CSN1S1 and CSN1S2: Two Remarkable Examples of Genetically Modulated Alternative Splicing via Identification of Allele-Specific Splicing Events
Abstract
1. Introduction
2. mRNA Splicing
2.1. Alternative Splicing
2.2. Allele-Specific Splicing
3. CSN1S1 and CSN1S2 Gene Structure
4. Variants Involving Canonical Splice Sites at CSN1S1 and CSN1S2 Loci Affecting Pre-mRNA Splicing
4.1. Polymorphisms at CSN1S1 Locus
4.2. Variants Involving Canonical Consensus Splicing Regulatory Sequences at CSN1S1 Locus
4.2.1. Bos taurus
4.2.2. Ovis aries
4.2.3. Capra hircus
4.2.4. Bubalus bubalis
4.2.5. Camelus dromedarius
4.3. Polymorphisms at CSN1S2 Locus
4.4. Variants Involving Consensus Splicing Regulatory Sequences at CSN1S2 Locus
4.4.1. Bos taurus
4.4.2. Capra hircus
4.4.3. Bubalus bubalis
4.4.4. Equus asinus
4.4.5. Camelus dromedarius
5. Discussion and Future Perspectives
Author Contributions
Funding
Conflicts of Interest
Abbreviations
pre-mRNA | precursor messenger RNA |
snRNPs | small nuclear ribonucleoprotein particles |
SINEs | short interspersed elements |
LINEs | long interspersed elements |
bp | base pairs |
PTCs | premature termination codons |
References
- Jiang, W.; Chen, L. Alternative splicing: Human disease and quantitative analysis from high-throughput sequencing. Comput. Struct. Biotechnol. J. 2020, 24, 183–195. [Google Scholar] [CrossRef]
- Gamazon, E.R.; Stranger, B.E. Genomics of alternative splicing: Evolution, development and pathophysiology. Hum. Genet. 2014, 133, 679–687. [Google Scholar] [CrossRef]
- Sibley, C.R.; Blazquez, L.; Ule, J. Lessons from non-canonical splicing. Nat. Rev. Genet. 2016, 17, 407–421. [Google Scholar] [CrossRef]
- Cosenza, G.; Pauciullo, A. A Comprehensive Analysis of CSN1S2 I and II Transcripts Reveals Significant Genetic Diversity and Allele-Specific Exon Skipping in Ragusana and Amiatina Donkeys. Animals 2024, 14, 2918. [Google Scholar] [CrossRef]
- López-Bigas, N.; Audit, B.; Ouzounis, C.; Parra, G.; Guigó, R. Are splicing mutations the most frequent cause of hereditary disease? FEBS Lett. 2005, 28, 1900–1903. [Google Scholar] [CrossRef]
- Raponi, M.; Baralle, D. Alternative splicing: Good and bad effects of translationally silent substitutions. FEBS J. 2010, 277, 836–840. [Google Scholar] [CrossRef]
- Ramunno, L.; Cosenza, G.; Rando, A.; Pauciullo, A.; Illario, R.; Gallo, D.; Di Berardino, D.; Masina, P. Comparative Analysis of Gene Sequence of Goat CSN1S1 F and N Alleles and Characterization of CSN1S1 Transcript Variants in Mammary Gland. Gene 2005, 345, 289–299. [Google Scholar] [CrossRef]
- Johnsen, L.B.; Rasmussen, L.K.; Petersen, T.E.; Berglund, L. Characterization of Three Types of Human α(S1)-Casein MRNA Transcripts. Biochem. J. 1995, 309, 237–242. [Google Scholar] [CrossRef]
- Pauciullo, A.; Erhardt, G. Molecular Characterization of the Llamas (Lama Glama) Casein Cluster Genes Transcripts (CSN1S1, CSN2, CSN1S2, CSN3) and Regulatory Regions. PLoS ONE 2015, 10, e0124963. [Google Scholar] [CrossRef]
- Wang, Y.; Liu, J.; Huang, B.; Xu, Y.M.; Li, J.; Huang, L.F.; Lin, J.; Zhang, J.; Min, Q.H.; Yang, W.M.; et al. Mechanism of Alternative Splicing and its Regulation. Biomed. Rep. 2015, 3, 152–158. [Google Scholar] [CrossRef] [PubMed]
- Kadri, N.K.; Mapel, X.M.; Pausch, H. The Intronic Branch Point Sequence Is under Strong Evolutionary Constraint in the Bovine and Human Genome. Commun. Biol. 2021, 4, 1206. [Google Scholar] [CrossRef]
- Riolo, G.; Cantara, S.; Ricci, C. What’s Wrong in a Jump? Prediction and Validation of Splice Site Variants. Methods Protoc. 2021, 4, 62. [Google Scholar] [CrossRef]
- Marasco, L.E.; Kornblihtt, A.R. The Physiology of Alternative Splicing. Nat. Rev. Mol. Cell Biol. 2023, 24, 242–254. [Google Scholar] [CrossRef] [PubMed]
- Anna, A.; Monika, G. Splicing Mutations in Human Genetic Disorders: Examples, Detection, and Confirmation. J. Appl. Genet. 2018, 59, 253–268. [Google Scholar] [CrossRef]
- Burset, M.; Seledtsov, I.A.; Solovyev, V.V. Analysis of Canonical and Non-Canonical Splice Sites in Mammalian Genomes. Nucleic Acids Res. 2000, 28, 4364–4375. [Google Scholar] [CrossRef]
- Sickmier, E.A.; Frato, K.E.; Shen, H.; Paranawithana, S.R.; Green, M.R.; Kielkopf, C.L. Structural Basis for Polypyrimidine Tract Recognition by the Essential Pre-mRNA Splicing Factor U2AF65. Mol. Cell 2006, 23, 49–59. [Google Scholar] [CrossRef]
