Genetics of Retinoblastoma: An Overview and Significance of Genetic Testing in Clinical Practice
Abstract
1. Introduction
2. Methods
Search Strategy
3. Diagnosis of Retinoblastoma
4. Heritable Retinoblastoma
5. Staging and Genetic Risk Classification
6. Genetic Testing Approach in Retinoblastoma
6.1. Sample Collection
6.2. Step 1: RB1 Mutation Analysis
6.3. Step 2: Deletion/Duplication Screening
6.4. Step 3: Tumor DNA Testing and Additional Analyses
6.5. Step 4: Loss of Heterozygosity Analysis
6.6. Step 5: Whole-Genome Sequencing
7. Genetic Risk Assessment
8. Current Genetic Testing Methods in Retinoblastoma
Gene (Location) | Technique | Application (Associated Proportion) | Reference Study No. |
---|---|---|---|
RB1 (13q142.2) | DNA sequencing (Sanger or next-generation sequencing) | Detect RB1 single-nucleotide mutations, small insertions/deletions (70% to 75%) | [56,57] |
Multiplex ligation-dependent probe amplification (MLPA) | Detect large deletions or rearrangements of 1 or several exons in RB1 (15–20%) | [19,28,58] | |
Chromosomal microarray (aCGH) or karyotyping | Detect chromosomal translocations or large gross deletions (6–8%) | [46,47] | |
Methylation-specific PCR or sequencing | Detect RB1 gene silencing of non-heritable retinoblastoma (10–12%) | [52,53,54,59] | |
Allele-specific PCR (AS-PCR) | Screen for known mutations in families or at-risk relatives | [60] | |
Linkage analysis | Detect mutant gene in families with 2 or more affected relatives when mutation(s) cannot be detected with conventional techniques. | [66,67,68] | |
MYCN (2p24.3) | Fluorescent in situ hybridization (FISH), MLPA, or NGS-based copy number analysis | Detect MYCN amplification on 2p on tumor tissue (1–3%) | [26,48,55] |
Genome-wide | Whole-genome sequencing | Screen RB1/MYCN-negative retinoblastoma | [55] |
RNA-Seq/Transcriptomics | Detect non-coding RNA changes, alternate splicing events, and novel RNAs | [62,63] |
9. Importance of Genetic Testing
10. Genotype–Phenotype Correlations
11. Surveillance and Follow-Up Strategy Based on RB1 Gene Status
12. Other Potential Genes Associated with Retinoblastoma
13. Genetic Counseling in Retinoblastoma
The Primary Aspects of Genetic Counseling for Retinoblastoma Are as Follows:
- The “patient” encompasses not just the affected individual but also parents, siblings, and extended family members. Genetic counseling is essential for both affected children and adult survivors at risk of secondary malignancies.
- Counseling Referrals: Patients with unilateral retinoblastoma, particularly those lacking a familial history, frequently receive insufficient counseling concerning the possibility of germline variants. Genetic testing is crucial for both bilateral and unilateral instances to guide treatment and management methods.
- Role of Genetic Counselor: Counselors evaluate risk, provide intricate information, and develop a tailored care plan. Effective counseling necessitates an awareness of retinoblastoma and collaboration within a multidisciplinary team.
- Preparing Families: Early introduction of families to the multidisciplinary team helps alleviate anxiety and enhance comprehension of the care process. Documenting familial lineage in a pedigree is essential for comprehending genetic risks.
- Confounding Factors: Conditions such as chromosome 13q14 deletions and mosaicism may confuse genetic evaluations. Low-penetrance mutations and changing familial histories require continuous risk reassessment.
- Prenatal Diagnosis: Families with identified RB1 variants should contemplate options such as prenatal diagnosis and preimplantation genetic diagnosis (PGD) for reproductive planning.
- Technological Limitations: Genetic testing has constraints, including the possibility of false negatives and undetected variants, which must be explicitly conveyed to families. Ultimately, proficient genetic counseling for retinoblastoma is essential for informed decision-making concerning therapy, recurrence risks, and family planning. Incorporating genetic knowledge into clinical practice can markedly enhance the care and support offered to impacted families. Progress in tumor DNA analysis and the comprehension of RB genetics will improve patient care and counseling methodologies.
14. Preimplantation Genetic Diagnosis to Prevent the Transmission of Pathogenic RB1 Variants in Retinoblastoma
15. Conclusion and Closing Remarks
The Following Are the Concluding Remarks from This Review:
- Genetic testing is pivotal in classifying retinoblastoma as heritable or sporadic, guiding prognosis, surveillance, and family counseling.
- It enables early diagnosis, personalized treatment, and monitoring, significantly improving patient outcomes.
- Bilateral retinoblastoma cases almost always harbor germline RB1 mutations, while ~15% of unilateral cases may also carry germline or mosaic mutations.
- Identifying RB1 mutations helps assess risks of new tumors, trilateral retinoblastoma, and secondary cancers.
- Surveillance strategies must be tailored based on RB1 status (H1, H0, H0*, and HX) to optimize follow-up frequency and interventions.
- Genetic counseling is essential for families, addressing reproductive planning and risk assessment for relatives.
- Prenatal and preimplantation genetic diagnosis (PGD) offer opportunities to prevent disease transmission in high-risk families.
- Advances in genomic technologies, such as whole-genome sequencing, enhance mutation detection and understanding of genotype–phenotype correlations.
- Low-penetrance RB1 variants and mosaicism complicate risk predictions, necessitating sensitive testing methods.
- MYCN-amplified retinoblastoma, though rare, requires early recognition due to its aggressive nature.
- Emerging genes beyond RB1 (e.g., BCOR, CREBBP) highlight the expanding genetic landscape of retinoblastoma.
- Multidisciplinary collaboration is crucial for integrating genetic insights into clinical practice.
