Effect Size and Replicability in Genetic Studies of Athletic Performance: A Meta-Analytical Review
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Design and Protocol Registration
2.2. Eligibility Criteria
- Publication in peer-reviewed journals and focus on genetic markers related to athletic performance.
- Reporting of explicit, primary effect sizes (odds ratios, Cohen’s d, R-squared values), or providing full raw data (means, standard deviations, allele counts) enabling the rigorous and standardized calculation of effect sizes as detailed in the Data Synthesis section below.
- Clear description of the study design (case–control, cohort, or quantitative trait association).
- Examination of associations between genetic polymorphisms and discrete, well-defined sports performance outcomes (e.g., endurance performance, explosive strength, specific injury risk).
- Inclusion of human elite or trained athlete populations
- Full text in English, available for thorough data extraction.
- Exclusion criteria included.
- Did not directly report primary effect sizes or lacked sufficient raw data for reproducible effect size calculation; all effect size conversions were conducted following widely accepted methodological conventions to minimize error and preserve comparability, as specified below.
- Non-human genetic studies or in vitro research.
- Were conference abstracts, commentaries, editorials, or reviews lacking primary data.
- Studies with incomplete data that could not be retrieved from corresponding authors.
2.3. Clarification on Effect Size Calculation and Harmonization
2.4. Justification for Study Inclusion and Heterogeneity Controls
2.5. Information Sources and Search Strategy
2.6. Study Selection and Data Extraction
- Authors, publication year, sample size, and precise study design (including specification of case–control or quantitative trait association).
- Comprehensive documentation of all genetic polymorphisms analyzed, genotyping methods, and allele frequencies.
- Explicit outcome variables with operational definitions and detailed measurement protocols, ensuring harmonization of athletic performance phenotypes across studies.
- Complete presentation of raw data (e.g., genotype/allele distributions, group means, standard deviations) to allow conversion and verification of all effect sizes, following transparent and reproducible procedures outlined in the Supplementary Materials.
- Risk of bias metrics, including adjustment for confounders, sample representativeness, and use of replication cohorts, scored according to a modified Newcastle–Ottawa Scale (NOS).
2.7. Risk of Bias and Quality Assessment
- Expanded recruitment criteria—studies were considered low risk only if they employed multi-center or population-based athlete recruitment alongside control groups matched for ethnicity and training background;
- Domain-specific control for confounders—required analytic adjustment for age, sex, training history, ethnicity, as well as genotype quality control and call rate reporting;
- Custom scoring rubrics—used detailed, separate criteria and scoring for Case–Control versus quantitative trait association designs, with the full scoring system included in the Supplementary Materials;
- Explicit requirements for outcome assessment—mandated validated, reproducible phenotyping protocols, transparency in genotyping accuracy, and pre-publication availability of the study protocol;
- Domain-level scoring—NOS scores were assigned for each key domain (Selection, Comparability, Exposure/Outcome), and thresholds for high, moderate, and low risk of bias were pre-specified in the protocol and applied in all analyses.