- Welden, J.; Stamm, S. Pre-mRNA structures forming circular RNAs. Biochim. Biophys. Acta (BBA) Gene Regul. Mech. 2019, 1862, 194410. [Google Scholar] [CrossRef]
- Zhang, P.; Zhang, X.O.; Jiang, T.; Cai, L.; Huang, X.; Liu, Q.; Li, D.; Lu, A.; Liu, Y.; Xue, W.; et al. Comprehensive identification of alternative back-splicing in human tissue transcriptomes. Nucleic Acids Res. 2020, 28, 1779–1789. [Google Scholar] [CrossRef] [PubMed]
- Zhou, W.Y.; Cai, Z.R.; Liu, J.; Wang, D.S.; Ju, H.Q.; Xu, R.H. Circular RNA: Metabolism, functions and interactions with proteins. Mol. Cancer 2020, 14, 172. [Google Scholar] [CrossRef]
- Pan, Q.; Shai, O.; Lee, L.J.; Frey, B.J.; Blencowe, B.J. Deep Surveying of Alternative Splicing Complexity in the Human Transcriptome by High-Throughput Sequencing. Nat. Genet. 2008, 40, 1413–1415. [Google Scholar] [CrossRef] [PubMed]
- Keren, H.; Lev-Maor, G.; Ast, G. Alternative Splicing and Evolution: Diversification, Exon Definition and Function. Nat. Rev. Genet. 2010, 11, 345–355. [Google Scholar] [CrossRef]
- Wang, Z.; Burge, C.B. Splicing Regulation: From a Parts List of Regulatory Elements to an Integrated Splicing Code. RNA 2008, 14, 802–813. [Google Scholar] [CrossRef]
- Lenasi, T.; Peterlin, B.M.; Dovc, P. Distal Regulation of Alternative Splicing by Splicing Enhancer in Equine β-Casein Intron 1. RNA 2006, 12, 498. [Google Scholar] [CrossRef]
- O’Neill, J.P.; Rogan, P.K.; Cariello, N.; Nicklas, J.A. Mutations that alter RNA splicing of the human HPRT gene: A review of the spectrum. Mutat. Res. 1998, 411, 179–214. [Google Scholar] [CrossRef]
- Pandey, S.; Shreya, S.; Jain, B.P. Post-Transcriptional Gene Regulation: An Overview. Post Transcr. Gene Regul. Hum. Dis. 2022, 32, 33–53. [Google Scholar] [CrossRef]
- Kornblihtt, A.R.; Schor, I.E.; Alló, M.; Dujardin, G.; Petrillo, E.; Muñoz, M.J. Alternative Splicing: A Pivotal Step between Eukaryotic Transcription and Translation. Nat. Rev. Mol. Cell Biol. 2013, 14, 153–165. [Google Scholar] [CrossRef]
- Park, E.; Pan, Z.; Zhang, Z.; Lin, L.; Xing, Y. The Expanding Landscape of Alternative Splicing Variation in Human Populations. Am. J. Hum. Genet. 2018, 102, 11–26. [Google Scholar] [CrossRef]
- Krawczak, M.; Thomas, N.S.T.; Hundrieser, B.; Mort, M.; Wittig, M.; Hampe, J.; Cooper, D.N. Single Base-Pair Substitutions in Exon-Intron Junctions of Human Genes: Nature, Distribution, and Consequences for MRNA Splicing. Hum. Mutat. 2007, 28, 150–158. [Google Scholar] [CrossRef]
- Nembaware, V.; Wolfe, K.H.; Bettoni, F.; Kelso, J.; Seoighe, C. Allele-Specific Transcript Isoforms in Human. FEBS Lett. 2004, 577, 233–238. [Google Scholar] [CrossRef]
- Nembaware, V.; Lupindo, B.; Schouest, K.; Spillane, C.; Scheffler, K.; Seoighe, C. Genome—Wide Survey of Allele-Specific Splicing in Humans. BMC Genom. 2008, 9, 265. [Google Scholar] [CrossRef]
- Richards, S.; Aziz, N.; Bale, S.; Bick, D.; Das, S.; Gastier-Foster, J.; Grody, W.W.; Hegde, M.; Lyon, E.; Spector, E.; et al. ACMG Laboratory Quality Assurance Committee, Standards and Guidelines for the Interpretation of Sequence Variants: A Joint Consensus Recommendation of the American College of Medical Genetics and Genomics and the Association for Molecular Pathology. Genet. Med. 2015, 17, 405–424. [Google Scholar] [CrossRef]
- Ritchie, D.B.; Schellenberg, M.J.; MacMillan, A.M. Spliceosome Structure: Piece by Piece. Biochim. Biophys. Acta Gene Regul. Mech. 2009, 1789, 624–633. [Google Scholar] [CrossRef]
- Coolidge, C.J.; Seely, R.J.; Patton, J.G. Functional Analysis of the Polypyrimidine Tract in Pre-mRNA Splicing. Nucleic Acids Res. 1997, 25, 888–895. [Google Scholar] [CrossRef]
- Cosenza, G.; Martin, P.; Garro, G.; Gallo, D.; Auzino, B.; Ciampolini, R.; Pauciullo, A. A Novel Allelic Donkey β-Lactoglobulin I Protein Isoform Generated by a Non-AUG Translation Initiation Codon Is Associated with a Nonsynonymous SNP. J. Dairy Sci. 2023, 106, 4158–4170. [Google Scholar] [CrossRef] [PubMed]
- Comunian, T.A.; Favaro-Trindade, C.S. Microencapsulation Using Biopolymers as an Alternative to Produce Food Enhanced with Phytosterols and Omega-3 Fatty Acids: A Review. Food Hydrocoll. 2016, 61, 442–457. [Google Scholar] [CrossRef]
- Threadgill, D.W.; Womack, J.E. Genomic Analysis of the Major Bovine Milk Protein Genes. Nucleic Acids Res. 1990, 18, 6935–6942. [Google Scholar] [CrossRef]