- Precision medicine approaches, informed by genetic testing, reduce unnecessary interventions and healthcare costs.
- Continued research is needed to elucidate the roles of novel genes and epigenetic modifications in retinoblastoma.
- Ultimately, genetic testing empowers clinicians and families to make informed decisions, improving care and quality of life for retinoblastoma patients.
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Broaddus, E.; Topham, A.; Singh, A.D. Incidence of Retinoblastoma in the USA: 1975–2004. Br. J. Ophthalmol. 2009, 93, 21–23. [Google Scholar] [CrossRef]
- Aerts, I.; Lumbroso-Le Rouic, L.; Gauthier-Villars, M.; Brisse, H.; Doz, F.; Desjardins, L. Retinoblastoma. Orphanet J. Rare Dis. 2006, 1, 31. [Google Scholar] [CrossRef]
- Dimaras, H.; Corson, T.W.; Cobrinik, D.; White, A.; Zhao, J.; Munier, F.L.; Abramson, D.H.; Shields, C.L.; Chantada, G.L.; Njuguna, F.; et al. Retinoblastoma. Nat. Rev. Dis. Primers 2015, 1, 15021. [Google Scholar] [CrossRef]
- Fabian, I.D.; Abdallah, E.; Abdullahi, S.U.; Abdulqader, R.A.; Abdulrahaman, A.A.; Abouelnaga, S.; Ademola-Popoola, D.S.; Adio, A.; Afifi, M.A.; Afshar, A.R.; et al. The Global Retinoblastoma Outcome Study: A Prospective, Cluster-Based Analysis of 4064 Patients from 149 Countries. Lancet Glob. Health 2022, 10, e1128–e1140. [Google Scholar] [CrossRef]
- Shields, C.L.; Shields, J.A.; Shah, P. Retinoblastoma in Older Children. Ophthalmology 1991, 98, 395–399. [Google Scholar] [CrossRef]
- Nag, A.; Khetan, V. Retinoblastoma—A Comprehensive Review, Update and Recent Advances. Indian J. Ophthalmol. 2024, 72, 778–788. [Google Scholar] [CrossRef]
- Nummi, K.; Kivelä, T.T. Retinoblastoma in Finland, 1964–2014: Incidence and Survival. Br. J. Ophthalmol. 2021, 105, 63–69. [Google Scholar] [CrossRef] [PubMed]
- Zhu, H.; Zhao, M.; Zheng, J. Global, Regional, and National Burden of Retinoblastoma in Children Aged under 10 Years from 1990 to 2021 and Projections for Future Disease Burden. Sci. Rep. 2025, 15, 7488. [Google Scholar] [CrossRef] [PubMed]
- Hong, F.D.; Huang, H.J.; To, H.; Young, L.J.; Oro, A.; Bookstein, R.; Lee, E.Y.; Lee, W.H. Structure of the Human Retinoblastoma Gene. Proc. Natl. Acad. Sci. USA 1989, 86, 5502–5506. [Google Scholar] [CrossRef] [PubMed]
- Dunn, J.M.; Phillips, R.A.; Zhu, X.; Becker, A.; Gallie, B.L. Mutations in the RB1 Gene and Their Effects on Transcription. Mol. Cell. Biol. 1989, 9, 4596–4604. [Google Scholar] [CrossRef]
- Mallipatna, A.; Marino, M.; Singh, A.D. Genetics of Retinoblastoma. Asia-Pac. J. Ophthalmol. 2016, 5, 260–264. [Google Scholar] [CrossRef]
- Berry, J.L.; Polski, A.; Cavenee, W.K.; Dryja, T.P.; Murphree, A.L.; Gallie, B.L. The RB1 Story: Characterization and Cloning of the First Tumor Suppressor Gene. Genes 2019, 10, 879. [Google Scholar] [CrossRef]
- Nevins, J.R. The Rb/E2F Pathway and Cancer. Hum. Mol. Genet. 2001, 10, 699–703. [Google Scholar] [CrossRef] [PubMed]
- Xu, X.L.; Singh, H.P.; Wang, L.; Qi, D.-L.; Poulos, B.K.; Abramson, D.H.; Jhanwar, S.C.; Cobrinik, D. Rb Suppresses Human Cone-Precursor-Derived Retinoblastoma Tumours. Nature 2014, 514, 385–388. [Google Scholar] [CrossRef]
- Mendoza, P.R.; Grossniklaus, H.E. The Biology of Retinoblastoma. Prog. Mol. Biol. Transl. Sci. 2015, 134, 503–516. [Google Scholar] [CrossRef]
- Dimaras, H.; Khetan, V.; Halliday, W.; Orlic, M.; Prigoda, N.L.; Piovesan, B.; Marrano, P.; Corson, T.W.; Eagle, R.C.; Squire, J.A.; et al. Loss of RB1 Induces Non-Proliferative Retinoma: Increasing Genomic Instability Correlates with Progression to Retinoblastoma. Hum. Mol. Genet. 2008, 17, 1363–1372. [Google Scholar] [CrossRef] [PubMed]
- Collin, J.; Queen, R.; Zerti, D.; Steel, D.H.; Bowen, C.; Parulekar, M.; Lako, M. Dissecting the Transcriptional and Chromatin Accessibility Heterogeneity of Proliferating Cone Precursors in Human Retinoblastoma Tumors by Single Cell Sequencing—Opening Pathways to New Therapeutic Strategies? Investig. Ophthalmol. Vis. Sci. 2021, 62, 18. [Google Scholar] [CrossRef]
- Singh, H.P.; Wang, S.; Stachelek, K.; Lee, S.; Reid, M.W.; Thornton, M.E.; Craft, C.M.; Grubbs, B.H.; Cobrinik, D. Developmental Stage-Specific Proliferation and Retinoblastoma Genesis in RB-Deficient Human but Not Mouse Cone Precursors. Proc. Natl. Acad. Sci. USA 2018, 115, E9391–E9400. [Google Scholar] [CrossRef] [PubMed]