2.8. Data Synthesis and Statistical Analysis
3. Results
3.1. Characteristics of Included Studies
3.2. Meta-Analytic Results and Heterogeneity
3.3. Subgroup Analyses and Statistical Comparisons
3.4. Publication Bias and Sensitivity Analyses
3.5. Interpretation
4. Discussion
Limitations and Future Directions
5. Conclusions
6. Practical Implications
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
ACTN3 | Alpha-actinin-3—a gene linked to muscle power and sprint performance |
ACE | Angiotensin-Converting Enzyme—a gene associated with endurance and blood pressure regulation |
SNP | Single Nucleotide Polymorphism—a single base-pair variation in the genome |
GWAS | Genome-Wide Association Study—large-scale study to find associations between genetic variants and traits |
ID | Insertion/Deletion—a type of genetic variation involving insertions or deletions of bases |
RR/RX/XX | Genotypes of the ACTN3 gene (R577X variant), indicating different forms of the gene |
CI | Confidence Interval—range within which the true value is expected to lie with a certain probability |
OR | Odds Ratio—a measure of association between exposure and outcome |
ES | Effect Size—a quantitative measure of the magnitude of the effect |
I2 | I-squared statistic—quantifies heterogeneity across studies in a meta-analysis |
Q-test | Cochran’s Q test—a statistical test used to assess heterogeneity in meta-analysis |
NOS | Newcastle–Ottawa Scale—a tool for assessing the quality of non-randomized studies in meta-analyses |
PRISMA | Preferred Reporting Items for Systematic Reviews and Meta-Analyses—reporting guidelines for systematic reviews and meta-analyses |
RCT | Randomized Controlled Trial—a type of scientific experiment (mentioned indirectly) |
DNA | Deoxyribonucleic Acid—genetic material |
RNA | Ribonucleic Acid—involved in gene expression (mentioned in reference to expression studies) |
PROSPERO | International Prospective Register of Systematic Reviews—database for registering review protocols |
VO2 max | Maximal Oxygen Uptake—the highest rate of oxygen consumption measured during exercise |
PCR | Polymerase Chain Reaction—laboratory method for amplifying DNA sequences |
GRADE | Grading of Recommendations, Assessment, Development and Evaluations—system for rating the certainty of evidence |
References
- Ahmetov, I.I.; Hall, E.C.R.; Semenova, E.A.; Pranckevičienė, E.; Ginevičienė, V. Advances in sports genomics. Adv. Clin. Chem. 2022, 107, 215–263. [Google Scholar] [CrossRef]
- Pickering, J.; Kiely, B. Can Genetic Testing Predict Talent? A Case Study of 5 Elite Athletes. Int. J. Sports Physiol. Perform. 2019, 14, 625–631. [Google Scholar] [CrossRef]
- Pickering, J.; Kiely, B.; Suraci, D.; Collins, D. The magnitude of Yo-Yo test improvements following an aerobic training intervention are associated with total genotype score. PLoS ONE 2018, 13, e0207597. [Google Scholar] [CrossRef] [PubMed]
- Eynon, N.; Banting, L.K.; Ruiz, J.R.; Cieszczyk, P.; Dyatlov, D.A.; Maciejewska-Karlowska, A.; Sawczuk, M.; Pushkarev, V.P.; Kulikov, L.M.; Pushkarev, E.D.; et al. ACTN3 R577X polymorphism and team-sport performance: A study involving three European cohorts. J. Sci. Med. Sport 2014, 17, 102–106. [Google Scholar] [CrossRef]
