Sex-Specific Transcriptome Signatures in Pacific Oyster Hemolymph
Abstract
1. Introduction
2. Materials and Methods
2.1. Animal Husbandry
2.2. Sample Collection
2.3. Sexing
2.4. RNA Extraction
2.5. RNA-Sequencing Analysis
2.6. Bioinformatic Analyses
2.7. Pairwise Comparisons Between Sexes
2.8. Pairwise Comparisons Between Time Points
2.9. Biological Pathways and Processes from DEGs (topGO)
2.10. Gonad Transcriptome Reanalysis with Data from Public Databases
3. Results
3.1. Pairwise Comparisons Between Time Points
3.2. Temporal Clustering Analysis
3.3. Pairwise Comparisons Between Sexes
3.4. Gonad Transcriptome Reanalysis
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Bachtrog, D.; Mank, J.E.; Peichel, C.L.; Kirkpatrick, M.; Otto, S.P.; Ashman, T.-L.; Hahn, M.W.; Kitano, J.; Mayrose, I.; Ming, R.; et al. Sex Determination: Why So Many Ways of Doing It? PLoS Biol. 2014, 12, e1001899. [Google Scholar] [CrossRef]
- Goodfellow, P.N.; Lovell-Badge, R. SRY and sex determination in mammals. Annu. Rev. Genet. 1993, 27, 71–92. [Google Scholar] [CrossRef]
- Chue, J.; Smith, C.A. Sex determination and sexual differentiation in the avian model. FEBS J. 2011, 278, 1027–1034. [Google Scholar] [CrossRef] [PubMed]
- Merchant-Larios, H.; Díaz-Hernández, V. Environmental Sex Determination Mechanisms in Reptiles. Sex. Dev. 2013, 7, 95–103. [Google Scholar] [CrossRef]
- Goikoetxea, A.; Todd, E.V.; Gemmell, N.J. Stress and sex: Does cortisol mediate sex change in fish? Reproduction 2017, 154, R149–R160. [Google Scholar] [CrossRef] [PubMed]
- Casas, L.; Saborido-Rey, F.; Ryu, T.; Michell, C.; Ravasi, T.; Irigoien, X. Sex Change in Clownfish: Molecular Insights from Transcriptome Analysis. Sci. Rep. 2016, 6, 35461. [Google Scholar] [CrossRef]
- Weber, C.; Capel, B. Sex determination without sex chromosomes. Phil Trans. R. Soc. B 2021, 376, 20200109. [Google Scholar] [CrossRef] [PubMed]
- Broquard, C.; Martinez, A.-S.; Maurouard, E.; Lamy, J.-B.; Dégremont, L. Sex determination in the oyster Crassostrea gigas—A large longitudinal study of population sex ratios and individual sex changes. Aquaculture 2020, 515, 734555. [Google Scholar] [CrossRef]
- Guo, X.; Hedgecock, D.; Hershberger, W.K.; Cooper, K.; Allen, S.K., Jr. Genetic Determinants of Protandric Sex in the Pacific Oyster, Crassostrea gigas Thunberg. Evolution 1998, 52, 394–402. [Google Scholar] [CrossRef]
- Hedrick, P.W.; Hedgecock, D. Sex Determination: Genetic Models for Oysters. J. Hered. 2010, 101, 602–611. [Google Scholar] [CrossRef]
- Santerre, C.; Sourdaine, P.; Marc, N.; Mingant, C.; Robert, R.; Martinez, A.-S. Oyster sex determination is influenced by temperature—First clues in spat during first gonadic differentiation and gametogenesis. Comp. Biochem. Physiol. A Mol. Integr. Physiol. 2013, 165, 61–69. [Google Scholar] [CrossRef] [PubMed]
- Fabioux, C.; Huvet, A.; Le Souchu, P.; Le Pennec, M.; Pouvreau, S. Temperature and photoperiod drive Crassostrea gigas reproductive internal clock. Aquaculture 2005, 250, 458–470. [Google Scholar] [CrossRef]
- Baghurst, B.C.; Mitchell, J.G. Sex-specific growth and condition of the Pacific oyster (Crassostrea gigas Thunberg). Aquac. Res. 2002, 33, 1253–1263. [Google Scholar] [CrossRef]