- Leveziel, H.; Metenier, L.; Guerin, G.; Cullen, P.; Provot, C.; Bertaud, M.; Mercier, J.C. Restriction Fragment Length Polymorphism of Ovine Casein Genes: Close Linkage between the Alpha S1-, Alpha S2-, Beta- and Kappa-Casein Loci. Anim. Genet. 1991, 22, 1–10. [Google Scholar] [CrossRef]
- Bevilacqua, C.; Ferranti, P.; Garro, G.; Veltri, C.; Lagonigro, R.; Leroux, C.; Pietrolà, E.; Addeo, F.; Pilla, F.; Chianese, L.; et al. Interallelic Recombination is Probably Responsible for the Occurrence of a New αs1-Casein Variant Found in the Goat Species. Eur. J. Biochem. 2002, 269, 1293–1303. [Google Scholar] [CrossRef] [PubMed]
- Cosenza, G.; Gallo, D.; Auzino, B.; Gaspa, G.; Pauciullo, A. Complete CSN1S2 Characterization, Novel Allele Identification and Association with Milk Fatty Acid Composition in River Buffalo. Front. Genet. 2021, 11, 622494. [Google Scholar] [CrossRef]
- Rehman, S.U.; Hassan, F.U.; Luo, X.; Li, Z.; Liu, Q. Whole-Genome Sequencing and Characterization of Buffalo Genetic Resources: Recent Advances and Future Challenges. Animals 2021, 11, 904. [Google Scholar] [CrossRef]
- Pauciullo, A.; Shuiep, E.T.; Ogah, M.D.; Cosenza, G.; Stasio, L.D.; Erhardt, G. Casein Gene Cluster in Camelids: Comparative Genome Analysis and New Findings on Haplotype Variability and Physical Mapping. Front. Genet. 2019, 10, 748. [Google Scholar] [CrossRef]
- Stewart, A.F.; Bonsing, J.; Beattie, C.W.; Shah, F.; Willis, I.M.; Mackinlay, A.G. Complete Nucleotide Sequences of Bovine α(S2)- and β-Casein cDNAs: Comparisons with Related Sequences in Other Species. Mol. Biol. Evol. 1987, 4, 231–241. [Google Scholar] [CrossRef]
- Ginger, M.R.; Piotte, C.P.; Otter, D.E.; Grigor, M.R. Identification, Characterisation and cDNA Cloning of Two Caseins from the Common Brushtail Possum (Trichosurus vulpecula). Biochim. Biophys. Acta Gen. Subj. 1999, 1427, 92–104. [Google Scholar] [CrossRef]
- Cosenza, G.; Pauciullo, A.; Annunziata, A.L.; Rando, A.; Chianese, L.; Marletta, D.; Iannolino, G.; Nicodemo, D.; Di Berardino, D.; Ramunno, L. Identification and Characterization of the Donkey CSN1S2 I and II CDNAS. Ital. J. Anim. Sci. 2010, 9, 206–211. [Google Scholar] [CrossRef]
- Rehman, S.U.; Feng, T.; Wu, S.; Luo, X.; Lei, A.; Luobu, B.; Hassan, F.-U.; Liu, Q. Comparative Genomics, Evolutionary and Gene Regulatory Regions Analysis of Casein Gene Family in Bubalus Bubalis. Front. Genet. 2021, 12, 662609. [Google Scholar] [CrossRef] [PubMed]
- Auzino, B.; Miranda, G.; Henry, C.; Krupova, Z.; Martini, M.; Salari, F.; Cosenza, G.; Ciampolini, R.; Martin, P. Top-Down Proteomics Based on LC-MS Combined with cDNA Sequencing to Characterize Multiple Proteoforms of Amiata Donkey Milk Proteins. Food Res. Int. 2022, 160, 111611. [Google Scholar] [CrossRef]
- Gaye, P.; Gautron, J.P.; Mercier, J.C.; Hazé, G. Amino Terminal Sequences of the Precursors of Ovine Caseins. Biochem. Biophys. Res. Commun. 1977, 79, 903–911. [Google Scholar] [CrossRef] [PubMed]
- Hobbs, A.A.; Rosen, J.M. Sequence of Rat α- and γ-Casein mRNAs: Evolutionary Comparison of the Calcium-Dependent Rat Casein Multigene Family. Nucleic Acids Res. 1982, 10, 8079–8098. [Google Scholar] [CrossRef]
- Jones, W.K.; Yu-Lee, L.Y.; Clift, S.M.; Brown, T.L.; Rosen, J.M. The Rat Casein Multigene Family. Fine Structure and Evolution of the Beta-Casein Gene. J. Biol. Chem. 1985, 260, 7042–7050. [Google Scholar] [CrossRef] [PubMed]
- Bonsing, J.; Mackinlay, A.G. Recent Studies on Nucleotide Sequences Encoding the Caseins. J. Dairy Res. 1987, 54, 447–461. [Google Scholar] [CrossRef]
- Groenen, M.A.M.; Dijkhof, R.J.M.; Verstege, A.J.M.; van der Poel, J.J. The Complete Sequence of the Gene Encoding Bovine alpha s2-Casein. Gene 1993, 123, 187–193. [Google Scholar] [CrossRef] [PubMed]
- Mercier, J.C.; Vilotte, J.L. Structure and Function of Milk Protein Genes. J. Dairy Sci. 1993, 76, 3079–3098. [Google Scholar] [CrossRef] [PubMed]
- Passey, R.; Glenn, W.; Mackinlay, A. Exon Skipping in the Ovine α(S1)-Casein Gene. Comp. Biochem. Physiol. Part B Biochem. Mol. Biol. 1996, 114, 389–394. [Google Scholar] [CrossRef]
- Rijnkels, M. Multispecies Comparison of the Casein Gene Loci and Evolution of Casein Gene Family. J. Mammary Gland. Biol. Neoplasia 2002, 7, 327–345. [Google Scholar] [CrossRef]
- Ramunno, L.; Cosenza, G.; Rando, A.; Illario, R.; Gallo, D.; Di Berardino, D.; Masina, P. The Goat αs1-Casein Gene: Gene Structure and Promoter Analysis. Gene 2004, 334, 105–111. [Google Scholar] [CrossRef]