- İpekoğlu, G.; Bülbül, A.; Çakır, H.İ. A meta-analysis on the association of ACE and PPARA gene variants and endurance athletic status. J. Sports Med. Phys. Fit. 2022, 62, 795–802. [Google Scholar] [CrossRef]
- Weyerstraß, K.F.J.; Stewart, K.; Wesselius, A.; Zeegers, M. Nine genetic polymorphisms associated with power athlete status—A Meta-Analysis. J. Sci. Med. Sport 2017, 20, 543–549. [Google Scholar] [CrossRef]
- Cieszczyk, P.; Sawczuk, M.; Maciejewska-Karlowska, A.; Ficek, K. ACTN3 R577X polymorphism in top-level Polish rowers. Int. J. Sports Physiol. Perform. 2011, 6, 583–585. [Google Scholar] [CrossRef]
- Eynon, N.; Ruiz, J.R.; Femia, P.; Pushkarev, V.P.; Cieszczyk, P.; Maciejewska-Karlowska, A.; Sawczuk, M.; Dyatlov, D.A.; Lekontsev, E.V.; Kulikov, L.M.; et al. The ACTN3 R577X polymorphism across three groups of elite male European athletes. PLoS ONE 2012, 7, e43132. [Google Scholar] [CrossRef] [PubMed]
- Psatha, Z.N.; Al-Mahayri, C.; Mitropoulou, C.; Patrinos, G. Meta-analysis of genomic variants in power and endurance sports to decode the impact of genomics on athletic performance and success. Hum. Genom. 2024, 18, 621. [Google Scholar] [CrossRef] [PubMed]
- Petr, A.; Maciejewska-Skrendo, A.; Zając, A.; Chycki, J.; Šťastný, P. Association of Elite Sports Status with Gene Variants of Peroxisome Proliferator Activated Receptors and Their Transcriptional Coactivator. Int. J. Mol. Sci. 2020, 21, 162. [Google Scholar] [CrossRef]
- Domańska-Senderowska, D.; Szmigielska, P.; Snochowska, A.; Jastrzębski, Z.; Jegier, A.; Kiszałkiewicz, J.; Jastrzębska, J.; Pastuszak-Lewandoska, D.; Cięszczyk, P.; Suchanecka, A.; et al. Relationships between the expression of the ACTN3 gene and explosive power of soccer players. J. Hum. Kinet. 2019, 68, 123–134. [Google Scholar] [CrossRef]
- Ahmetov, I.; John, G.; Semenova, E.; Hall, E.C.R. Genomic predictors of physical activity and athletic performance. Adv. Genet. 2024, 118, 145–162. [Google Scholar] [CrossRef]
- Moir, R.; Kemp, R.; Folkerts, D.; Spendiff, O.; Pavlidis, C.; Opara, E. Genes and Elite Marathon Running Performance: A Systematic Review. J. Sports Sci. Med. 2020, 19, 256–268. [Google Scholar]
- Meckel, A.; Eliakim, D.; Nemet, D.; Levin, N.; Ben-Zaken, S. High Prevalence of the ACSL (rs6552828) AA Genotype among Elite Soccer Players. Balt. J. Sport Health Sci. 2020, 2, 1224. [Google Scholar] [CrossRef]
- Eider, J.; Cieszczyk, P.; Ficek, K.; Leońska-Duniec, A.; Sawczuk, M.; Maciejewska-Karlowska, A.; Zarebska, A. The association between D allele of the ACE gene and power performance in Polish elite athletes. Sci. Sports 2013, 28, e77–e84. [Google Scholar] [CrossRef]
- Massidda, M.; Scorcu, M.; Calò, C.M. New genetic model for predicting phenotype traits in sports. Int. J. Sports Physiol. Perform. 2014, 9, 554–560. [Google Scholar] [CrossRef]
- Dionísio, T.J.; Thiengo, C.R.; Brozoski, D.T.; Dionisio, E.J.; Talamoni, G.A.; Braga da Silva, R.N.; Garlet, G.; Santos, C.; Amaral, S. The influence of genetic polymorphisms on performance and cardiac and hemodynamic parameters among Brazilian soccer players. Appl. Physiol. Nutr. Metab. 2017, 42, 596–604. [Google Scholar] [CrossRef]
- De la Iglesia, R.; Espinosa-Salinas, I.; Lopez-Silvarrey, F.J.; Ramos-Álvarez, J.; Segovia, J.; Colmenarejo, G.; Borregon-Rivilla, E.; Marcos-Pasero, H.; Aguilar-Aguilar, E.; Loria-Kohen, V.; et al. A potential endurance algorithm prediction in the field of sports performance. Front. Genet. 2020, 11, 711. [Google Scholar] [CrossRef]
