The Association of the COL27A1 rs946053 and TNC rs2104772s with Tendinopathies: A Case–Control Study in High-Level Croatian Athletes
Abstract
1. Introduction
2. Materials and Methods
2.1. Individuals
2.2. Genotyping
2.3. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
COL | collagen |
SNP | single-nucleotide polymorphisms |
TNC | tenascin C |
TEN | tendinopathy |
DNA | deoxyribonucleic acid |
PCR | polymerase chain reaction |
FDR | false discovery rate |
CON | control group |
BMI | body mass index |
HWE | Hardy–Weinberg equilibrium |
MMP3 | matrix metaloproteinase-3 |
ESRRB | estrogen-related receptor beta |
MiRNA | micro ribonucleic acid |
References
- Kim, S.K.; Roos, T.R.; Roos, A.K.; Kleimeyer, J.P.; Ahmed, M.A.; Goodlin, G.T.; Fredericson, M.; Ioannidis, J.P.A.; Avins, A.L.; Dragoo, J.L. Genome-wide association screens for Achilles tendon and ACL tears and tendinopathy. PLoS ONE 2017, 12, 3. [Google Scholar] [CrossRef]
- Ljungqvist, A.; Schwellnus, M.P.; Bachl, N.; Collins, M.; Cook, J.; Khan, K.M.; Maffulli, N.; Pitsiladis, Y.; Riley, G.; Golspink, G.; et al. International Olympic Committee Consensus Statement: Molecular Basis of Connective Tissue and Muscle Injuries in Sport. Clin. Sports Med. 2008, 27, 231–239. [Google Scholar] [CrossRef]
- Vosseller, J.T.; Scott, J.E.; Levine, D.S.; Kennedy, J.G.; Elliott, A.J.; Deland, J.T.; Roberts, M.M.; O’Malley, M.J. Achilles tendon rupture in women. Foot Ankle Int. 2013, 34, 49–53. [Google Scholar] [CrossRef]
- Hess, G.W. Achilles tendon rupture: A review of etiology, population, anatomy, risk factors, and injury prevention. Foot Ankle Spec. 2010, 3, 29–32. [Google Scholar] [CrossRef]
- Kujala, U.M.; Sarna, S.; Kaprio, J. Cumulative Incidence of Achilles Tendon Rupture and Tendinopathy in Male Former Elite Athletes. Clin. J. Sport Med. 2005, 15, 133–135. [Google Scholar] [CrossRef]
- de Jonge, S.; van den Berg, C.; de Vos, R.J.; van der Heide, H.J.L.; Weir, A.; Verhaar, J.A.N.; Bierma-Zeimstra, S.M.A.; Tol, J.L. Incidence of midportion Achilles tendinopathy in the general population. Br. J. Sports Med. 2011, 45, 1026–1028. [Google Scholar] [CrossRef] [PubMed]
- Longo, U.G.; Loppini, M.; Margiotti, K.; Salvatore, G.; Berton, A.; Khan, W.S.; Maffulli, N.; Denaro, V. Unravelling the Genetic Susceptibility to Develop Ligament and Tendon Injuries. Curr. Stem Cell Res. Ther. 2015, 10, 56–63. [Google Scholar] [CrossRef] [PubMed]
- Meeuwisse, W.H. Assessing Causation in Sport Injury: A Multifactorial Model. Clin. J. Sport Med. 1994, 4, 166–170. [Google Scholar] [CrossRef]
- Riley, G. The pathogenesis of tendinopathy. A molecular perspective. Rheumatology 2004, 43, 131–142. [Google Scholar] [CrossRef]
- Silver, F.H.; Freeman, J.W.; Seehra, G.P. Collagen self-assembly and the development of tendon mechanical properties. J. Biomech. 2003, 36, 1529–1553. [Google Scholar] [CrossRef]
- Mizuno, K.; Adachi, E.; Imamura, Y.; Katsumata, O.; Hayashi, T. The fibril structure of type V collagen triple-helical domain. Micron 2001, 32, 317–323. [Google Scholar] [CrossRef]