- Lohmann, D.R.; Gallie, B.L. Retinoblastoma. In GeneReviews®; Adam, M.P., Feldman, J., Mirzaa, G.M., Pagon, R.A., Wallace, S.E., Amemiya, A., Eds.; University of Washington: Seattle, WA, USA, 1993. [Google Scholar]
- Yamanaka, R.; Hayano, A.; Takashima, Y. Trilateral Retinoblastoma: A Systematic Review of 211 Cases. Neurosurg. Rev. 2019, 42, 39–48. [Google Scholar] [CrossRef]
- De Jong, M.C.; Kors, W.A.; De Graaf, P.; Castelijns, J.A.; Moll, A.C.; Kivelä, T. The Incidence of Trilateral Retinoblastoma: A Systematic Review and Meta-Analysis. Am. J. Ophthalmol. 2015, 160, 1116–1126.e5. [Google Scholar] [CrossRef]
- Mehta, M.; Sethi, S.; Pushker, N.; Kashyap, S.; Sen, S.; Bajaj, M.S.; Ghose, S. Retinoblastoma. Singap. Med. J. 2012, 53, 128–135. [Google Scholar]
- Melamud, A.; Palekar, R.; Singh, A. Retinoblastoma. Am. Fam. Physician 2006, 73, 1039–1044. [Google Scholar]
- Knudson, A.G. Mutation and Cancer: Statistical Study of Retinoblastoma. Proc. Natl. Acad. Sci. USA 1971, 68, 820–823. [Google Scholar] [CrossRef] [PubMed]
- Rao, R.; Honavar, S.G. Retinoblastoma. Indian J. Pediatr. 2017, 84, 937–944. [Google Scholar] [CrossRef]
- Rushlow, D.E.; Mol, B.M.; Kennett, J.Y.; Yee, S.; Pajovic, S.; Thériault, B.L.; Prigoda-Lee, N.L.; Spencer, C.; Dimaras, H.; Corson, T.W.; et al. Characterisation of Retinoblastomas without RB1 Mutations: Genomic, Gene Expression, and Clinical Studies. Lancet Oncol. 2013, 14, 327–334. [Google Scholar] [CrossRef] [PubMed]
- AlAli, A.; Kletke, S.; Gallie, B.; Lam, W.-C. Retinoblastoma for Pediatric Ophthalmologists. Asia-Pac. J. Ophthalmol. 2018, 7, 160–168. [Google Scholar] [CrossRef]
- Soliman, S.E.; Racher, H.; Zhang, C.; Macdonald, H.; Gallie, B.L. Genetics and Molecular Diagnostics in Retinoblastoma—An Update. Asia-Pac. J. Ophthalmol. 2017, 6, 197–207. [Google Scholar] [CrossRef]
- Rodriguez-Galindo, C.; Orbach, D.B.; VanderVeen, D. Retinoblastoma. Pediatr. Clin. N. Am. 2015, 62, 201–223. [Google Scholar] [CrossRef]
- Hung, C.-C.; Lin, S.-Y.; Lee, C.-N.; Chen, C.-P.; Lin, S.-P.; Chao, M.-C.; Chiou, S.-S.; Su, Y.-N. Low Penetrance of Retinoblastoma for p.V654L Mutation of the RB1 Gene. BMC Med. Genet. 2011, 12, 76. [Google Scholar] [CrossRef]
- Otterson, G.A.; Chen, W.; Coxon, A.B.; Khleif, S.N.; Kaye, F.J. Incomplete Penetrance of Familial Retinoblastoma Linked to Germ-Line Mutations That Result in Partial Loss of RB Function. Proc. Natl. Acad. Sci. USA 1997, 94, 12036–12040. [Google Scholar] [CrossRef]
- Gregersen, P.A.; Jensen, P.S.; Christensen, R.; Lohmann, D.; Racher, H.; Gallie, B.; Urbak, S.F. Retinoblastoma Caused by an RB1 Variant with Unusually Low Penetrance in a Danish Family. Eur. J. Med. Genet. 2024, 70, 104956. [Google Scholar] [CrossRef]
- Pai, V.; Muthusami, P.; Ertl-Wagner, B.; Shroff, M.M.; Parra-Fariñas, C.; Sainani, K.; Kletke, S.; Brundler, M.-A.; Mallipatna, A. Diagnostic Imaging for Retinoblastoma Cancer Staging: Guide for Providing Essential Insights for Ophthalmologists and Oncologists. RadioGraphics 2024, 44, e230125. [Google Scholar] [CrossRef]
- Zhou, M.; Tang, J.; Fan, J.; Wen, X.; Shen, J.; Jia, R.; Chai, P.; Fan, X. Recent Progress in Retinoblastoma: Pathogenesis, Presentation, Diagnosis and Management. Asia-Pac. J. Ophthalmol. 2024, 13, 100058. [Google Scholar] [CrossRef] [PubMed]
- Razek, A.A.K.A.; Elkhamary, S. MRI of Retinoblastoma. Br. J. Radiol. 2011, 84, 775–784. [Google Scholar] [CrossRef]
- Shields, C.L.; Shields, J.A. Diagnosis and Management of Retinoblastoma. Cancer Control 2004, 11, 317–327. [Google Scholar] [CrossRef]
- American Academy of Pediatrics; Section on Ophthalmology; American Association for Pediatric Ophthalmology and Strabismus; American Academy of Ophthalmology; American Association of Certified Orthoptists. Red Reflex Examination in Neonates, Infants, and Children. Pediatrics 2008, 122, 1401–1404. [Google Scholar] [CrossRef]
- Vempuluru, V.S.; Kaliki, S. Screening for Retinoblastoma: A Systematic Review of Current Strategies. Asia-Pac. J. Ophthalmol. 2021, 10, 192–199. [Google Scholar] [CrossRef] [PubMed]
- Santos Oliveira, J.; Catarino, S.; Magalhães, A.; Rocha, G.; Santos Silva, R. The Red Reflex Test and Leukocoria in Childhood. Acta Med. Port. 2024, 37, 638–646. [Google Scholar] [CrossRef] [PubMed]