- Ahmetov, I.I.; Egorova, E.S.; Gabdrakhmanova, L.J.; Fedotovskaya, O.N. Genes and athletic performance: An update. Med. Sport Sci. 2016, 61, 41–54. [Google Scholar] [CrossRef]
- La Montagna, R.; Canonico, R.; Alfano, L.; Bucci, E.; Boffo, S.; Staiano, L.; Fulco, B.; D’Andrea, E.; De Nicola, A.; Maiorano, P.; et al. Genomic analysis reveals association of specific SNPs with athletic performance and susceptibility to injuries in professional soccer players. J. Cell. Physiol. 2019, 234, 8062–8073. [Google Scholar] [CrossRef]
- Yang, N.; MacArthur, D.G.; Gulbin, J.P.; Hahn, A.G.; Beggs, A.H.; Easteal, S.; North, K.N. ACTN3 Genotype Is Associated with Human Elite Athletic Performance. Am. J. Hum. Genet. 2003, 73, 627–631. [Google Scholar] [CrossRef] [PubMed]
- Buxens, A.; Ruiz, J.R.; Arteta, D.; Artieda, M.; Santiago, C.; Gonzalez-Freire, M.; Martínez, A.; Tejedor, D.; Lao, J.I.; Gómez-Gallego, F.; et al. Can we predict top-level sports performance in power vs endurance events? A genetic approach. Scand. J. Med. Sci. Sports 2009, 21, e34–e43. [Google Scholar] [CrossRef] [PubMed]
- Vostrikova, A.; Pechenkina, V.; Danilova, M.; Boronnikova, S.; Kalendar, R. Gene polymorphism and total genetic score in martial arts athletes with different athletic qualifications. Genes 2022, 13, 1677. [Google Scholar] [CrossRef]
- McAuley, A.B.T.; Hughes, D.C.; Tsaprouni, L.G.; Varley, I.; Suraci, B.; Roos, T.R.; Herbert, A.J.; Jackson, D.T.; Kelly, A. A systematic review of the genetic predisposition to injury in football. J. Sci. Sport Exerc. 2022, 4, 345–359. [Google Scholar] [CrossRef]
- Ginevičienė, A.; Pranculis, A.; Jakaitienė, K.; Milašius, V.; Kučinskas, V. Genetic variation of the human ACE and ACTN3 genes and their association with functional muscle properties in Lithuanian elite athletes. Medicina 2021, 47, 40. [Google Scholar] [CrossRef]
- Monnerat, A.; Maior, M.; Tannure, L.; Back, C.; Santos, G. Single-Nucleotide-Polymorphism-Panel Population-Genetics Approach Based on the 1000 Genomes Database and Elite Soccer Players. Int. J. Sports Physiol. Perform. 2018, 13, 715–720. [Google Scholar] [CrossRef]
- Varillas-Delgado, E.; Morencos, J.; Gutiérrez-Hellín, M.; Aguilar-Navarro, A.; Muñoz, A.; Mendoza Láiz, N.; Perucho, T.; Maestro, A.; Tellería-Orriols, J.J. Genetic profiles to identify talents in elite endurance athletes and professional football players. PLoS ONE 2022, 17, e0274880. [Google Scholar] [CrossRef]
- Ben-Zaken, Y.; Meckel, D.; Nemet, A.; Eliakim, A. Genetic score of power-speed and endurance track and field athletes. Scand. J. Med. Sci. Sports 2013, 23, 121–141. [Google Scholar] [CrossRef]
- Jacob, A.; Cripps, A.J.; Evans, T.; Chivers, P.; Joyce, C.; Anderton, R. Identification of genetic markers for skill and athleticism in sub-elite Australian football players: A pilot study. J. Sports Med. Phys. Fit. 2016, 56, 870–878. [Google Scholar] [CrossRef]
- Onori, M.; Pasqualetti, M.; Moretti, G.; Canu, G.; De Paolis, S.; Baroni, A.; Minucci, C.; Galvani, A.; Urbani, A. Genetics and Sport Injuries: New Perspectives for Athletic Excellence in an Italian Court of Rugby Union Players. Genes 2022, 13, 995. [Google Scholar] [CrossRef]