- Calvo, J.H.; Dervishi, E.; Sarto, P.; González-Calvo, L.; Berzal-Herranz, B.; Molino, F.; Serrano, M.; Joy, M. Structural and Functional Characterisation of the αs1-Casein (CSN1S1) Gene and Association Studies with Milk Traits in Assaf Sheep Breed. Livest. Sci. 2013, 157, 1–8. [Google Scholar] [CrossRef]
- Koczan, D.; Hobom, G.; Seyfert, H.M. Genomic Organisation of the Bovine Alpha-S1 Casein Gene. Nucleic Acids Res. 1991, 19, 5591–5596. [Google Scholar] [CrossRef]
- Cosenza, G.; Pauciullo, A.; Macciotta, N.P.P.; Apicella, E.; Steri, R.; La Battaglia, A.; Jemma, L.; Coletta, A.; Di Berardino, D.; Ramunno, L. Mediterranean River Buffalo CSN1S1 Gene: Search for Polymorphisms and Association Studies. Anim. Prod. Sci. 2015, 55, 654–660. [Google Scholar] [CrossRef]
- Stafuzza, N.; Naressi, B.; Amaral-Trusty, M. Sequence Analysis of the Alpha-S1 Casein Gene in Murrah Buffalo. In Proceedings of the 52a Reunião Anual da Sociedade Brasileira de Zootecnia, Belo Horizonte, Brazil, 19–23 July 2015. [Google Scholar]
- Pauciullo, A.; Versace, C.; Gaspa, G.; Letaief, N.; Bedhiaf-Romdhani, S.; Fulgione, A.; Cosenza, G. Sequencing and Characterization of αs2-Casein Gene (CSN1S2) in the Old-World Camels Have Proven Genetic Variations Useful for the Understanding of Species Diversification. Animals 2023, 13, 2805. [Google Scholar] [CrossRef]
- Cosenza, G.; Fulgione, A.; Albarella, S.; Ciotola, F.; Peretti, V.; Gallo, D.; Pauciullo, A. Identification and Validation of Genus/Species-Specific Short InDels in Dairy Ruminants. BMC Vet. Res. 2025, 21, 215. [Google Scholar] [CrossRef]
- Farrell, H.M.; Jimenez-Flores, R.; Bleck, G.T.; Brown, E.M.; Butler, J.E.; Creamer, L.K.; Hicks, C.L.; Hollar, C.M.; Ng-Kwai-Hang, K.F.; Swaisgood, H.E. Nomenclature of the Proteins of Cows’ Milk—Sixth Revision. J. Dairy Sci. 2004, 87, 1641–1674. [Google Scholar] [CrossRef]
- Cosenza, G.; Mauriello, R.; Garro, G.; Auzino, B.; Iannaccone, M.; Costanzo, A.; Chianese, L.; Pauciullo, A. Casein Composition and Differential Translational Efficiency of Casein Transcripts in Donkey’s Milk. J. Dairy Res. 2019, 86, 201–207. [Google Scholar] [CrossRef]
- Cosenza, G.; Pauciullo, A.; Gallo, D.; Colimoro, L.; D’Avino, A.; Mancusi, A.; Ramunno, L. Genotyping at the CSN1S1 Locus by PCR-RFLP and AS-PCR in a Neapolitan Goat Population. Small Rumin. Res. 2008, 74, 84–90. [Google Scholar] [CrossRef]
- Devold, T.G.; Nordbø, R.; Langsrud, T.; Svenning, C.; Brovold, M.J.; Sørensen, E.S.; Christensen, B.; Adnøy, T.; Vegarud, G.E. Extreme Frequencies of the αs1-Casein “Null” Variant in Milk from Norwegian Dairy Goats—Implications for Milk Composition, Micellar Size and Renneting Properties. Dairy Sci. Technol. 2010, 91, 39–51. [Google Scholar] [CrossRef]
- Cosenza, G.; Albarella, S.; D’Anza, E.; Iannuzzi, A.; Selvaggi, M.; Pugliano, M.; Galli, T.; Saralli, G.; Ciotola, F.; Peretti, V. A New AS-PCR Method to Detect CSN201 Allele, Genotyping at Ca-Sensitive Caseins Loci and Milk Traits Association Studies in Autochthonous Lazio Goats. Animals 2023, 13, 239. [Google Scholar] [CrossRef]
- Rando, A.; Di Gregorio, P.; Ramunno, L.; Mariani, P.; Fiorella, A.; Senese, C.; Marletta, D.; Masina, P. Characterization of the CSN1AG Allele of the Bovine alpha s1-Casein Locus by the Insertion of a Relict of a Long Interspersed Element. J. Dairy Sci. 1998, 81, 1735–1742. [Google Scholar] [CrossRef]
- Caroli, A.M.; Chessa, S.; Erhardt, G.J. Invited Review: Milk Protein Polymorphisms in Cattle: Effect on Animal Breeding and Human Nutrition. J. Dairy Sci. 2009, 92, 5335–5352. [Google Scholar] [CrossRef]
- Gallinat, J.L.; Qanbari, S.; Drögemüller, C.; Pimentel, E.C.G.; Thaller, G.; Tetens, J. DNA-Based Identification of Novel Bovine Casein Gene Variants. J. Dairy Sci. 2013, 96, 699–709. [Google Scholar] [CrossRef] [PubMed]
- Albarella, S.; Selvaggi, M.; D’Anza, E.; Cosenza, G.; Caira, S.; Scaloni, A.; Fontana, A.; Peretti, V.; Ciotola, F. Influence of the Casein Composite Genotype on Milk Quality and Coagulation Properties in the Endangered Agerolese Cattle Breed. Animals 2020, 10, 892. [Google Scholar] [CrossRef] [PubMed]
- Ramunno, L.; Cosenza, G.; Rando, A.; Macciotta, N.P.P.; Pappalardo, M.; Masina, P. Identification of Carriers of the Welsh CASA1 Variant Using an Allele-Specific PCR Method. Anim. Genet. 1997, 28, 154–155. [Google Scholar]