- Kaliki, S.; Vempuluru, V.S.; Ghose, N.; Patil, G.; Viriyala, R.; Dhara, K.K. Artificial Intelligence and Machine Learning in Ocular Oncology: Retinoblastoma. Indian J. Ophthalmol. 2023, 71, 424–430. [Google Scholar] [CrossRef]
- Hülsenbeck, I.; Frank, M.; Biewald, E.; Kanber, D.; Lohmann, D.R.; Ketteler, P. Introduction of a Variant Classification System for Analysis of Genotype-Phenotype Relationships in Heritable Retinoblastoma. Cancers 2021, 13, 1605. [Google Scholar] [CrossRef]
- Lindeboom, R.G.H.; Supek, F.; Lehner, B. The Rules and Impact of Nonsense-Mediated mRNA Decay in Human Cancers. Nat. Genet. 2016, 48, 1112–1118. [Google Scholar] [CrossRef]
- Richards, S.; Aziz, N.; Bale, S.; Bick, D.; Das, S.; Gastier-Foster, J.; Grody, W.W.; Hegde, M.; Lyon, E.; Spector, E.; et al. Standards and Guidelines for the Interpretation of Sequence Variants: A Joint Consensus Recommendation of the American College of Medical Genetics and Genomics and the Association for Molecular Pathology. Genet. Med. 2015, 17, 405–424. [Google Scholar] [CrossRef]
- Amin, M.B.; Greene, F.L.; Edge, S.B.; Compton, C.C.; Gershenwald, J.E.; Brookland, R.K.; Meyer, L.; Gress, D.M.; Byrd, D.R.; Winchester, D.P. The Eighth Edition AJCC Cancer Staging Manual: Continuing to Build a Bridge from a Population-based to a More “Personalized” Approach to Cancer Staging. CA Cancer J. Clin. 2017, 67, 93–99. [Google Scholar] [CrossRef] [PubMed]
- Mallipatna, A.C.; Gallie, B.L.; Chévez Barrios, P.; Lumbroso Le Rouic, L.; Chantada, G.L.; Doz, F.; Brisse, H.J.; Munier, F.L.; Albert, D.M.; Català Mora, J.; et al. Retinoblastoma; Springer Nature Switzerland AG: Cham, Switzerland, 2017; ISBN 9783319406176. [Google Scholar]
- Mitter, D.; Ullmann, R.; Muradyan, A.; Klein-Hitpaß, L.; Kanber, D.; Õunap, K.; Kaulisch, M.; Lohmann, D. Genotype–Phenotype Correlations in Patients with Retinoblastoma and Interstitial 13q Deletions. Eur. J. Hum. Genet. 2011, 19, 947–958. [Google Scholar] [CrossRef]
- Castéra, L.; Dehainault, C.; Michaux, D.; Lumbroso-Le Rouic, L.; Aerts, I.; Doz, F.; Pelet, A.; Couturier, J.; Stoppa-Lyonnet, D.; Gauthier-Villars, M.; et al. Fine Mapping of Whole RB1 Gene Deletions in Retinoblastoma Patients Confirms PCDH8 as a Candidate Gene for Psychomotor Delay. Eur. J. Hum. Genet. 2013, 21, 460–464. [Google Scholar] [CrossRef] [PubMed]
- Singh, H.P.; Shayler, D.W.H.; Fernandez, G.E.; Thornton, M.E.; Craft, C.M.; Grubbs, B.H.; Cobrinik, D. An Immature, Dedifferentiated, and Lineage-Deconstrained Cone Precursor Origin of N-Myc–Initiated Retinoblastoma. Proc. Natl. Acad. Sci. USA 2022, 119, e2200721119. [Google Scholar] [CrossRef]
- Kooi, I.E.; Mol, B.M.; Massink, M.P.G.; De Jong, M.C.; De Graaf, P.; Van Der Valk, P.; Meijers-Heijboer, H.; Kaspers, G.J.L.; Moll, A.C.; Te Riele, H.; et al. A Meta-Analysis of Retinoblastoma Copy Numbers Refines the List of Possible Driver Genes Involved in Tumor Progression. PLoS ONE 2016, 11, e0153323. [Google Scholar] [CrossRef] [PubMed]
- Brichard, B.; Heusterspreute, M.; De Potter, P.; Chantrain, C.; Vermylen, C.; Sibille, C.; Gala, J.-L. Unilateral Retinoblastoma, Lack of Familial History and Older Age Does Not Exclude Germline RB1 Gene Mutation. Eur. J. Cancer 2006, 42, 65–72. [Google Scholar] [CrossRef]
- Berry, J.L.; Lewis, L.; Zolfaghari, E.; Green, S.; Le, B.H.A.; Lee, T.C.; Murphree, A.L.; Kim, J.W.; Jubran, R. Lack of Correlation between Age at Diagnosis and RB1 Mutations for Unilateral Retinoblastoma: The Importance of Genetic Testing. Ophthalmic Genet. 2018, 39, 408–410. [Google Scholar] [CrossRef]
- Zeschnigk, M. A Novel Real-Time PCR Assay for Quantitative Analysis of Methylated Alleles (QAMA): Analysis of the Retinoblastoma Locus. Nucleic Acids Res. 2004, 32, e125. [Google Scholar] [CrossRef]
- Joseph, B.; Mamatha, G.; Raman, G.; Shanmugam, M.P.; Kumaramanickavel, G. Methylation Status of RB1 Promoter in Indian Retinoblastoma Patients. Cancer Biol. Ther. 2004, 3, 184–187. [Google Scholar] [CrossRef] [PubMed]
- Price, E.A.; Kolkiewicz, K.; Patel, R.; Hashim, S.; Karaa, E.; Scheimberg, I.; Sagoo, M.S.; Reddy, M.A.; Onadim, Z. Detection and Reporting of RB1 Promoter Hypermethylation in Diagnostic Screening. Ophthalmic Genet. 2018, 39, 526–531. [Google Scholar] [CrossRef] [PubMed]
