosomal | 23.97552681 | 6.52013731 | 13.13532639 | |
23 | 55986-23 | T.IPC | 27.56273079 | - | - |
55986-23 | T.Large Autosomal | 27.26762962 | 0.301872462 | 20.58268166 | |
55986-23 | T.Small Autosomal | 24.0496006 | 6.213344574 | 20.58268166 | |
24 | 4415-24 | T.IPC | 27.99567986 | - | - |
4415-24 | T.Large Autosomal | 22.76561165 | 4.352447987 | 8.263043404 | |
4415-24 | T.Small Autosomal | 21.35101891 | 35.96446609 | 8.263043404 | |
25 | 15233-24 | T.IPC | 28.12033653 | - | - |
15233-24 | T.Large Autosomal | 22.47094536 | 5.183064461 | 13.0022049 | |
15233-24 | T.Small Autosomal | 20.38585472 | 67.39126587 | 13.0022049 |
Locus/Sample | 2104-24 | 24387-24 | 15330-24 | 27577-24 | 17486-24 | 15233-24 | 10623-24 |
---|---|---|---|---|---|---|---|
D3S1358 | 15,16 | 14,16 | 16,18 | 16,17 | 15,16 | 16,17 | 14,16 |
vWA | 14,15 | 15,17 | 14,16 | 15,16 | 15,17 | 17,18 | 14,18 |
D16S539 | 13 | - | - | 12,13 | - | 13 | - |
CSF1PO | - | - | - | 12,13 | - | - | - |
TPOX | - | - | - | 8 | - | 12 | - |
INS/DEL | - | - | - | - | - | - | - |
AMELO | XX | XX | XX | XX | XX | XX | XX |
D8S1179 | 14,16 | 12,13 | 14,15 | 12,13,14,15 | 12,13 | 11,16 | 10,13 |
D21S11 | 30,30.2 | 29,31.2 | 28,29 | 31.2,33.2 | - | 30 | 32.2 |
D18S51 | 15 | 16 | 19 | 13,14 | - | 14,15 | - |
DYS391 | - | - | - | - | - | - | - |
D2S441 | 10,14 | 10,11 | 11,14 | 11,13,14 | 11,14 | 14 | 10,14 |
D19S433 | 14,15.2 | 13,14 | 15 | 12,13 | 12,15 | 12,15 | 14,16 |
TH01 | 9.3 | 9.3 | - | 9.3 | - | 9,9.3 | 9,9.3 |
FGA | 21,25 | 19 | 22 | 22,23 | 22 | 22 | 21 |
D22S1045 | 14,16 | 12,15 | 16 | 12,15 | 16 | 11 | 15 |
D5S818 | 9,10 | 10,12 | 11,12 | 9,11,12,13 | 12,13 | 12,13 | 12,13 |
D13S317 | - | 11 | 9,10 | 9,11 | - | 8,10 | - |
D7S820 | 8 | 9,10 | 9,11 | 7.3,10 | - | - | 10 |
SE33 | - | 24.2 | - | 14,20 | - | - | - |
D10S1248 | 14,16 | 15,17 | 13,16 | 13,17 | 12,13 | 14 | 14,15 |
D1S1656 | 13,14 | 12,14 | 12,17.3 | - | 16 | 15,17.3 | 16,17.3 |
D12S391 | - | 16,22 | - | 22 | 21 | 17.3,21 | 23 |
D2S1338 | - | - | - | 19 | - | 16 | - |
Locus/Sample | 816-24 | 780-24 | 7622-23 | 6288-23 | 3445-23 | 4415-24 | |
D3S1358 | 14 | 13,16 | 15 | 15,18 | 15,17 | 16 | |
vWA | 17 | 17 | 15,18 | 15,18 | 14,16 | 16,17 | |
D16S539 | - | - | 13 | 11 | - | 12 | |
CSF1PO | 11 | - | - | - | - | 10,11 | |
TPOX | - | - | - | - | - | - | |
INS/DEL | - | - | - | - | - | - | |
AMELO | XX | XX | XX | XX | XX | XX | |
D8S1179 | 10,12 | 10,14 | 10,13 | 13,14 | 10,14 | 10,14 | |
D21S11 | 29,32.2 | - | 30,32.2 | 29,30 | 33.2 | 29,31.2 | |
D18S51 | 16,17 | - | - | 13,15 | 16 | - | |
DYS391 | - | - | - | - | - | - | |
D2S441 | 10,11 | 10,14 | 11.3,14 | 10,11 | 10,11 | 10,11 | |
D19S433 | 13,15 | 14,15 | 15,16.2 | 12,16.2 | 14.2,15 | 14,15 | |
TH01 | 7,9.3 | 6 | 9.3 | 9 | 9.3 | 7,9 | |