- Giambra, I.J.; Chianese, L.; Ferranti, P.; Erhardt, G. Short Communication: Molecular Genetic Characterization of Ovine αs1-Casein Allele H Caused by Alternative Splicing. J. Dairy Sci. 2010, 93, 792–795. [Google Scholar] [CrossRef]
- Giambra, I.J.; Chianese, L.; Ferranti, P.; Erhardt, G. Genomics and Proteomics of Deleted Ovine CSN1S1∗I. Int. Dairy J. 2010, 20, 195–202. [Google Scholar] [CrossRef]
- Giambra, I.J.; Brandt, H.; Erhardt, G. Milk Protein Variants Are Highly Associated with Milk Performance Traits in East Friesian Dairy and Lacaune Sheep. Small Rumin. Res. 2014, 121, 382–394. [Google Scholar] [CrossRef]
- Selvaggi, M.; Laudadio, V.; Dario, C.; Tufarelli, V. Investigating the Genetic Polymorphism of Sheep Milk Proteins: A Useful Tool for Dairy Production. J. Sci. Food Agric. 2014, 94, 3090–3099. [Google Scholar] [CrossRef]
- De Pascale, S.; Caira, S.; Garro, G.; Mauriello, R.; Scaloni, A.; Cosenza, G.; Chianese, L. Proteomic Characterisation and Phylogenetic Derivation of Ovine αs1-CN B and αs1-CN G Genetic Variants. Int. Dairy J. 2022, 131, 105387. [Google Scholar] [CrossRef]
- Balteanu, V.A.; Carsai, T.C.; Vlaic, A. Identification of an Intronic Regulatory Mutation at the Buffalo αs1-Casein Gene That Triggers the Skipping of Exon 6. Mol. Biol. Rep. 2013, 40, 4311–4316. [Google Scholar] [CrossRef]
- Zhang, Y.; Fan, X.; Zhou, F.; Li, W.; Ouyang, Y.; Miao, Y. Polymorphisms of the CSN1S1 Gene and its Protein Variants in River and Swamp Buffalo (Bubalus bubalis). Pak. J. Zool. 2021, 53, 1233–1242. [Google Scholar] [CrossRef]
- Chianese, L.; Quarto, M.; Pizzolongo, F.; Calabrese, M.G.; Caira, S.; Mauriello, R.; De Pascale, S.; Addeo, F. Occurrence of Genetic Polymorphism at the αs1-Casein Locus in Mediterranean Water Buffalo Milk. Int. Dairy J. 2009, 19, 181–189. [Google Scholar] [CrossRef]
- Shuiep, E.T.S.; Giambra, I.J.; El Zubeir, I.E.Y.M.; Erhardt, G. Biochemical and Molecular Characterization of Polymorphisms of αs1-Casein in Sudanese Camel (Camelus dromedarius) Milk. Int. Dairy J. 2013, 28, 88–93. [Google Scholar] [CrossRef]
- Erhardt, G.; Shuiep, E.T.S.; Lisson, M.; Weimann, C.; Wang, Z.; El Zubeir, I.E.Y.M.; Pauciullo, A. Alpha S1-Casein Polymorphisms in Camel (Camelus dromedarius) and Descriptions of Biological Active Peptides and Allergenic Epitopes. Trop. Anim. Health Prod. 2016, 48, 879–887. [Google Scholar] [CrossRef]
- Mehta, S.C.; Dahiya, S.S.; Jadhav, S.A.; Umrikar, U.D.; Sawane, M.P.; Pawar, V.D.; Deshmukh, R.S. Determination of Genetic Variability at αs1-Casein Gene in Indian Dromedary. Indian J. Anim. Sci. 2020, 90, 1617–1621. [Google Scholar] [CrossRef]
- Mutery, A.A.; Rais, N.; Mohamed, W.K.E.; Abdelaziz, T. Genetic Diversity in Casein Gene Cluster in a Dromedary Camel (C. dromedarius) Population from the United Arab Emirates. Genes 2021, 12, 1417. [Google Scholar] [CrossRef]
- Amandykova, M.; Dossybayev, K.; Mussayeva, A.; Bekmanov, B.; Saitou, N. Comparative Analysis of the Polymorphism of the Casein Genes in Camels Bred in Kazakhstan. Diversity 2022, 14, 285. [Google Scholar] [CrossRef]
- Pauciullo, A.; Gauly, M.; Cosenza, G.; Wagner, H.; Erhardt, G. Lama Glama αs1-Casein: Identification of New Polymorphisms in the CSN1S1 Gene. J. Dairy Sci. 2017, 100, 1282–1289. [Google Scholar] [CrossRef]
- Brinkmann, J.; Jagannathan, V.; Drögemüller, C.; Rieder, S.; Leeb, T.; Thaller, G.; Tetens, J. Genetic Variability of the Equine Casein Genes. J. Dairy Sci. 2016, 99, 5486–5497. [Google Scholar] [CrossRef]
- Ramunno, L.; Chianese, L.; Di Gregorio, P.; Rando, A.; Marletta, D.; Mauriello, R.; Quarto, M.; Gallo, D.; Pauciullo, A.; Cosenza, G.; et al. Stato dell’arte sulla Caratterizzazione Proteomica e Genomica delle Proteine del Latte di Asina. In Latte di Asina: Produzione, Caratteristiche e Gestione Dell’azienda Asinina; Fondazione Iniziative Zooprofilattiche e Zootecniche: Brescia, Italy, 2011; pp. 183–191. ISBN 9788890441660. [Google Scholar]
- Mohr, U.; Koczan, D.; Linder, D.; Hobom, G.; Erhardt, G. A Single Point Mutation Results in a Allele-Specific Exon Skipping in the Bovine αs1-Casein mRNA. Gene 1994, 143, 187–192. [Google Scholar] [CrossRef]
- Wilkins, R.; Xie, T. Two Distinct Gene Mutations—One Milk Protein Polymorphism: The Example of the αs1-Casein A Variant. In IDF Seminar; International Dairy Federation: Palmerston North, New Zealand, 1997; pp. 330–333. [Google Scholar]