- Davies, H.R.; Broad, K.D.; Onadim, Z.; Price, E.A.; Zou, X.; Sheriff, I.; Karaa, E.K.; Scheimberg, I.; Reddy, M.A.; Sagoo, M.S.; et al. Whole-Genome Sequencing of Retinoblastoma Reveals the Diversity of Rearrangements Disrupting RB1 and Uncovers a Treatment-Related Mutational Signature. Cancers 2021, 13, 754. [Google Scholar] [CrossRef] [PubMed]
- Gudiseva, H.; Berry, J.L.; Polski, A.; Tummina, S.J.; O’Brien, J.M. Next-Generation Technologies and Strategies for the Management of Retinoblastoma. Genes 2019, 10, 1032. [Google Scholar] [CrossRef]
- Hoang, C.; Duong, H.-Q.; Nguyen, N.; Nguyen, S.; Nguyen, C.; Nguyen, B.; Phung, L.; Nguyen, D.; Pham, C.; Le Doan, T.; et al. Clinical Evaluation of RB1 Genetic Testing Reveals Novel Mutations in Vietnamese Patients with Retinoblastoma. Mol. Clin. Oncol. 2021, 15, 182. [Google Scholar] [CrossRef]
- Barbosa, R.H.; Aguiar, F.C.C.; Silva, M.F.L.; Costa, R.A.; Vargas, F.R.; Lucena, E.; Carvalho De Souza, M.; De Almeida, L.M.; Bittar, C.; Ashton Prolla, P.; et al. Screening of RB1 Alterations in Brazilian Patients with Retinoblastoma and Relatives with Retinoma: Phenotypic and Genotypic Associations. Investig. Ophthalmol. Vis. Sci. 2013, 54, 3184. [Google Scholar] [CrossRef]
- Quiñonez-Silva, G.; Dávalos-Salas, M.; Recillas-Targa, F.; Ostrosky-Wegman, P.; Aranda, D.A.; Benítez-Bribiesca, L. Monoallelic Germline Methylation and Sequence Variant in the Promoter of the RB1 Gene: A Possible Constitutive Epimutation in Hereditary Retinoblastoma. Clin. Epigenetics 2016, 8, 1. [Google Scholar] [CrossRef]
- Rushlow, D.; Piovesan, B.; Zhang, K.; Prigoda-Lee, N.L.; Marchong, M.N.; Clark, R.D.; Gallie, B.L. Detection of Mosaic RB1 Mutations in Families with Retinoblastoma. Hum. Mutat. 2009, 30, 842–851. [Google Scholar] [CrossRef]
- Chen, Z.; Moran, K.; Richards-Yutz, J.; Toorens, E.; Gerhart, D.; Ganguly, T.; Shields, C.L.; Ganguly, A. Enhanced Sensitivity for Detection of Low-Level Germline Mosaic RB1 Mutations in Sporadic Retinoblastoma Cases Using Deep Semiconductor Sequencing. Hum. Mutat. 2014, 35, 384–391. [Google Scholar] [CrossRef]
- Liu, Y.; Hu, W.; Xie, Y.; Tang, J.; Ma, H.; Li, J.; Nie, J.; Wang, Y.; Gao, Y.; Cheng, C.; et al. Single-Cell Transcriptomics Enable the Characterization of Local Extension in Retinoblastoma. Commun. Biol. 2024, 7, 11. [Google Scholar] [CrossRef]
- Elchuri, S.V.; Rajasekaran, S.; Miles, W.O. RNA-Sequencing of Primary Retinoblastoma Tumors Provides New Insights and Challenges Into Tumor Development. Front. Genet. 2018, 9, 170. [Google Scholar] [CrossRef]
- Jiménez, I.; Frouin, É.; Chicard, M.; Dehainault, C.; Le Gall, J.; Benoist, C.; Gauthier, A.; Lapouble, E.; Houdayer, C.; Radvanyi, F.; et al. Molecular Diagnosis of Retinoblastoma by Circulating Tumor DNA Analysis. Eur. J. Cancer 2021, 154, 277–287. [Google Scholar] [CrossRef]
- Joseph, S.; Pike, S.; Peng, C.-C.; Brown, B.; Xu, L.; Berry, J.L.; Chévez-Barrios, P.; Hubbard, G.B.; Grossniklaus, H.E. Retinoblastoma with MYCN Amplification Diagnosed from Cell-Free DNA in the Aqueous Humor. Ocul. Oncol. Pathol. 2024, 10, 15–24. [Google Scholar] [CrossRef]
- Scheffer, H.; te Meerman, G.J.; Kruize, Y.C.; van den Berg, A.H.; Penninga, D.P.; Tan, K.E.; der Kinderen, D.J.; Buys, C.H. Linkage Analysis of Families with Hereditary Retinoblastoma: Nonpenetrance of Mutation, Revealed by Combined Use of Markers within and Flanking the RB1 Gene. Am. J. Hum. Genet. 1989, 45, 252–260. [Google Scholar]
- Greger, V.; Kerst, S.; Messmer, E.; Hopping, W.; Passarge, E.; Horsthemke, B. Application of Linkage Analysis to Genetic Counselling in Families with Hereditary Retinoblastoma. J. Med. Genet. 1988, 25, 217–221. [Google Scholar] [CrossRef]
- Ramprasad, V.L.; Madhavan, J.; Murugan, S.; Sujatha, J.; Suresh, S.; Sharma, T.; Kumaramanickavel, G. Retinoblastoma in India: Microsatellite Analysis and Its Application in Genetic Counseling. Mol. Diagn. Ther. 2007, 11, 63–70. [Google Scholar] [CrossRef] [PubMed]
- Dommering, C.J.; Marees, T.; Van Der Hout, A.H.; Imhof, S.M.; Meijers-Heijboer, H.; Ringens, P.J.; Van Leeuwen, F.E.; Moll, A.C. RB1 Mutations and Second Primary Malignancies after Hereditary Retinoblastoma. Fam. Cancer 2012, 11, 225–233. [Google Scholar] [CrossRef] [PubMed]