- Niyibizi, C.; Eyre, D.R. Structural characteristics of cross-linking sites in type V collagen of bone Chain specificities and heterotypic links to type I collagen. Eur. J. Biochem. 1994, 224, 943–950. [Google Scholar] [CrossRef]
- Mokone, G.G.; Schwellnus, M.P.; Noakes, T.D.; Collins, M. The COL5A1 gene and Achilles tendon pathology. Scand. J. Med. Sci. Sports 2006, 16, 19–26. [Google Scholar] [CrossRef]
- September, A.V.; Cook, J.; Handley, C.J.; van der Merwe, L.; Schwellnus, M.P.; Collins, M. Variants within the COL5A1 gene are associated with Achilles tendinopathy in two populations. Br. J. Sports Med. 2009, 43, 357–365. [Google Scholar] [CrossRef]
- Posthumus, M.; September, A.V.; O’Cuinneagain, D.; van der Merwe, W.; Schwellnus, M.P.; Collins, M. The COL5A1 gene is associated with increased risk of anterior cruciate ligament ruptures in female participants. Am. J. Sports Med. 2009, 37, 2234–2240. [Google Scholar] [CrossRef] [PubMed]
- Collins, M.; Posthumus, M.; Schwellnus, M.P. The COL1A1 gene and acute soft tissue ruptures. Br. J. Sports Med. 2010, 44, 1063–1064. [Google Scholar] [CrossRef] [PubMed]
- Brown, J.C.; Miller, C.J.; Schwellnus, M.P.; Collins, M. Range of motion measurements diverge with increasing age for COL5A1 genotypes. Scand. J. Med. Sci. Sports 2011, 21, 266–272. [Google Scholar] [CrossRef] [PubMed]
- Jones, F.S.; Jones, P.L. The tenascin family of ECM glycoproteins: Structure, function, and regulation during embryonic development and tissue remodeling. Dev. Dyn. 2000, 218, 235–259. [Google Scholar] [CrossRef]
- Jones, P.L.; Jones, F.S. Tenascin-C in development and disease: Gene regulation and cell function. Matrix Biol. 2000, 19, 581–596. [Google Scholar] [CrossRef]
- Järvinen, T.A.H.; Józsa, L.; Kannus, P.; Järvinen, T.L.N.; Hurme, T.; Kvist, M.; Pelto-Huikko, M.; Kalimo, H.; Järvinen, M. Mechanical loading regulates the expression of tenascin-C in the myotendinous junction and tendon but does not induce de novo synthesis in the skeletal muscle. J. Cell Sci. 2003, 116, 857–866. [Google Scholar] [CrossRef]
- Mokone, G.G.; Gajjar, M.; September, A.V.; Schwellnus, M.P.; Greenberg, J.; Noakes, T.D.; Collins, M. The Guanine-Thymine Dinucleotide Repeat Polymorphism Within the Tenascin-C Gene is Associated with Achilles Tendon Injuries. Am. J. Sports Med. 2005, 33, 1016–1021. [Google Scholar] [CrossRef]
- Saunders, C.J.; van der Merwe, L.; Cook, J.; Handley, C.J.; Collins, M.; September, A.V. Extracellular matrix proteins interact with cell-signaling pathways in modifying risk of Achilles tendinopathy. J. Orthop. Res. 2015, 33, 898–903. [Google Scholar] [CrossRef]
- Orsmark-Pietras, C.; Melén, E.; Vendelin, J.; Bruce, S.; Laitinen, A.; Laitinen, L.A.; Lauener, R.; Riedler, J.; von Mutius, E.; Doekes, G.; et al. Biological and genetic interaction between Tenascin C and Neuropeptide S receptor 1 in allergic diseases. Hum. Mol. Genet. 2008, 17, 1673–1682. [Google Scholar] [CrossRef]