- Mahé, M.F.; Miranda, G.; Queval, R.; Bado, A.; Zafindrajaona, P.S.; Grosclaude, F. Genetic Polymorphism of Milk Proteins in African Bos taurus and Bos indicus Populations. Characterization of Variants αs1-Cn H and κ-Cn J. Genet. Sel. Evol. 1999, 31, 239–253. [Google Scholar] [CrossRef]
- Chianese, L.; Caira, S.; Garro, G.; Lilla, S.; Addeo, F. Primary Structure of Ovine Deleted Variant αs1-CN E. In Proceedings of the 5th International Symposium on the Challenge to Sheep and Goats Milk Sectors, Alghero, Italy, 18–20 April 2007; pp. 58–60. [Google Scholar]
- Mahé, M.F.; Grosclaude, F. αs1-CnD, Another Allele Associated with a Decreased Synthesis Rate at the Caprine αs1-Casein Locus. Genet. Sel. Evol. 1989, 21, 127–129. [Google Scholar] [CrossRef]
- Martin, P.; Leroux, C. Characterization of a Further Alpha-S1-Casein Variant Generated by Exon-Skipping. In Proceedings of the 24th International Society of Animal Genetics, Prague, Czech Republic, 23–29 July 1994; Abstract E43. p. 8. [Google Scholar]
- Bouniol, C.; Printz, C.; Mercier, J.C. Bovine αS2-Casein D Is Generated by Exon VIII Skipping. Gene 1993, 128, 289–293. [Google Scholar] [CrossRef]
- Ramunno, L.; Longobardi, E.; Pappalardo, M.; Rando, A.; Di Gregorio, P.; Cosenza, G.; Mariani, P.; Pastore, N.; Masina, P. An Allele Associated with a Non-Detectable Amount of Casein in of αS2 Casein in Goat Milk. Anim. Genet. 2001, 32, 19–26. [Google Scholar] [CrossRef]
- Cosenza, G.; Gallo, D.; Riccio, R.; Di Berardino, D.; Bisogno, A.; Ramunno, L. Analisi Preliminari dei Trascritti di Alcuni Alleli al Locus CSN1S2 di Capra. In Proceedings of the XV Congresso Nazionale SIPAOC, Cagliari, Italy, 11–14 September 2002. [Google Scholar]
- Grosclaude, F. Le Polymorphisme Génétique Des Principales Lactoprotéines Bovines. Relations Avec La Quantité, La Composition et les Aptitudes Fromagères du Lait. INRAE Prod. Anim. 1988, 1, 5–17. [Google Scholar] [CrossRef]
- Erhardt, G. A New αs1-casein Allele in Bovine Milk and its Occurrence in Different Breeds. Anim. Genet. 1993, 24, 65–66. [Google Scholar] [CrossRef]
- Formaggioni, P.; Summer, A.; Malacarne, M.; Mariani, P. Milk Protein Polymorphism: Detection and Diffusion of the Genetic Variants in Bos Genus. Ann. Fac. Med. Vet. Univ. Parma 1999, 19, 127–165. [Google Scholar]
- Garro, G.; Caira, S.; Lilla, S.; Mauriello, R.; Chianese, L. Characterisation of the Heterogeneity of Ovine Deleted Variant αs1-Casein E by a Proteomic Approach. Int. Dairy J. 2019, 89, 53–59. [Google Scholar] [CrossRef]
- Giambra, I.J.; Jäger, S.; Erhardt, G. Isoelectric Focusing Reveals Additional Casein Variants in German Sheep Breeds. Small Rumin. Res. 2010, 90, 11–17. [Google Scholar] [CrossRef]
- Chianese, L.; Garro, G.; Mauriello, R.; Laezza, P.; Ferranti, P.; Addeo, F. Occurrence of Five αs1-Casein Variants in Ovine Milk. J. Dairy Res. 1996, 63, 49–59. [Google Scholar] [CrossRef]
- Brignon, G.; Mahe, M.F.; Ribadeau-Dumas, B.; Mercier, J.C.; Grosclaude, F. Two of the Three Genetic Variants of Goat αs1-casein Which are Synthesized at a Reduced Level Have an Internal Deletion Possibly Due to Altered RNA Splicing. Eur. J. Biochem. 1990, 193, 237–241. [Google Scholar] [CrossRef]
- Martin, P.; Szymanowska, M.; Zwierzchowski, L.; Leroux, C. The Impact of Genetic Polymorphisms on the Protein Composition of Ruminant Milks. Reprod. Nutr. Dev. 2002, 42, 433–459. [Google Scholar] [CrossRef]
- Caira, S.; Pinto, G.; Balteanu, V.A.; Chianese, L.; Addeo, F. A Signature Protein-Based Method to Distinguish Mediterranean Water Buffalo and Foreign Breed Milk. Food Chem. 2013, 141, 597–603. [Google Scholar] [CrossRef]
- Stepic, S.; Kuveljic, J.; Zivotic, I.; Perisic, P.; Bogdanovic, V.; Ignjatovic, A.; Zivkovic, M. CSN1S1 and CSN3 Genetic Variants Affect Milk Quality Traits in the Buffalo Population in Serbia. J. Anim. Sci. Technol. 2024, 74, 219–229. [Google Scholar] [CrossRef]
- Rullo, R.; Caira, S.; Nicolae, I.; Marino, F.; Addeo, F.; Scaloni, A. A Genotyping Method for Detecting Foreign Buffalo Material in Mozzarella di Bufala Campana Cheese Using Allele-Specific- and Single-Tube Heminested-Polymerase Chain Reaction. Foods 2023, 12, 2399. [Google Scholar] [CrossRef]
- Kappeler, S.; Farah, Z.; Puhan, Z. Sequence Analysis of Camelus Dromedarius Milk Caseins. J. Dairy Res. 1998, 65, 209–222. [Google Scholar] [CrossRef]