- Soliman, S.E.; Dimaras, H.; Khetan, V.; Gardiner, J.A.; Chan, H.S.L.; Héon, E.; Gallie, B.L. Prenatal versus Postnatal Screening for Familial Retinoblastoma. Ophthalmology 2016, 123, 2610–2617. [Google Scholar] [CrossRef] [PubMed]
- Soliman, S.E.; VandenHoven, C.; MacKeen, L.D.; Gallie, B.L. Secondary Prevention of Retinoblastoma Revisited. Ophthalmology 2020, 127, 122–127. [Google Scholar] [CrossRef]
- Dommering, C.J.; Mol, B.M.; Moll, A.C.; Burton, M.; Cloos, J.; Dorsman, J.C.; Meijers-Heijboer, H.; Van Der Hout, A.H. RB1 Mutation Spectrum in a Comprehensive Nationwide Cohort of Retinoblastoma Patients. J. Med. Genet. 2014, 51, 366–374. [Google Scholar] [CrossRef]
- Frenkel, S.; Zloto, O.; Sagi, M.; Fraenkel, A.; Pe’er, J. Genotype-Phenotype Correlation in the Presentation of Retinoblastoma among 149 Patients. Exp. Eye Res. 2016, 146, 313–317. [Google Scholar] [CrossRef]
- Taylor, M.; Dehainault, C.; Desjardins, L.; Doz, F.; Levy, C.; Sastre, X.; Couturier, J.; Stoppa-Lyonnet, D.; Houdayer, C.; Gauthier-Villars, M. Genotype–Phenotype Correlations in Hereditary Familial Retinoblastoma. Hum. Mutat. 2007, 28, 284–293. [Google Scholar] [CrossRef]
- Ketteler, P.; Hülsenbeck, I.; Frank, M.; Schmidt, B.; Jöckel, K.-H.; Lohmann, D.R. The Impact of RB1 Genotype on Incidence of Second Tumours in Heritable Retinoblastoma. Eur. J. Cancer 2020, 133, 47–55. [Google Scholar] [CrossRef]
- Klutz, M.; Brockmann, D.; Lohmann, D.R. A Parent-of-Origin Effect in Two Families with Retinoblastoma Is Associated with a Distinct Splice Mutation in the RB1 Gene. Am. J. Hum. Genet. 2002, 71, 174–179. [Google Scholar] [CrossRef]
- Eloy, P.; Dehainault, C.; Sefta, M.; Aerts, I.; Doz, F.; Cassoux, N.; Lumbroso Le Rouic, L.; Stoppa-Lyonnet, D.; Radvanyi, F.; Millot, G.A.; et al. A Parent-of-Origin Effect Impacts the Phenotype in Low Penetrance Retinoblastoma Families Segregating the c.1981C>T/p.Arg661Trp Mutation of RB1. PLoS Genet. 2016, 12, e1005888. [Google Scholar] [CrossRef]
- Imperatore, V.; Pinto, A.M.; Gelli, E.; Trevisson, E.; Morbidoni, V.; Frullanti, E.; Hadjistilianou, T.; De Francesco, S.; Toti, P.; Gusson, E.; et al. Parent-of-Origin Effect of Hypomorphic Pathogenic Variants and Somatic Mosaicism Impact on Phenotypic Expression of Retinoblastoma. Eur. J. Hum. Genet. 2018, 26, 1026–1037. [Google Scholar] [CrossRef]
- Kanber, D.; Berulava, T.; Ammerpohl, O.; Mitter, D.; Richter, J.; Siebert, R.; Horsthemke, B.; Lohmann, D.; Buiting, K. The Human Retinoblastoma Gene Is Imprinted. PLoS Genet. 2009, 5, e1000790. [Google Scholar] [CrossRef] [PubMed]
- Dehainault, C.; Garancher, A.; Castéra, L.; Cassoux, N.; Aerts, I.; Doz, F.; Desjardins, L.; Lumbroso, L.; Montes De Oca, R.; Almouzni, G.; et al. The Survival Gene MED4 Explains Low Penetrance Retinoblastoma in Patients with Large RB1 Deletion. Hum. Mol. Genet. 2014, 23, 5243–5250. [Google Scholar] [CrossRef] [PubMed]
- Gelkopf, M.J.; Avramov, I.; Baddeliyanage, R.; Ristevski, I.; Johnson, S.A.; Flegg, K.; Dimaras, H. The Canadian Retinoblastoma Research Advisory Board: A Framework for Patient Engagement. Res. Involv. Engag. 2020, 6, 7. [Google Scholar] [CrossRef] [PubMed]
- Skalet, A.H.; Gombos, D.S.; Gallie, B.L.; Kim, J.W.; Shields, C.L.; Marr, B.P.; Plon, S.E.; Chévez-Barrios, P. Screening Children at Risk for Retinoblastoma. Ophthalmology 2018, 125, 453–458. [Google Scholar] [CrossRef]
- Temming, P.; Viehmann, A.; Biewald, E.; Lohmann, D.R. Sporadic Unilateral Retinoblastoma or First Sign of Bilateral Disease? Br. J. Ophthalmol. 2013, 97, 475–480. [Google Scholar] [CrossRef] [PubMed]
- Temming, P.; Viehmann, A.; Arendt, M.; Eisele, L.; Spix, C.; Bornfeld, N.; Sauerwein, W.; Jöckel, K.-H.; Lohmann, D.R. Pediatric Second Primary Malignancies after Retinoblastoma Treatment: Pediatric Second Malignancies After Retinoblastoma. Pediatr. Blood Cancer 2015, 62, 1799–1804. [Google Scholar] [CrossRef]
- Qureshi, S.; Francis, J.H.; Haque, S.S.; Dunkel, I.J.; Souweidane, M.M.; Friedman, D.N.; Abramson, D.H. Magnetic Resonance Imaging Screening for Trilateral Retinoblastoma. Ophthalmol. Retin. 2020, 4, 327–335. [Google Scholar] [CrossRef]
- Hershcovici, R.; Frenkel, S.; Goldstein, G.; Pe’er, J.; Eiger-Moscovich, M. Brain MRI Screening for Bilateral Retinoblastoma Patients. Semin. Ophthalmol. 2025, 40, 668–673. [Google Scholar] [CrossRef]