- Sun, D.; Yu, H.; Li, Q. Starvation-induced changes in sex ratio involve alterations in sex-related gene expression and methylation in Pacific oyster Crassostrea gigas. Comp. Biochem. Physiol. B Biochem. Mol. Biol. 2023, 267, 110863. [Google Scholar] [CrossRef]
- Yasuoka, N.; Yusa, Y. Effects of size and gregariousness on individual sex in a natural population of the Pacific oyster Crassostrea gigas. J. Molluscan Stud. 2016, 82, 485–491. [Google Scholar] [CrossRef]
- Dang, X.; Zhang, Y.; Dupont, S.; Gaitán-Espitia, J.D.; He, Y.-Q.; Wang, H.-H.; Ellis, R.P.; Guo, X.; Parker, L.; Zhang, R.-C.; et al. Low pH Means More Female Offspring: A Multigenerational Plasticity in the Sex Ratio of Marine Bivalves. Environ. Sci. Technol. 2024, 59, 1308–1321. [Google Scholar] [CrossRef]
- Naimi, A.; Martinez, A.-S.; Specq, M.-L.; Diss, B.; Mathieu, M.; Sourdaine, P. Molecular cloning and gene expression of Cg-Foxl2 during the development and the adult gametogenetic cycle in the oyster Crassostrea gigas. Comp. Biochem. Physiol. B Biochem. Mol. Biol. 2009, 154, 134–142. [Google Scholar] [CrossRef]
- Dheilly, N.M.; Lelong, C.; Huvet, A.; Kellner, K.; Dubos, M.-P.; Riviere, G.; Boudry, P.; Favrel, P. Gametogenesis in the Pacific Oyster Crassostrea gigas: A Microarrays-Based Analysis Identifies Sex and Stage Specific Genes. PLoS ONE 2012, 7, e36353. [Google Scholar] [CrossRef] [PubMed]
- Guo, L.; Yu, H.; Li, Q. Sex-specific mRNA alternative splicing patterns and Dmrt1 isoforms contribute to sex determination and differentiation of oyster. Int. J. Biol. Macromol. 2024, 283, 137747. [Google Scholar] [CrossRef]
- Sun, D.; Yu, H.; Li, Q. Early gonadal differentiation is associated with the antagonistic action of Foxl2 and Dmrt1l in the Pacific oyster. Comp. Biochem. Physiol. B Biochem. Mol. Biol. 2023, 265, 110831. [Google Scholar] [CrossRef] [PubMed]
- Santerre, C.; Sourdaine, P.; Adeline, B.; Martinez, A.-S. Cg-SoxE and Cg-β-catenin, two new potential actors of the sex-determining pathway in a hermaphrodite lophotrochozoan, the Pacific oyster Crassostrea gigas. Comp. Biochem. Physiol. A Mol. Integr. Physiol. 2014, 167, 68–76. [Google Scholar] [CrossRef]
- Sun, D.; Yu, H.; Li, Q. Examination of the role of CgSox-like in sex determination and gonadal development in the Pacific oyster Crassostrea gigas. Aquaculture 2023, 566, 739234. [Google Scholar] [CrossRef]
- Yue, C.; Li, Q.; Yu, H. Gonad Transcriptome Analysis of the Pacific Oyster Crassostrea gigas Identifies Potential Genes Regulating the Sex Determination and Differentiation Process. Mar. Biotechnol. 2018, 20, 206–219. [Google Scholar] [CrossRef]
- Broquard, C.; Saowaros, S.; Lepoittevin, M.; Degremont, L.; Lamy, J.-B.; Morga, B.; Elizur, A.; Martinez, A.-S. Gonadal transcriptomes associated with sex phenotypes provide potential male and female candidate genes of sex determination or early differentiation in Crassostrea gigas, a sequential hermaphrodite mollusc. BMC Genom. 2021, 22, 609. [Google Scholar] [CrossRef]
- Suquet, M.; De Kermoysan, G.; Araya, R.G.; Queau, I.; Lebrun, L.; Le Souchu, P.; Mingant, C. Anesthesia in Pacific oyster, Crassostrea gigas. Aquat. Living Resour. 2009, 22, 29–34. [Google Scholar] [CrossRef]
- Ford, S.E.; Paillard, C. Repeated sampling of individual bivalve mollusks I: Intraindividual variability and consequences for haemolymph constituents of the Manila clam, Ruditapes philippinarum. Fish. Shellfish. Immunol. 2007, 23, 280–291. [Google Scholar] [CrossRef] [PubMed]