- Giambra, I.J.; Erhardt, G. Molecular Genetic Characterization of Ovine CSN1S2 Variants C and D Reveal Further Important Variability within CSN1S2. Anim. Genet. 2012, 43, 642–645. [Google Scholar] [CrossRef]
- Cosenza, G.; Pauciullo, A.; Feligini, M.; Coletta, A.; Colimoro, L.; Di Berardino, D.; Ramunno, L. A Point Mutation in the Splice Donor Site of Intron 7 in the αS2-Casein Encoding Gene of the Mediterranean River Buffalo Results in an Allele-Specific Exon Skipping. Anim. Genet. 2009, 40, 791. [Google Scholar] [CrossRef]
- Boisnard, M.; Hue, D.; Bouniol, C.; Mercier, J.-C.; Gaye, P. Multiple mRNA Species Code for Two Non-allelic Forms of Ovine αS2-casein. Eur. J. Biochem. 1991, 201, 633–641. [Google Scholar] [CrossRef]
- Lagonigro, R.; Pietrola, E.; D’Andrea, M.; Veltri, C.; Pilla, F. Molecular Genetic Characterization of the Goat αS2-Casein E Allele. Anim. Genet. 2001, 32, 391–393. [Google Scholar] [CrossRef]
- Ramunno, L.; Cosenza, G.; Pappalardo, M.; Longobardi, E.; Gallo, D.; Pastore, N.; Di Gregorio, P.; Rando, A. Characterization of Two New Alleles at the Goat CSN1S2 Locus. Anim. Genet. 2001, 32, 264–268. [Google Scholar] [CrossRef]
- Erhardt, G.; Jäger, S.; Budelli, E.; Caroli, A. Genetic Polymorphism of Goat αS2-Casein (CSN1S2) and Evidence for a Further Allele. Milchwissenschaft 2002, 57, 137–140. [Google Scholar] [CrossRef]
- Rahmatalla, S.A.; Arends, D.; Said Ahmed, A.; Hassan, L.M.A.; Krebs, S.; Reissmann, M.; Brockmann, G.A. Capture Sequencing to Explore and Map Rare Casein Variants in Goats. Front. Genet. 2021, 12, 620253. [Google Scholar] [CrossRef]
- Deepika, S.; Gautam, D.; Meena, S.; Ali, M.; Meena, A.S.; Vats, A.; Verma, M.; Rout, P.K.; De, S. Heterogeneity and Diversified Distribution of αS2 Casein Variants in Indian Goats. Small Rumin. Res. 2021, 204, 106501. [Google Scholar] [CrossRef]
- Ibeagha-Awemu, E.M.; Prinzenberg, E.M.; Jann, O.C.; Lühken, G.; Ibeagha, A.E.; Zhao, X.; Erhardt, G. Molecular Characterization of Bovine CSN1S2*B and Extensive Distribution of Zebu-Specific Milk Protein Alleles in European Cattle. J. Dairy Sci. 2007, 90, 3522–3529. [Google Scholar] [CrossRef]
- Cieslak, J.; Pawlak, P.; Wodas, L.; Borowska, A.; Stachowiak, A.; Puppel, K.; Kuczynska, B.; Luczak, M.; Marczak, L.; Mackowski, M. Characterization of Equine CSN1S2 Variants Considering Genetics, Transcriptomics, and Proteomics. J. Dairy Sci. 2016, 99, 1277–1285. [Google Scholar] [CrossRef]
- Brinkmann, J.; Koudelka, T.; Keppler, J.K.; Tholey, A.; Schwarz, K.; Thaller, G.; Tetens, J. Characterization of an Equine αS2-Casein Variant Due to a 1.3 Kb Deletion Spanning Two Coding Exons. PLoS ONE 2015, 10, e0139700. [Google Scholar] [CrossRef]
- Kusza, S.; Veress, G.; Kukovics, S.; Jávor, A.; Sanchez, A.; Angiolillo, A.; Bosze, Z. Genetic Polymorphism of αS1- and αS2-Caseins in Hungarian Milking Goats. Small Rumin. Res. 2007, 68, 329–332. [Google Scholar] [CrossRef]
- Gigli, I.; Maizon, D.O.; Riggio, V.; Sardina, M.T.; Portolano, B. Short Communication: Casein Haplotype Variability in Sicilian Dairy Goat Breeds. J. Dairy Sci. 2008, 91, 3687–3692. [Google Scholar] [CrossRef] [PubMed]
- Naowanat, N.; Suwattana, D.; Suphap, B. Casein Gene Polymorphism of Goat in Thailand. Thai J. Vet. Med. 2024, 54, 211–219. [Google Scholar] [CrossRef]
- Marletta, D.; Bordonaro, S.; Guastella, A.M.; D’Urso, G. Genetic Polymorphism at CSN1S2 Locus in Two Endangered Sicilian Goat Breeds. J. Anim. Breed. Genet. 2004, 121, 52–56. [Google Scholar] [CrossRef]
- Caroli, A.; Chiatti, F.; Chessa, S.; Rignanese, D.; Bolla, P.; Pagnacco, G. Focusing on the Goat Casein Complex. J. Dairy Sci. 2006, 89, 3178–3187. [Google Scholar] [CrossRef]
- Vacca, G.M.; Ouled Ahmed Ben Ali, H.; Pazzola, M.; Sanna, M.; Dettori, M.L.; Carcangiu, V. An Investigation on Allele Frequency at the CSN1S2 Locus and its Relationship with Milk Parameters in the Sarda Goat. J. Anim. Feed. Sci. 2009, 18, 628–637. [Google Scholar] [CrossRef]
- Palmeri, M.; Mastrangelo, S.; Sardina, M.T.; Portolano, B. Genetic Variability at αS2- Casein Gene in Girgentana Dairy Goat Breed. Ital. J. Anim. Sci. 2014, 13, 116–118. [Google Scholar] [CrossRef]
- Dincel, D.; Ardicli, S.; Samli, H.; Vatansenver, B.; Balci, F. Identification of the Frequency of CSN1S2 Gene Alleles and the Effects of these Alleles and Parity on Milk Yield and Composition in Saanen Goats. Large Anim. Rev. 2021, 27, 91–96. [Google Scholar]