- Habib, L.A.; Francis, J.H.; Fabius, A.W.; Gobin, P.Y.; Dunkel, I.J.; Abramson, D.H. Second Primary Malignancies in Retinoblastoma Patients Treated with Intra-Arterial Chemotherapy: The First 10 Years. Br. J. Ophthalmol. 2018, 102, 272–275. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.; Benavente, C.A.; McEvoy, J.; Flores-Otero, J.; Ding, L.; Chen, X.; Ulyanov, A.; Wu, G.; Wilson, M.; Wang, J.; et al. A Novel Retinoblastoma Therapy from Genomic and Epigenetic Analyses. Nature 2012, 481, 329–334. [Google Scholar] [CrossRef]
- Francis, J.H.; Levin, A.M.; Abramson, D.H. Update on Ophthalmic Oncology 2014: Retinoblastoma and Uveal Melanoma. Asia-Pac. J. Ophthalmol. 2016, 5, 368–382. [Google Scholar] [CrossRef]
- Afshar, A.R.; Pekmezci, M.; Bloomer, M.M.; Cadenas, N.J.; Stevers, M.; Banerjee, A.; Roy, R.; Olshen, A.B.; Van Ziffle, J.; Onodera, C.; et al. Next-Generation Sequencing of Retinoblastoma Identifies Pathogenic Alterations beyond RB1 Inactivation That Correlate with Aggressive Histopathologic Features. Ophthalmology 2020, 127, 804–813. [Google Scholar] [CrossRef]
- Marković, L.; Bukovac, A.; Varošanec, A.M.; Šlaus, N.; Pećina-Šlaus, N. Genetics in Ophthalmology: Molecular Blueprints of Retinoblastoma. Hum. Genom. 2023, 17, 82. [Google Scholar] [CrossRef]
- McEvoy, J.D.; Dyer, M.A. Genetic and Epigenetic Discoveries in Human Retinoblastoma. Crit. Rev. Oncog. 2015, 20, 217–225. [Google Scholar] [CrossRef] [PubMed]
- Thériault, B.L.; Dimaras, H.; Gallie, B.L.; Corson, T.W. The Genomic Landscape of Retinoblastoma: A Review. Clin. Exp. Ophthalmol. 2014, 42, 33–52. [Google Scholar] [CrossRef] [PubMed]
- Bowles, E.; Corson, T.W.; Bayani, J.; Squire, J.A.; Wong, N.; Lai, P.B.-S.; Gallie, B.L. Profiling Genomic Copy Number Changes in Retinoblastoma beyond Loss of RB1. Genes Chromosomes Cancer 2007, 46, 118–129. [Google Scholar] [CrossRef]
- Corson, T.W.; Huang, A.; Tsao, M.-S.; Gallie, B.L. KIF14 Is a Candidate Oncogene in the 1q Minimal Region of Genomic Gain in Multiple Cancers. Oncogene 2005, 24, 4741–4753. [Google Scholar] [CrossRef]
- Marchong, M.N.; Chen, D.; Corson, T.W.; Lee, C.; Harmandayan, M.; Bowles, E.; Chen, N.; Gallie, B.L. Minimal 16q Genomic Loss Implicates Cadherin-11 in Retinoblastoma. Mol. Cancer Res. 2004, 2, 495–503. [Google Scholar] [CrossRef]
- Cao, Q.; Wang, Y.; Song, X.; Yang, W. Association between MDM2 Rs2279744, MDM2 Rs937283, and P21 Rs1801270 Polymorphisms and Retinoblastoma Susceptibility. Medicine 2018, 97, e13547. [Google Scholar] [CrossRef]
- Carvalho, I.N.S.R.; Reis, A.H.O.; Dos Santos, A.C.E.; Vargas, F.R. A Polymorphism in Mir-34b/c as a Potential Biomarker for Early Onset of Hereditary Retinoblastoma. CBM 2017, 18, 313–317. [Google Scholar] [CrossRef]
- Bisht, S.; Chawla, B.; Kumar, A.; Vijayan, V.; Kumar, M.; Sharma, P.; Dada, R. Identification of Novel Genes by Targeted Exome Sequencing in Retinoblastoma. Ophthalmic Genet. 2022, 43, 771–788. [Google Scholar] [CrossRef]
- Dhanjal, S.; Kakourou, G.; Mamas, T.; Saleh, N.; Doshi, A.; Gotts, S.; Nuttall, S.; Fordham, K.; Serhal, P.; Delhanty, J.; et al. Preimplantation Genetic Diagnosis for Retinoblastoma Predisposition. Br. J. Ophthalmol. 2007, 91, 1090–1091. [Google Scholar] [CrossRef] [PubMed]
- Schofield, D.; Zeppel, M.J.B.; Staffieri, S.; Shrestha, R.N.; Jelovic, D.; Lee, E.; Jamieson, R.V. Preimplantation Genetic Diagnosis for Retinoblastoma Survivors: A Cost-Effectiveness Study. Reprod. Biomed. Soc. Online 2020, 10, 37–45. [Google Scholar] [CrossRef] [PubMed]
Category | RB1 Gene Status | Reference Study No. |
---|---|---|
H0 | Patients who did not inherit a known familial germline RB1 pathogenic variant confirmed by molecular genetic testing and have normal RB1 alleles in blood, tested with demonstrated high-sensitivity molecular genetic assays | [19,44,45] |
H0* | Is assigned in patients with unilateral retinoblastoma or retinoma with no germline RB1 pathogenic variant identified on molecular genetic testing but have <1% residual risk of an RB1 pathogenic variant due to undetectable mosaicism | |
H1 | Presence of bilateral retinoblastoma, trilateral retinoblastoma (retinoblastoma with intracranial central nervous system midline embryonic tumor), a patient with a family history of retinoblastoma, or molecular identification of a germline RB1 pathogenic mutation. | |