- Matsuda, A.; Hirota, T.; Akahoshi, M.; Shimizu, M.; Tamari, M.; Miyatake, A.; Takahashi, A.; Nakashima, K.; Takahashi, N.; Obara, K.; et al. Coding SNP in tenascin-C Fn-III-D domain associates with adult asthma. Hum. Mol. Genet. 2005, 14, 2779–2786. [Google Scholar] [CrossRef]
- Pace, J.M.; Corrado, M.; Missero, C.; Byers, P.H. Identification, characterization and expression analysis of a new fibrillar collagen gene, COL27A1. Matrix Biol. 2003, 22, 3–14. [Google Scholar] [CrossRef] [PubMed]
- Boot-Handford, R.P.; Tuckwell, D.S.; Plumb, D.A.; Farrington Rock, C.; Poulsom, R. A novel and highly conserved collagen (proα1(XXVII)) with a unique expression pattern and unusual molecular characteristics establishes a new clade within the vertebrate fibrillar collagen family. J. Biol. Chem. 2003, 278, 31067–31077. [Google Scholar] [CrossRef] [PubMed]
- Saunders, C.J.; van der Merwe, W.; Posthumus, M.; Cook, J.; Handley, C.J.; Collins, M.; September, A.V. Investigation of variants within the COL27A1 and TNC genes and Achilles tendinopathy in two populations. J. Orthop. Res. 2013, 31, 632–637. [Google Scholar] [CrossRef] [PubMed]
- Gibbon, A.; Saunders, C.J.; Collins, M.; Gamieldien, J.; September, A.V. Defining the molecular signatures of Achilles tendinopathy and anterior cruciate ligament ruptures: A whole-exome sequencing approach. PLoS ONE 2018, 13, e0205860. [Google Scholar] [CrossRef]
- Nyholt, D.R. A Simple Correction for Multiple Testing for Single-Nucleotide Polymorphisms in Linkage Disequilibrium with Each Other. Am. J. Hum. Genet. 2004, 74, 765–769. [Google Scholar] [CrossRef]
- Kannus, P.; Natri, A. Etiology and pathophysiology of tendon ruptures in sports. Scand. J. Med. Sci. Sports 1997, 7, 107–112. [Google Scholar] [CrossRef]
- Malfait, F.; De Paepe, A. Molecular genetics in classic Ehlers-Danlos syndrome. Am. J. Med. Genet. C Semin. Med. Genet. 2005, 139C, 17–23. [Google Scholar] [CrossRef]
- Malfait, F.; Wenstrup, R.J.; De Paepe, A. Clinical and genetic aspects of Ehlers-Danlos syndrome, classic type. Genet. Med. 2010, 12, 597–605. [Google Scholar] [CrossRef]
- Conne, B.; Stutz, A.; Vassalli, J.D. The 3′ untranslated region of messenger RNA: A molecular ‘hotspot’ for pathology? Nat. Med. 2000, 6, 637–641. [Google Scholar] [CrossRef]
- Abrahams, Y.; Laguette, M.J.; Prince, S.; Collins, M. Polymorphisms within the COL5A1 3′-UTR that alters mRNA structure and the MIR608 gene are associated with Achilles tendinopathy. Ann. Hum. Genet. 2013, 77, 204–214. [Google Scholar] [CrossRef] [PubMed]
- Gonzaga-Jauregui, C.; Gamble, C.N.; Yuan, B.; Penney, S.; Jhangiani, S.; Muzny, D.M.; Gibbs, R.A.; Lupski, J.R.; Hecht, J.T. Mutations in COL27A1 cause Steel syndrome and suggest a founder mutation effect in the Puerto Rican population. Eur. J. Hum. Genet. 2015, 23, 342–346. [Google Scholar] [CrossRef] [PubMed]
- Vaughn, N.H.; Stepanyan, H.; Gallo, R.A.; Dhawan, A. Genetic factors in tendon injury: A systematic review of the literature. Orthop. J. Sports Med. 2017, 5, 2325967117724416. [Google Scholar] [CrossRef]