- Cheng, T.C. Hemocytes: Forms and Functions. In The Eastern Oyster Crassostrea gigas; Maryland Sea Grant College: Maryland, MD, USA, 1996; Chapter 8; ISBN 0-943676-61-4. [Google Scholar]
- Fisher, W. Structure and Functions of Oyster Hemocytes. In Immunity in Invertebrates; Springer: Berlin/Heidelberg, Germany, 1986; Chapter 3. [Google Scholar]
- Li, Y.; Siddiqui, G.; Wikfors, G.H. Non-lethal determination of sex and reproductive condition of Eastern oysters Crassostrea gigas Gmelin using protein profiles of hemolymph by Proteinchip® and SELDI-TOF-MS technology. Aquaculture 2010, 309, 258–264. [Google Scholar] [CrossRef]
- Langdon, C.; Evans, F.; Jacobson, D.; Blouin, M. Yields of cultured Pacific oysters Crassostrea gigas Thunberg improved after one generation of selection. Aquaculture 2003, 220, 227–244. [Google Scholar] [CrossRef]
- Peñaloza, C.; Gutierrez, A.P.; Eöry, L.; Wang, S.; Guo, X.; Archibald, A.L.; Bean, T.P.; Houston, R.D. A chromosome-level genome assembly for the Pacific oyster Crassostrea gigas. GigaScience 2021, 10, giab020. [Google Scholar] [CrossRef] [PubMed]
- Andrews, S. FastQC: A Quality Control tool for High Throughput Sequence Data. 2019. Available online: https://www.bioinformatics.babraham.ac.uk/projects/fastqc/ (accessed on 7 May 2025).
- Kim, D.; Paggi, J.M.; Park, C.; Bennett, C.; Salzberg, S.L. Graph-based genome alignment and genotyping with HISAT2 and HISAT-genotype. Nat. Biotechnol. 2019, 37, 907–915. [Google Scholar] [CrossRef]
- Danecek, P.; Bonfield, J.K.; Liddle, J.; Marshall, J.; Ohan, V.; Pollard, M.O.; Whitwham, A.; Keane, T.; McCarthy, S.A.; Davies, R.M.; et al. Twelve years of SAMtools and BCFtools. GigaScience 2021, 10, giab008. [Google Scholar] [CrossRef] [PubMed]
- Putri, G.H.; Anders, S.; Pyl, P.T.; Pimanda, J.E.; Zanini, F. Analysing high-throughput sequencing data in Python with HTSeq 2.0. Bioinformatics 2022, 38, 2943–2945. [Google Scholar] [CrossRef] [PubMed]
- Love, M.I.; Huber, W.; Anders, S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol. 2014, 15, 550. [Google Scholar] [CrossRef] [PubMed]
- Huber, W.; von Heydebreck, A.; Sueltmann, H.; Poustka, A.; Vingron, M. Parameter estimation for the calibration and variance stabilization of microarray data. Stat. Appl. Genet. Mol. Biol. 2003, 2, 1. [Google Scholar] [CrossRef]
- R Core Team. R. A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2023; Available online: https://www.R-project.org/ (accessed on 1 July 2025).
- Kolde, R. pheatmap: Pretty Heatmaps. R. 2018. Available online: https://github.com/raivokolde/pheatmap (accessed on 4 June 2025).
- Kumar, S.; Dudley, J.; Lopes, R.J.; Beja-Pereira, A.; Luikart, G. Bioinformatics software for biologists in the genomics era. Bioinformatics 2007, 23, 1713–1717. [Google Scholar] [CrossRef]
- Loubaton, R.; Champagnat, N.; Vallois, P.; Vallat, L. MultiRNAflow: Integrated analysis of temporal RNA-seq data with multiple biological conditions. Bioinformatics 2024, 40, btae315. [Google Scholar] [CrossRef]
- Törönen, P.; Medlar, A.; Holm, L. PANNZER2: A rapid functional annotation web server. Nucleic Acids Res. 2018, 46, W84–W88. [Google Scholar] [CrossRef]
- Alexa, A.; Rahnenfuhrer, J. Enrichment Analysis for Gene Ontology. 2016. Available online: https://bioconductor.org/packages/3.22/bioc/html/topGO.html (accessed on 30 April 2025).