- Bozkaya, F.; Mundan, D.; Karabulut, O.; Yerturk, M.; Gurler, S.; Aral, F. An Investigation on the Distribution of 0 and D Alleles of the CSN1S2 Gene in Goat Populations Raised in Southeastern Region of Turkey. Small Rumin. Res. 2008, 78, 193–196. [Google Scholar] [CrossRef]
- Sztankóová, Z.; Mátlová, V.; Kysel’ová, J.; Jandurová, O.M.; Říha, J.; Senese, C. Polymorphism of Casein Cluster Genes in Czech Local Goat Breeds. J. Dairy Sci. 2009, 92, 6197–6201. [Google Scholar] [CrossRef]
- Correddu, F.; Serdino, J.; Manca, M.G.; Cosenza, G.; Pauciullo, A.; Ramunno, L.; Macciotta, N.P.P. Use of Multivariate Factor Analysis to Characterize the Fatty Acid Profile of Buffalo Milk. J. Food Compos. Anal. 2017, 60, 25–31. [Google Scholar] [CrossRef]
- Attanasio, C.; David, A.; Neerman-Arbez, M. Outcome of Donor Splice Site Mutations Accounting for Congenital Afibrinogenemia Reflects Order of Intron Removal in the Fibrinogen Alpha Gene (FGA). Blood 2003, 101, 1851–1856. [Google Scholar] [CrossRef]
- Cosenza, G.; Illario, R.; Gallo, D.; Riccio, R.; Di Berardino, D.; Ramunno, L. A Preliminary Analysis of mRNA Transcribed from the N Allele at the CSN1S1 Locus of the Goat. Ital. J. Anim. Sci. 2003, 2, 10–12. [Google Scholar] [CrossRef]
- Chatchatee, P.; Järvinen, K.M.; Bardina, L.; Beyer, K.; Sampson, H.A. Identification of IgE- and IgG-Binding Epitopes on αS1-Casein: Differences Patients with Persistent and Transient Cow’s Milk Allergy. J. Allergy Clin. Immunol. 2001, 107, 379–383. [Google Scholar] [CrossRef]
- Ryskaliyeva, A.; Henry, C.; Miranda, G.; Faye, B.; Konuspayeva, G.; Martin, P. Alternative Splicing Events Expand Molecular Diversity of Camel CSN1S2 Increasing its Ability to Generate Potentially Bioactive Peptides. Sci. Rep. 2019, 9, 5243. [Google Scholar] [CrossRef]
Locus | Species (Common Name) | Alleles | Constitutive Exon Skipped | PEPTIDE Deleted * | Involved Consensus Splicing Sequences | References |
---|---|---|---|---|---|---|
CSN1S1 | Bos taurus (Cattle) | A; A1 H | Exon 4 Exon 8 | 14EVLNENLLRFFVA26 51NQAMENIK58 | Donor splice sites | [88,89,90] |
Ovis aries (Sheep) | H I E | Exon 8 Exon 7 Exon 10 | 51DQAMEDAK58 43DIGSESIE50 70EIVPNSAE77 | Donor splice sites | [72,73,91] | |
Bubalus bubalis (Water buffalo) | E (Bbt) F (Bbt) | Exon 6 | 35EKVNELST42 | Donor splice site | [77,78] | |
Capra hircus (Goat) | D G | Exon 9 Exon 4 | 59QMKAGSSSSSE69 14EVLNENLLRFVVA26 | Donor splice sites | [92,93] | |
Camelus dromedarius (Dromedary) | A; C; D | Exon 18 | 155EQAYFHLE162 | Branch sequence and polypyrimidine tract | [80,81] | |
CSN1S2 | Bos taurus (Cattle) | D | Exon 8 | 51EYSIGSSSE59 | Donor splice site | [94] |
Bubalus bubalis (Water buffalo) | B; B1; B2 | Exon 7 | 42EVIRNANEE50 | Donor splice site | [39] | |
Capra hircus (Goat) | D | Exon 11 | 84NEINQFYQKFPQYLQYPYQGPIVLNPWDQVKRNAGPFTPTV124 | Donor splice site | [95,96] | |
Equus asinus (Donkey) | Unnamed | First 15 nucleotides of exon 17 | 176NKINQ180 | Acceptor splice site | [4] | |
Camelus dromedarius (Dromedary) | Unnamed | Uncharacterized | Uncharacterized | [83] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cosenza, G.; Fulgione, A.; D’Anza, E.; Albarella, S.; Ciotola, F.; Pauciullo, A. CSN1S1 and CSN1S2: Two Remarkable Examples of Genetically Modulated Alternative Splicing via Identification of Allele-Specific Splicing Events. Genes 2025, 16, 1011. https://doi.org/10.3390/genes16091011
Cosenza G, Fulgione A, D’Anza E, Albarella S, Ciotola F, Pauciullo A. CSN1S1 and CSN1S2: Two Remarkable Examples of Genetically Modulated Alternative Splicing via Identification of Allele-Specific Splicing Events. Genes. 2025; 16(9):1011. https://doi.org/10.3390/genes16091011
Chicago/Turabian StyleCosenza, Gianfranco, Andrea Fulgione, Emanuele D’Anza, Sara Albarella, Francesca Ciotola, and Alfredo Pauciullo. 2025. "CSN1S1 and CSN1S2: Two Remarkable Examples of Genetically Modulated Alternative Splicing via Identification of Allele-Specific Splicing Events" Genes 16, no. 9: 1011. https://doi.org/10.3390/genes16091011
APA StyleCosenza, G., Fulgione, A., D’Anza, E., Albarella, S., Ciotola, F., & Pauciullo, A. (2025). CSN1S1 and CSN1S2: Two Remarkable Examples of Genetically Modulated Alternative Splicing via Identification of Allele-Specific Splicing Events. Genes, 16(9), 1011. https://doi.org/10.3390/genes16091011