- Briški, N.; Vrgoč, G.; Knjaz, D.; Janković, S.; Ivković, A.; Pećina, M.; Lauc, G. Association of the matrix metalloproteinase 3 (MMP3) single nucleotide polymorphisms with tendinopathies: Case-control study in high-level athletes. Int. Orthop. 2021, 45, 1163–1168. [Google Scholar] [CrossRef] [PubMed]
- Gherzi, R.; Carnemolla, B.; Siri, A.; Ponassi, M.; Balza, E.; Zardi, L. Human tenascin gene. Structure of the 5′-region, identification, and characterization of the transcription regulatory sequences. J. Biol. Chem. 1995, 270, 3429–3434. [Google Scholar] [CrossRef]
- Brown, K.L.; Seale, K.B.; El Khoury, L.Y.; Posthumus, M.; Ribbans, W.J.; Raleigh, S.M.; Collins, M.; September, A.V. Polymorphisms within the COL5A1 gene and regulators of the extracellular matrix modify the risk of Achilles tendon pathology in a British case-control study. J. Sports Sci. 2017, 35, 1475–1483. [Google Scholar] [CrossRef]
- Hall, E.C.R.; Baumert, P.; Larruskain, J.; Gil, S.M.; Lekue, J.A.; Rienzi, E.; Moreno, S.; Tannure, M.; Murtagh, C.F.; Ade, J.D.; et al. The genetic association with injury risk in male academy soccer players depends on maturity status. Scand. J. Med. Sci. Sports 2022, 32, 338–350. [Google Scholar] [CrossRef]
- Figueiredo, E.A.; Loyola, L.C.; Belangero, P.S.; Campos Ribeiro-Dos-Santos, Â.K.; Emanuel Batista Santos, S.; Cohen, C.; Wajnsztejn, A.; Martins de Oliveira, A.; Smith, M.C.; Pochini, A.C.; et al. Rotator Cuff Tear Susceptibility Is Associated with Variants in Genes Involved in Tendon Extracellular Matrix Homeostasis. J. Orthop. Res. 2020, 38, 192–201. [Google Scholar] [CrossRef]
- Heffernan, S.M.; Kilduff, L.P.; Erskine, R.M.; Day, S.H.; Stebbings, G.K.; Cook, C.J.; Raleigh, S.M.; Bennett, M.A.; Wang, G.; Collins, M.; et al. COL5A1 gene variants previously associated with reduced soft tissue injury risk are associated with elite athlete status in rugby. BMC Genom. 2017, 18, 820. [Google Scholar] [CrossRef]
- Wertz, J.; Galli, M.; Borchers, J.R. Achilles tendon rupture: Risk assessment for aerial and ground athletes. Sports Health 2013, 5, 407–409. [Google Scholar] [CrossRef] [PubMed]
- van der Linden, P.D.; van de Lei, J.; Nab, H.W.; Knol, A.; Stricker, B.H. Achilles tendinitis associated with fluoroquinolones. Br. J. Clin. Pharmacol. 1999, 48, 433–437. [Google Scholar] [CrossRef] [PubMed]
- Abate, M.; Silbernagel, K.G.; Siljeholm, C.; Di Iorio, A.; De Amicis, D.; Salini, V.; Werner, S.; Paganelli, R. Pathogenesis of tendinopathies: Inflammation or degeneration? Arthritis Res. Ther. 2009, 11, 235. [Google Scholar] [CrossRef] [PubMed]
- Park, K.H.; Park, J.H.; Yoon, Y.K.; Kwon, J.B.; Kim, J.H.; Lee, E.; Roh, Y.; Han, S.H.; Lee, J.W. Association between outdoor temperature and achilles tendon repair: A 14-years nationwide population-based cohort study. PLoS ONE 2022, 17, e0265041. [Google Scholar] [CrossRef]
- Ackermann, P.W.; Renström, P. Tendinopathy in Sport. Sports Health 2012, 4, 193–201. [Google Scholar] [CrossRef]