- Grossman-Haham, I.; Coudray, N.; Yu, Z.; Wang, F.; Zhang, N.; Bhabha, G.; Vale, R.D. Structure of the radial spoke head and insights into its role in mechanoregulation of ciliary beating. Nat. Struct. Mol. Biol. 2021, 28, 20–28. [Google Scholar] [CrossRef]
- Ge, L.-Q.; Xia, T.; Huang, B.; Song, Q.-S.; Zhang, H.-W.; Stanley, D.; Yang, G.-Q.; Wu, J.-C. Suppressing male spermatogenesis-associated protein 5-like gene expression reduces vitellogenin gene expression and fecundity in Nilaparvata lugens Stål. Sci. Rep. 2016, 6, 28111. [Google Scholar] [CrossRef]
- Zhang, X.; Sun, J.; Lu, Y.; Zhang, J.; Shimada, K.; Noda, T.; Zhao, S.; Koyano, T.; Matsuyama, M.; Zhou, S.; et al. LRRC23 is a conserved component of the radial spoke that is necessary for sperm motility and male fertility in mice. J. Cell Sci. 2021, 134, jcs259381. [Google Scholar] [CrossRef]
- Fabioux, C.; Pouvreau, S.; Roux, F.L.; Huvet, A. The oyster vasa-like gene: A specific marker of the germline in Crassostrea gigas. Biochem. Biophys. Res. Commun. 2004, 315, 897–904. [Google Scholar] [CrossRef] [PubMed]
- Franco, A.; Heude Berthelin, C.; Goux, D.; Sourdaine, P.; Mathieu, M. Fine structure of the early stages of spermatogenesis in the Pacific oyster, Crassostrea gigas (Mollusca, Bivalvia). Tissue Cell 2008, 40, 251–260. [Google Scholar] [CrossRef]
- Li, H.; Li, Q.; Yu, H.; Du, S. Characterization of paramyosin protein structure and gene expression during myogenesis in Pacific oyster (Crassostrea gigas). Comp. Biochem. Physiol. B Biochem. Mol. Biol. 2021, 255, 110594. [Google Scholar] [CrossRef] [PubMed]
- Hedgecock, D. Sex-Determined Growth of Yearling Pacific Oysters (Crassostrea gigas). J. Shellfish. Res. 2023, 42, 1–13. [Google Scholar] [CrossRef]
- Coe, W.R. Environment and Sex In the Oviparous Oyster Ostrea virginica. Biol. Bull. 1936, 71, 353–359. [Google Scholar] [CrossRef]
- Eckelbarger, K.J.; Davis, C.V. Ultrastructure of the gonad and gametogenesis in the eastern oyster, Crassostrea virginica. II. Testis spermatogenesis. Mar. Biol. 1996, 127, 89–96. [Google Scholar] [CrossRef]
- Pizzagalli, M.D.; Bensimon, A.; Superti-Furga, G. A guide to plasma membrane solute carrier proteins. FEBS J. 2021, 288, 2784–2835. [Google Scholar] [CrossRef]
- César-Razquin, A.; Snijder, B.; Frappier-Brinton, T.; Isserlin, R.; Gyimesi, G.; Bai, X.; Reithmeier, R.A.; Hepworth, D.; Hediger, M.A.; Edwards, A.M.; et al. A Call for Systematic Research on Solute Carriers. Cell 2015, 162, 478–487. [Google Scholar] [CrossRef] [PubMed]
- Xun, X.; Cheng, J.; Wang, J.; Li, Y.; Li, X.; Li, M.; Lou, J.; Kong, Y.; Bao, Z.; Hu, X. Solute carriers in scallop genome: Gene expansion and expression regulation after exposure to toxic dinoflagellate. Chemosphere 2020, 241, 124968. [Google Scholar] [CrossRef]
- Ubertini, M.; Lagarde, F.; Mortreux, S.; Le Gall, P.; Chiantella, C.; Fiandrino, A.; Bernard, I.; Pouvreau, S.; Roque d’Orbcastel, E. Gametogenesis, spawning behavior and larval abundance of the Pacific oyster Crassostrea gigas in the Thau lagoon: Evidence of an environment-dependent strategy. Aquaculture 2017, 473, 51–61. [Google Scholar] [CrossRef]
- Dinamani, P. Gametogenic patterns in populations of Pacific oyster, Crassostrea gigas, in Northland, New Zealand. Aquaculture 1987, 64, 65–76. [Google Scholar] [CrossRef]