- Ben-Zaken, Y.; Meckel, R.; Lidor, D.; Nemet, A.; Eliakim, A. Genetic profiles and prediction of the success of young athletes’ transition from middle- to long-distance runs: An exploratory study. Pediatr. Exerc. Sci. 2017, 25, 435–450. [Google Scholar] [CrossRef] [PubMed]
- Jacob, R.; Anderton, J.; Wilkie, J.C.; Rogalski, B.; Laws, S.; Jones, A.; Spiteri, T.; Hart, N. Association of Genetic Variances in ADRB1 and PPARGC1a with Two-Kilometre Running Time-Trial Performance in Australian Football League Players: A Preliminary Study. Sports 2021, 9, 22. [Google Scholar] [CrossRef]
- Jacob, N.; Hart, J.L.; Cochrane, T.; Spiteri, S.; Laws, A.; Jones, B.; Rogalski, J.E.; Anderton, R. ACTN3 (R577X) Genotype Is Associated With Australian Football League Players. J. Strength Cond. Res. 2019, 33, 3458–3465. [Google Scholar] [CrossRef]
- Jacob, P.; Chivers, R.; Anderton, R. Genetic predictors of match performance in sub-elite Australian football players: A pilot study. J. Exerc. Sci. Fit. 2018, 16, 200–206. [Google Scholar] [CrossRef]
- Galeandro, A.; Notarnicola, A.; Bianco, S.; Tafuri, L.; Russo, V.; Pesce, B.; Moretti, V.; Petruzzella, V. ACTN3/ACE genotypes and mitochondrial genome in professional soccer players’ performance. J. Biol. Regul. Homeost. Agents 2020, 34, 923–931. [Google Scholar]
- Da Rosa, G.; Oneda, L.B.; Daros, A.C.; Dourado, D.; Sartori, D.F.; Leonel, C.L.; Osiecki, R. Can a genetic profile be related to performance in young talent track and field athletes? A pilot study. Mot. Rev. De Educ. Fis. 2022, 28, e20220045. [Google Scholar] [CrossRef]
- Artells, R.; Pruna, A.; Dellal, N.; Maffulli, N. Elastin: A possible genetic biomarker for more severe ligament injuries in elite soccer—A Pilot study. Muscles Ligaments Tendons J. 2016, 6, 188–194. [Google Scholar] [CrossRef] [PubMed]
- Ebert, A.; Magi, E.; Unt, E.; Prans, D.; Wood, S.; Kõks, S. Genome-wide association study identifying variants related to performance and injury in high-performance athletes. Exp. Biol. Med. 2023, 248, 89–101. [Google Scholar] [CrossRef]
- Pickering, J.; Suraci, B.; Semenova, E.; Boulygina, E.; Kostryukova, N.; Kulemin, O.V.; Borisov, S.A.; Khabibova, A.; Larin, A.; Pavlenko, E.; et al. A Genome-Wide Association Study of Sprint Performance in Elite Youth Football Players. J. Strength Cond. Res. 2021, 35, 987–1001. [Google Scholar] [CrossRef]
- Gronek, J.; Holdys, J.; Konarski, J.; Kryściak, A.; Wolc, A. ACE I/D genotype in professional field hockey players. Trends Sport Sci. 2020, 27, 45–52. [Google Scholar]
- Znazen, A.; Mejri, A.; Touhami, I.; Chtara, M.; Siala, H.; Le Gallais, D.; Ahmetov, I.; Messaoud, T.; Chamari, K.; Soussi, N. Genetic advantageous predisposition of angiotensin converting enzyme id polymorphism in Tunisian athletes. J. Sports Med. Phys. Fit. 2019, 59, 784–791. [Google Scholar]
- Bray, J.; Hagberg, L.; Pérusse, T.; Rankinen, S.; Roth, B.; Wolfarth, C.; Bouchard, C. The human gene map for performance and health-related fitness phenotypes: The 2006–2007 update. Med. Sci. Sports Exerc. 2008, 40, S1–S11. [Google Scholar] [CrossRef]
- Bulğay, V.O.; Çakir, H.; Kazan, M.A.; Ergün, M.A.; Badicu, G.; Ardigò, L.P. The AMPD1 Gene’s rs17602729 Polymorphism and Athletic Performance in Track and Field Athletes. Appl. Sci. 2024, 14, 891. [Google Scholar] [CrossRef]