- Lemme, N.J.; Li, N.Y.; DeFroda, S.F.; Kleiner, J.; Owens, B.D. Epidemiology of Achilles Tendon Ruptures in the United States: Athletic and Nonathletic Injuries from 2012 to 2016. Orthop. J. Sports Med. 2018, 6, 2325967118808238. [Google Scholar] [CrossRef]
- Khalil, L.S.; Jildeh, T.R.; Tramer, J.S.; Abbas, M.J.; Hessburg, L.; Mehran, N.; Okoroha, K.R. Effect of Achilles Tendon Rupture on Player Performance and Longevity in National Basketball Association Players. Orthop. J. Sports Med. 2020, 8, 2325967120966041. [Google Scholar] [CrossRef]
- Hodgens, B.H.; Geller, J.S.; Rizzo, M.G.; Munoz, J.; Kaplan, J.; Aiyer, A. Performance Outcomes After Surgical Repair of Achilles Tendon Rupture in the Women’s National Basketball Association. Orthop. J. Sports Med. 2021, 9, 23259671211030473. [Google Scholar] [CrossRef]
- Goodlin, G.T.; Roos, A.K.; Roos, T.R.; Hawkins, C.; Beache, S.; Baur, S.; Kim, S.K. Correction: Applying Personal Genetic Data to Injury Risk Assessment in Athletes. PLoS ONE 2017, 12, e0171397. [Google Scholar] [CrossRef]
Primer Name | Sequence | 5′ Modification | Tm/°C |
---|---|---|---|
COL5A1-F | 5′-GAT TCT GGG TTG CAG TAC CG-3′ | 60 | |
COL5A1-R | 5′-AAA GGG GCA CTG GTA CCT G-3′ | Biotin | 59 |
COL27A1-F | 5′-TCC GCT TAC ACC TTC CTT GTA GT-3′ | 63 | |
COL27A1-R | 5′-GAA AGG CAC AGG AAG CAC TC-3′ | Biotin | 60 |
TNC-F | 5′-AGC CAC TGG AAA TAA CCC TAC TTG-3′ | Biotin | 64 |
TNC-R | 5′-TTC GTA TTC AGT AGC CTC TCT GAG-3′ | 64 |
Sequencing Primer Name | Sequence | Tm/°C |
---|---|---|
COL5A1-seq | 5′-TAG GAA GTC TCC CCA C-3′ | 51 |
COL27A1-seq | 5′-TGA GCC CCT GCC ACG-3′ | 54 |
TNC-seq | 5′-GCC TCT CTG AGA CCT GT-3′ | 55 |
TEN (n = 63) | Controls (n = 92) | p-Value | |
---|---|---|---|
Age (years) | 32.1 ± 12.8 | 39.0 ± 11.4 | 0.006 |
Height (cm) | 180.5 ± 8.8 | 179.8 ± 9.6 | 0.6454 |
Weight (kg) | 79.4 ± 14.9 | 84.6 ± 15.4 | 0.0381 |
BMI (kg/m2) | 24.1 ± 3.6 | 26.0 ± 3.3 | 0.009 |
Ethnicity (Caucasian) | 100% (63) | 100% (92) | 1.0000 |
gender (% male) | 75% (47) | 78% (92) | 0.6639 |
COL5A1 | Allele Frequency | |||||||
SNP | C>T | TEN | CON | |||||
rs12722 | n = 63 | n = 92 | p | FDR | OR | 95% CI | Association | |
1 | C | 42.1% (53) | 45.1% (83) | 0.5957 | 0.8835 | 0.5590–1.3962 | none | |
2 | T | 57.9% (73) | 54.9% (101) | 0.5957 | 1.1319 | 0.7162–1.7888 | none | |
Genotype frequency | ||||||||
SNP | C>T | TEN | CON | |||||
rs12722 | n = 63 | n = 92 | p | FDR | OR | 95% CI | Association | |
11 | CC | 14.3% (9) | 21.7% (20) | 0.2456 | 0.6000 | 0.2533–1.4210 | none | |
12 | CT | 55.6% (35) | 46.7% (43) | 0.2816 | 14.244 | 0.7481–2.7121 | none | |
22 | TT | 30.1% (19) | 31.6% (29) | 0.8570 | 0.9381 | 0.4682–1.8795 | none | |
HWE | 0.267 | |||||||
COL27A1 | Allele frequency | |||||||
SNP | G>T | TEN | CON | |||||
rs946053 | n = 63 | n = 92 | p | FDR | OR | 95% CI | Association | |
1 | G | 43.7% (55) | 56.5% (104) | 0.0264 | 0.0264 | 0.5959 | 0.3773–0.9412 | protection |
2 | T | 56.3% (71) | 43.5% (80) | 0.0264 | 0.0264 | 1.6782 | 1.0625–2.6506 | predisposition |