- Samanta, A.; Hughes, T.E.T.; Moiseenkova-Bell, V.Y. Transient Receptor Potential (TRP) Channels. In Membrane Protein Complexes: Structure and Function; Harris, J.R., Boekema, E.J., Eds.; Springer: Singapore, 2018; pp. 141–165. ISBN 978-981-10-7757-9. [Google Scholar]
- Caterina, M.J. Transient receptor potential ion channels as participants in thermosensation and thermoregulation. Am. J. Physiol.-Regul. Integr. Comp. Physiol. 2007, 292, R64–R76. [Google Scholar] [CrossRef] [PubMed]
- Yatsu, R.; Miyagawa, S.; Kohno, S.; Saito, S.; Lowers, R.H.; Ogino, Y.; Fukuta, N.; Katsu, Y.; Ohta, Y.; Tominaga, M.; et al. TRPV4 associates environmental temperature and sex determination in the American alligator. Sci. Rep. 2015, 5, 18581. [Google Scholar] [CrossRef]
- Lin, J.-Q.; Zhou, Q.; Yang, H.-Q.; Fang, L.-M.; Tang, K.-Y.; Sun, L.; Wan, Q.-H.; Fang, S.-G. Molecular mechanism of temperature-dependent sex determination and differentiation in Chinese alligator revealed by developmental transcriptome profiling. Sci. Bull. 2018, 63, 209–212. [Google Scholar] [CrossRef]
- Whiteley, S.L.; Holleley, C.E.; Wagner, S.; Blackburn, J.; Deveson, I.W.; Marshall Graves, J.A.; Georges, A. Two transcriptionally distinct pathways drive female development in a reptile with both genetic and temperature dependent sex determination. PLoS Genet. 2021, 17, e1009465. [Google Scholar] [CrossRef] [PubMed]
- Castelli, M.A.; Whiteley, S.L.; Georges, A.; Holleley, C.E. Cellular calcium and redox regulation: The mediator of vertebrate environmental sex determination? Biol. Rev. 2020, 95, 680–695. [Google Scholar] [CrossRef] [PubMed]
- Saotome, K.; Singh, A.K.; Yelshanskaya, M.V.; Sobolevsky, A.I. Crystal structure of the epithelial calcium channel TRPV6. Nature 2016, 534, 506–511. [Google Scholar] [CrossRef]
- Czerwinski, M.; Natarajan, A.; Barske, L.; Looger, L.L.; Capel, B. A timecourse analysis of systemic and gonadal effects of temperature on sexual development of the red-eared slider turtle Trachemys scripta elegans. Dev. Biol. 2016, 420, 166–177. [Google Scholar] [CrossRef]
- Weber, C.; Zhou, Y.; Lee, J.G.; Looger, L.L.; Qian, G.; Ge, C.; Capel, B. Temperature-dependent sex determination is mediated by pSTAT3 repression of Kdm6b. Science 2020, 368, 303–306. [Google Scholar] [CrossRef]
- Wu, P.; Wang, X.; Ge, C.; Jin, L.; Ding, Z.; Liu, F.; Zhang, J.; Gao, F.; Du, W. pSTAT3 activation of Foxl2 initiates the female pathway underlying temperature-dependent sex determination. Proc. Natl. Acad. Sci. USA 2024, 121, e2401752121. [Google Scholar] [CrossRef]
- Lindquist, S.; Craig, E.A. The heat-shock proteins. Annu. Rev. Genet. 1988, 22, 631–677. [Google Scholar] [CrossRef]
- Kohno, S.; Katsu, Y.; Urushitani, H.; Ohta, Y.; Iguchi, T.; Guillette, L.J. Potential Contributions of Heat Shock Proteins to Temperature-Dependent Sex Determination in the American Alligator. Sex. Dev. 2010, 4, 73–87. [Google Scholar] [CrossRef]
- Liu, Q.; Wang, Y.; Tan, L.; Ma, W.; Zhao, X.; Shao, C.; Wang, Q. The Role of the Heat Shock Cognate Protein 70 Genes in Sex Determination and Differentiation of Chinese Tongue Sole (Cynoglossus semilaevis). Int. J. Mol. Sci. 2023, 24, 3761. [Google Scholar] [CrossRef]