- Morucci, T.; Punzi, G.; Innocenti, M.; Gulisano, M.; Ceroti, S.; Pacini, S. New Frontiers in Sport Training: Genetics and Artistic Gymnastics. J. Strength Cond. Res. 2015, 29, 3325–3332. [Google Scholar] [CrossRef] [PubMed]
- Jones, J.; Kiely, J.; Suraci, B.; Collins, D.; de Lorenzo, D.; Pickering, C.; Grimaldi, K. A genetic-based algorithm for personalized resistance training. Biol. Sport 2018, 35, 301–309. [Google Scholar] [CrossRef]
- Papadimitriou, I.D.; Lucia, A.; Pitsiladis, Y.P.; Pushkarev, V.P.; Dyatlov, D.A.; Orekhov, E.F.; Artioli, G.G.; Guilherme, J.P.L.F.; Lancha, A.H.; Ginevičienė, V.; et al. ACTN3 R577X and ACE I/D gene variants influence performance in elite sprinters: A multi-cohort study. BMC Genom. 2016, 17, 285. [Google Scholar] [CrossRef]
- Andrzej, Ł.; Płoćiennik, P.; Zaucha, J.M.; Łukaszuk, K.; Joźwicki, M.; Płoćiennik, M.; Cięszczyk, P. Detection of epistasis between ACTN3 and SNAP-25 with an insight towards gymnastic aptitude identification. Biol. Sport 2018, 35, 41–48. [Google Scholar] [CrossRef]
- Grenda, A.; Leońska-Duniec, A.; Kaczmarczyk, M.; Ficek, K.; Król, P.; Cięszczyk, P.; Żmijewski, P. Interaction between ACE I/D and ACTN3 R577X polymorphisms in Polish competitive swimmers. J. Hum. Kinet. 2014, 42, 127–136. [Google Scholar] [CrossRef] [PubMed]
- Papadimitriou, I.D.; Lockey, S.J.; Voisin, S.; Herbert, A.J.; Garton, F.; Houweling, P.J.; Cieszczyk, P.; Maciejewska-Skrendo, A.; Sawczuk, M.; Massidda, M.; et al. No association between ACTN3 R577X and ACE I/D polymorphisms and endurance running times in 698 Caucasian athletes. BMC Genom. 2018, 19, 13. [Google Scholar] [CrossRef] [PubMed]
- Orysiak, J.; Sitkowski, D.; Żmijewski, P.; Malczewska-Lenczowska, J.; Cieszczyk, P.; Zembron-Lacny, A.; Pokrywka, A. Overrepresentation of the ACTN3 XX genotype in elite canoe and kayak paddlers. J. Strength Cond. Res. 2015, 29, 1107–1112. [Google Scholar] [CrossRef]
Comparison | Q-Statistic | I2 (%) | Interpretation |
---|---|---|---|
ACTN3: Power vs. Endurance | 6.72 | 72.5% | Substantial heterogeneity |
ACE: Power vs. Endurance | 5.43 | 63.5% | Moderate heterogeneity |
ACTN3 vs. ACE (Power) | 7.81 | 76.3% | High heterogeneity |
ACTN3 vs. ACE (Endurance) | 4.12 | 55.6% | Moderate heterogeneity |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Łosińska, K.W.; Cięszczyk, P.; Ghiani, G.; Maszczyk, A. Effect Size and Replicability in Genetic Studies of Athletic Performance: A Meta-Analytical Review. Genes 2025, 16, 1040. https://doi.org/10.3390/genes16091040
Łosińska KW, Cięszczyk P, Ghiani G, Maszczyk A. Effect Size and Replicability in Genetic Studies of Athletic Performance: A Meta-Analytical Review. Genes. 2025; 16(9):1040. https://doi.org/10.3390/genes16091040
Chicago/Turabian StyleŁosińska, Kinga Wiktoria, Paweł Cięszczyk, Giovanna Ghiani, and Adam Maszczyk. 2025. "Effect Size and Replicability in Genetic Studies of Athletic Performance: A Meta-Analytical Review" Genes 16, no. 9: 1040. https://doi.org/10.3390/genes16091040
APA StyleŁosińska, K. W., Cięszczyk, P., Ghiani, G., & Maszczyk, A. (2025). Effect Size and Replicability in Genetic Studies of Athletic Performance: A Meta-Analytical Review. Genes, 16(9), 1040. https://doi.org/10.3390/genes16091040