Genotype frequency | ||||||||
SNP | G>T | TEN | CON | |||||
rs946053 | n = 63 | n = 92 | p | FDR | OR | 95% CI | Association | |
11 | GG | 14.3% (9) | 32.6% (30) | 0.0118 | 0.0354 | 0.3444 | 0.1503–0.7895 | protection |
12 | GT | 58.7% (37) | 47.8% (44) | 0.1829 | 15.524 | 0.8127–2.9656 | none | |
22 | TT | 27% (17) | 19.6% (18) | 0.279 | 15.193 | 0.7118–3.2428 | none | |
HWE | 0.124 | |||||||
TNC | Allele frequency | |||||||
SNP | T>A | TEN | CON | |||||
rs2104772 | n = 63 | n = 92 | p | FDR | OR | 95% CI | Association | |
1 | T | 61.1% (77) | 48.4% (89) | 0.0276 | 0.0276 | 1.6774 | 1.0586–2.6579 | predisposition |
2 | A | 38.9% (49) | 51.6% (95) | 0.0276 | 0.0276 | 0.5962 | 0.3762–0.9447 | protection |
Genotype frequency | ||||||||
SNP | T>A | TEN | CON | |||||
rs2104772 | n = 63 | n = 92 | p | FDR | OR | 95% CI | Association | |
11 | TT | 42.9% (27) | 22.8% (21) | 0.0089 | 0.0267 | 25.357 | 1.2628–5.0918 | predisposition |
12 | TA | 36.5% (23) | 51.1% (47) | 0.0745 | 0.5505 | 0.2857–1.0608 | none | |
22 | AA | 20.6% (13) | 26.1% (24) | 0.4351 | 0.7367 | 0.3402–1.5869 | none | |
HWE | 0.066 |
Hap Code | Haplotype | CON | TEN | p | FDR | OR | 95% CI | Association |
---|---|---|---|---|---|---|---|---|
1 | G-A-T | 16 | 5 | 0.1038 | 0.4339 | 0.1547–1.2166 | none | |
2 | G-A-C | 25 | 8 | 0.0424 | 0.0424 | 0.4310 | 0.1880–0.9900 | protection |
3 | G-T-T | 32 | 21 | 0.8678 | 0.9500 | 0.5193–1.7380 | none | |
4 | G-T-C | 31 | 21 | 0.9666 | 0.9871 | 0.5379–1.8114 | none | |
5 | T-A-T | 42 | 30 | 0.7729 | 1.0565 | 0.6186–1.8046 | none | |
6 | T-A-C | 11 | 6 | 0.6441 | 0.7864 | 0.2831–2.1843 | none | |
7 | T-T-T | 11 | 17 | 0.0234 | 0.0424 | 2.453 | 1.107–5.434 | predisposition |
8 | T-T-C | 16 | 18 | 0.1219 | 1.7500 | 0.8556–3.5792 | none |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Vrgoč, G.; Janković, S.; Knjaz, D.; Duvnjak Orešković, I.; Lauc, G.; Šimunić-Briški, N. The Association of the COL27A1 rs946053 and TNC rs2104772s with Tendinopathies: A Case–Control Study in High-Level Croatian Athletes. Genes 2025, 16, 935. https://doi.org/10.3390/genes16080935
Vrgoč G, Janković S, Knjaz D, Duvnjak Orešković I, Lauc G, Šimunić-Briški N. The Association of the COL27A1 rs946053 and TNC rs2104772s with Tendinopathies: A Case–Control Study in High-Level Croatian Athletes. Genes. 2025; 16(8):935. https://doi.org/10.3390/genes16080935
Chicago/Turabian StyleVrgoč, Goran, Saša Janković, Damir Knjaz, Ivana Duvnjak Orešković, Gordan Lauc, and Nina Šimunić-Briški. 2025. "The Association of the COL27A1 rs946053 and TNC rs2104772s with Tendinopathies: A Case–Control Study in High-Level Croatian Athletes" Genes 16, no. 8: 935. https://doi.org/10.3390/genes16080935
APA StyleVrgoč, G., Janković, S., Knjaz, D., Duvnjak Orešković, I., Lauc, G., & Šimunić-Briški, N. (2025). The Association of the COL27A1 rs946053 and TNC rs2104772s with Tendinopathies: A Case–Control Study in High-Level Croatian Athletes. Genes, 16(8), 935. https://doi.org/10.3390/genes16080935