- He, Y.; Shang, X.; Sun, J.; Zhang, L.; Zhao, W.; Tian, Y.; Cheng, H.; Zhou, R. Gonadal apoptosis during sex reversal of the rice field eel: Implications for an evolutionarily conserved role of the molecular chaperone heat shock protein 10. J. Exp. Zool. B Mol. Dev. Evol. 2010, 314B, 257–266. [Google Scholar] [CrossRef] [PubMed]
- Shi, J.; Sheng, D.; Guo, J.; Zhou, F.; Wu, S.; Tang, H. Identification of BiP as a temperature sensor mediating temperature-induced germline sex reversal in C. elegans. EMBO J. 2024, 43, 4020–4048. [Google Scholar] [CrossRef] [PubMed]
- Shore, D.; Albert, B. Ribosome biogenesis and the cellular energy economy. Curr. Biol. 2022, 32, R611–R617. [Google Scholar] [CrossRef] [PubMed]
- Samain, J.F.; Dégremont, L.; Soletchnik, P.; Haure, J.; Bédier, E.; Ropert, M.; Moal, J.; Huvet, A.; Bacca, H.; Van Wormhoudt, A.; et al. Genetically based resistance to summer mortality in the Pacific oyster (Crassostrea gigas) and its relationship with physiological, immunological characteristics and infection processes. Aquaculture 2007, 268, 227–243. [Google Scholar] [CrossRef]
- Brokordt, K.; Defranchi, Y.; Espósito, I.; Cárcamo, C.; Schmitt, P.; Mercado, L.; De La Fuente-Ortega, E.; Rivera-Ingraham, G.A. Reproduction Immunity Trade-Off in a Mollusk: Hemocyte Energy Metabolism Underlies Cellular and Molecular Immune Responses. Front. Physiol. 2019, 10, 77. [Google Scholar] [CrossRef]
- Galtsoff, P. The American oyster, Crassostrea gigas Gmelin. In Fishery Bull; U.S. Fish & Wildlife Service: Washington, DC, USA, 1964. [Google Scholar]
- Liu, W.; Li, Q.; Gao, F.; Kong, L. Effect of starvation on biochemical composition and gametogenesis in the Pacific oyster Crassostrea gigas. Fish. Sci. 2010, 76, 737–745. [Google Scholar] [CrossRef]
- Lango-Reynoso, F.; Chávez-villaba, J.; Le Pennec, M. Reproductive patterns of the Pacific oyster Crassostrea gigas in France. Invertebr. Reprod. Dev. 2006, 49, 41–50. [Google Scholar] [CrossRef]
- Li, Q.; Osada, M.; Suzuki, T.; Mori, K. Changes in vitellin during oogenesis and effect of estradiol-17β on vitellogenesis in the Pacific oyster Crassostrea gigas. Invertebr. Reprod. Dev. 1998, 33, 87–93. [Google Scholar] [CrossRef]
- Geffroy, B. Energy as the cornerstone of environmentally driven sex allocation. Trends Endocrinol. Metab. 2022, 33, 670–679. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Song, J.; Maurelli, O.V.J.; Yeats, M.S.; Thompson, N.F.; Banks, M.A.; Calla, B. Sex-Specific Transcriptome Signatures in Pacific Oyster Hemolymph. Genes 2025, 16, 1033. https://doi.org/10.3390/genes16091033
Song J, Maurelli OVJ, Yeats MS, Thompson NF, Banks MA, Calla B. Sex-Specific Transcriptome Signatures in Pacific Oyster Hemolymph. Genes. 2025; 16(9):1033. https://doi.org/10.3390/genes16091033
Chicago/Turabian StyleSong, Jingwei, Odile V. J. Maurelli, Mark S. Yeats, Neil F. Thompson, Michael A. Banks, and Bernarda Calla. 2025. "Sex-Specific Transcriptome Signatures in Pacific Oyster Hemolymph" Genes 16, no. 9: 1033. https://doi.org/10.3390/genes16091033
APA StyleSong, J., Maurelli, O. V. J., Yeats, M. S., Thompson, N. F., Banks, M. A., & Calla, B. (2025). Sex-Specific Transcriptome Signatures in Pacific Oyster Hemolymph. Genes, 16(9), 1033. https://doi.org/10.3390/genes16091033