HX | Patients with unknown or insufficient evidence of a germline RB1 pathogenic variant |
Why Test? | Key Benefits |
---|---|
Identify heritable cases | ~100% of bilateral and ~15% of unilateral cases have germline RB1 mutations (H1), even without family history |
Guide prognosis | Germline RB1 mutations are linked to the risk of new tumors (both eyes), trilateral retinoblastoma, and secondary non-ocular cancers |
Support targeted surveillance | Helps tailor follow-up schedules for patients and at-risk relatives |
Enable family counseling | Informs reproductive decisions, including prenatal or preimplantation genetic testing |
Prevent unnecessary testing | RB1-negative (H0) relatives avoid unnecessary exams, anesthesia, and imaging |
Allow early intervention | Prenatal H1 diagnosis enables early delivery and optical coherence tomography-guided detection of subclinical tumors for timely laser therapy |
Reduce costs | Improves care efficiency and reduces long-term screening and treatment costs |
RB1 Status (Clinical Scenario) | Definition | Surveillance for Patient | Clinical Evaluation Frequency | Family Follow-Up | Genetic Counseling | Reference Study No. |
---|---|---|---|---|---|---|
H1 (Retinoblastoma) | RB with germline RB1 mutation | EUA and long-term cancer surveillance | Birth–1 yr: every 2–4 weeks; 1–2 yrs: every 1–2 months; 2–5 yrs: every 3–6 months; annual exams thereafter. Brain MRI every 6 months until age 5 for trilateral RB | Predictive testing for siblings/offspring; follow EUA if positive | Strongly recommended; 50% risk of transmission | [11,19,28,45,72,81,82,83,84] |
H1 (Retinoma) | Retinoma (no active RB) with germline RB1 mutation | No ocular treatment needed; long-term surveillance for second cancers | Annual physical exam; oncology review as per age and treatment history | Genetic testing for family members; EUA for at-risk children up to age 5 | Strongly recommended; same transmission risk as H1 | |
H1 (Non-ocular tumor) | RB1 mutation carrier with non-ocular malignancy | Surveillance for second tumors; lifestyle and cancer prevention counseling | Annual follow-up; MRI or targeted screening if high-risk tumor type | Genetic counseling and RB1 testing in first-degree relatives | Strongly recommended, especially if no ocular RB history | |
H0 | No RB1 mutation in blood/tumor; confirmed somatic | No ocular or systemic follow-up needed post-treatment | None (unless clinically indicated) | No family testing or screening required | Not needed; no risk to offspring | |
H0* | No mutation in blood; tumor not tested | Surveillance to rule out mosaicism | Every 3 months until age 3; every 6 months until age 5 | Case-by-case counseling; test relatives only if signs/symptoms emerge | Generally low risk; tailored counseling is advised | |
HX | Genetic testing is incomplete or unavailable | Follow clinical risk; manage as H1 if high risk | Same as H1 until testing is completed | Testing and counseling should be offered | Strongly recommended; risk unclear; testing advised before pregnancy planning |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Abu-Amero, K.K.; Kondkar, A.A.; Almontashiri, N.A.M.; Khan, A.M.; Maktabi, A.M.Y.; Hameed, S.; AlMesfer, S. Genetics of Retinoblastoma: An Overview and Significance of Genetic Testing in Clinical Practice. Genes 2025, 16, 1031. https://doi.org/10.3390/genes16091031
Abu-Amero KK, Kondkar AA, Almontashiri NAM, Khan AM, Maktabi AMY, Hameed S, AlMesfer S. Genetics of Retinoblastoma: An Overview and Significance of Genetic Testing in Clinical Practice. Genes. 2025; 16(9):1031. https://doi.org/10.3390/genes16091031
Chicago/Turabian StyleAbu-Amero, Khaled K., Altaf A. Kondkar, Naif A. M. Almontashiri, Abdullah M. Khan, Azza M. Y. Maktabi, Syed Hameed, and Saleh AlMesfer. 2025. "Genetics of Retinoblastoma: An Overview and Significance of Genetic Testing in Clinical Practice" Genes 16, no. 9: 1031. https://doi.org/10.3390/genes16091031
APA StyleAbu-Amero, K. K., Kondkar, A. A., Almontashiri, N. A. M., Khan, A. M., Maktabi, A. M. Y., Hameed, S., & AlMesfer, S. (2025). Genetics of Retinoblastoma: An Overview and Significance of Genetic Testing in Clinical Practice. Genes, 16(9), 1031. https://doi.org/10.3390/genes16091031