FGA | 22 | 23 | 23,24 | 20,21 | 24 | 21,22,23 | |
D22S1045 | 14,16 | 16 | 11,12 | 14,17 | 11,15 | 16,17 | |
D5S818 | 11,13 | 11,12 | 10,12 | 12,13 | 9,12 | 11,12 | |
D13S317 | 10,13 | 8,10 | - | 9,13 | 8,10 | 8,10 | |
D7S820 | - | 10 | 9 | 8,11 | 11 | 8,12 | |
SE33 | - | - | - | - | - | 29.2,30.2 | |
D10S1248 | 14,17 | 13,14 | 13,16 | 13,16 | 13,14 | 14,15 | |
D1S1656 | 18.3 | 14,16 | 16.3,17.3 | 11,17 | 13,15 | 14,16.3 | |
D12S391 | - | - | 20 | 18 | 17 | - | |
D2S1338 | - | - | - | 16 | - | - |
Sample Name | Number of STR Loci | Profile Status | Recommendation |
---|---|---|---|
2104-24 | 18 | Complete profile | Suitable for STR-based identification |
24387-24 | 19 | Complete profile | Suitable for STR-based identification |
15330-24 | 17 | Complete profile | Suitable for STR-based identification |
27577-24 | 18 | Complete profile | Suitable for STR-based identification |
17486-24 | 16 | Complete profile | Suitable for STR-based identification |
15233-24 | 14 | Partial profile | Potential identification, validation recommended |
10623-24 | 17 | Complete profile | Suitable for STR-based identification |
816-24 | 10 | Partial profile | Useful for exclusion or SNP comparison |
780-24 | 9 | Partial profile | Suitable for SNP or mtDNA analysis |
7622-23 | 11 | Partial profile | Applicable for kinship comparisons |
3445-23 | 7 | Fragmented profile | Re-isolation/miniSTR suggested |
4415-24 | 6 | Fragmented profile | Incomplete, mtDNA may be considered |
6288-23 | 7 | Fragmented profile | Unusable as is, consider SNP/mtDNA |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lisman, D.; Ossowski, A.; Tołoczko-Grabarek, A.; Kozłowski, M.; Cymbaluk-Płoska, A. Forensic DNA Recovery from FFPE Tissue Using the Maxwell® RSC Xcelerate Kit: Optimization, Challenges, and Limitations. Genes 2025, 16, 1074. https://doi.org/10.3390/genes16091074
Lisman D, Ossowski A, Tołoczko-Grabarek A, Kozłowski M, Cymbaluk-Płoska A. Forensic DNA Recovery from FFPE Tissue Using the Maxwell® RSC Xcelerate Kit: Optimization, Challenges, and Limitations. Genes. 2025; 16(9):1074. https://doi.org/10.3390/genes16091074
Chicago/Turabian StyleLisman, Dagmara, Andrzej Ossowski, Aleksandra Tołoczko-Grabarek, Mateusz Kozłowski, and Aneta Cymbaluk-Płoska. 2025. "Forensic DNA Recovery from FFPE Tissue Using the Maxwell® RSC Xcelerate Kit: Optimization, Challenges, and Limitations" Genes 16, no. 9: 1074. https://doi.org/10.3390/genes16091074
APA StyleLisman, D., Ossowski, A., Tołoczko-Grabarek, A., Kozłowski, M., & Cymbaluk-Płoska, A. (2025). Forensic DNA Recovery from FFPE Tissue Using the Maxwell® RSC Xcelerate Kit: Optimization, Challenges, and Limitations. Genes, 16(9), 1074. https://doi.org/10.3390/genes16091074